Application of Nano-Crystalline Diamond in Tribology
Abstract
:1. Introduction
2. Synthesis of NCD
3. NCD for Tribological Applications
3.1. NCD Lubricant Additives
Lubricating System | Tribological Test and Performance | Refs. | ||||
---|---|---|---|---|---|---|
Method | Environment | Counterpart | COF (Original) | Wear (Original) | ||
1% NCD/ paraffin oil | ball-on-disc | ambient conditions, 50–200 N, 50 Hz, 0.2 m/s | GCr15 steel; #45 steel | 0.08 (0.18–0.13) | 0.2 × 10−3 mm3 (1 × 10−3 mm 3) | [52] |
3 vol.% NCD/ CPC R68 oil | block-on-ring | 3.54–5.11 MPa, 4.87–7.30 m/s | SKD11 steel, SKD61 steel | 0.071 (0.089) | 0.0206 g (0.0367 g) | [72] |
0.03–0.05% NCD/ 0.3% PAO | ring-on-ring; four-ball; block-on-ring | 314 N, 500–1500 rpm; 196 N, 1460 rpm; 300 N, 200 rpm | 52100 steel; 5140 steel; SAE 01 steel, stainless steel | 0.043–0.001 (0.195–0.052) | 0.350 mm (0.646 mm) | [73] |
1% NCD/ HVI-5 oil | reciprocating sliding | 150 °C, 200 rpm, 10–40 MPa | CrN, Cr/BP | 0.195–0.215 (0.255–0.27) | 1.5 μm (4 μm) | [76] |
0.001 wt.% NCD/ water | ball-on-disk | ambient conditions, 5–15 N, 10–100 mm/s | SiC | 0.01 (0.15–0.19) | 1.5 × 10−6 mm3/N·m (3 × 10−6 mm3/N·m) | [79] |
0.01 wt.% NCD/ water | ball-on-disk | 1.88 N, 40 m/s | SUS304 teel, WC | 0.1 (0.4) | <(original) | [80] |
0.05 wt.% NCD/ simulated body fluid | pin-on-disk | 37 °C, 1 Hz, 0.25 –1 N | Ti | 0.2–0.35 (0.4–0.7) | <(original) | [82] |
0.45 g/L NCD/ body fluids | ball-on-disk | 37 °C, 1 Hz, 0.25–2 N | UHMWPE, Ti | 0.15–0.2 (0.2–0.3) | <(original) | [83] |
3.2. NCD Lubricating Films
Lubricating System | Tribological Test and Performance | Refs. | ||||
---|---|---|---|---|---|---|
Method | Environment | Counterpart | COF | Wear | ||
MPCVD NCD on silicon | ball-on-disk | ambient conditions, 0.5 N, 10 cm/s | SiC | 0.02 | \ | [102] |
LA-MWPECVD NCD on steel alloys | pin-on-disk | AART/HVRT/HVH, 1 N, 3 cm/s | 100 Cr6 | 0.38–0.42 | 2 × 10−6 mm3/N·m | [103] |
HFCVD NCD on carbide cement | ball-on-disk | ambient conditions, 4/20 N, 5 Hz, 0.03 m/s | Si3N4 | 0.1 | 4 × 10−9 mm3/N·m | [106] |
HFCVD B-doping NCD on silicon | ball-on-disc | ambient conditions, 2 N, 5 Hz | Al2O3, diamond-coated ball | \ | 1.5 × 10−7 mm3/N·m | [107] |
HFCVD NCD on WC-Co 6% | ball-on-disc | ambient conditions, 20 N, 0.168 m/s | WC–Co | 0.1 | 1.15 × 10−3 mm3/N·m | [108] |
HFCVD NCD on WC-Co substrate | ball-on-disc | ambient conditions, 4 N, 400 r/min | SiC | 0.137 | 5.24 × 10−7 mm3/N·m | [112] |
HFCVD MCD/NCD on WC-Co substrate | 0.173 | 3.29 × 10−7 mm3/N·m | [112] | |||
HFCVD MCD/NCD/UNCD on WC-Co substrate | 0.143 | 3.61 × 10−7 mm3/N·m | [112] | |||
HFCVD NCD on Ti alloy | pin-on-disc | 28 N, 1 Hz, 20 mm/s | UHMWPE | \ | \ | [114] |
3.3. NCD Lubricating Composites
3.3.1. Ni-Based NCD Composites
3.3.2. Al-Based NCD Composites
3.3.3. Fe-Based NCD Composites
3.3.4. NCD Composites with other Materials
4. Simulation of NCD in Tribology
5. Conclusions
- For NCD additives, tribological performances were enhanced through the polishing effect of the lubricant containing NCD powders on the friction surface, as well as the ball-bearing effect during the rubbing, leading to a wide range of applications for NCD powders in the field of lubrication additives. NCD powder additives in oil, water or even a body fluid exhibited outstanding tribological properties. The concentration of NCD powder additives is a critical factor that influences tribological performance. Hence, it is necessary to probe the optimized concentration and improve the dispersity of NCD additives.
- For NCD lubricating films, the COF of single-layer NCD films was significantly reduced. The films can be deposited on a variety of substrates to expand the application of the NCD lubricating films. The poor adhesion between the NCD lubricating film and the substrate is a subject that needs to be further studied.
- For NCD composite materials, its outstanding properties of high hardness, small size, chemical stability and high thermal conductivity makes NCD considered a candidate for reinforcing materials. The incorporation of NCD into the metal coating increased functionality and improved the tribological properties. NCD can be sintered with other materials to produce end mills, drills, wear parts, etc. Although most studies of NCD composites have shown improvements in tribological properties, the current NCD composites do not perform as well in terms of tribology as expected.
6. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bundy, F.P.; Hall, H.T.; Strong, H.M.; Wentorfjun, R.H. Man-Made Diamonds. Nature 1955, 176, 51–55. [Google Scholar] [CrossRef]
- Daulton, T.L.; Eisenhour, D.D.; Bernatowicz, T.J.; Lewis, R.S.; Buseck, P.R. Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta 1996, 60, 4853–4872. [Google Scholar] [CrossRef]
- Chakrabarti, K.; Chakrabarti, R.; Chattopadhyay, K.K.; Chaudhuri, S.; Pal, A.K. Nano-diamond films produced from CVD of camphor. Diam. Relat. Mater. 1998, 7, 845–852. [Google Scholar] [CrossRef]
- Sharda, T.; Rahaman, M.M.; Nukaya, Y.; Soga, T.; Jimbo, T.; Umeno, M. Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition. Diam. Relat. Mater. 2001, 10, 561–567. [Google Scholar] [CrossRef]
- Wang, J.B.; Zhang, C.Y.; Zhong, X.L.; Yang, G.W. Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid-solid interfacial reaction. Chem. Phys. Lett. 2002, 361, 86–90. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Tsui, W.C.; Liu, T.C. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, 262, 819–825. [Google Scholar] [CrossRef]
- Arora, A.K.; Rajalakshmi, M.; Ravindran, T.R.; Sivasubramanian, V. Raman spectroscopy of optical phonon confinement in nanostructured materials. J. Raman Spectrosc. 2007, 38, 604–617. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, H.; He, Y.; Lapkin, A.; Yeganeh, M.; Siller, L.; Butenko, Y.V. Forced convective heat transfer of nanofluids. Adv. Powder Technol. 2007, 18, 813–824. [Google Scholar] [CrossRef]
- Korobov, M.V.; Avramenko, N.V.; Bogachev, A.G.; Rozhkova, N.N.; Osawa, E. Nanophase of water in nano-diamond gel. J. Phys. Chem. C 2007, 111, 7330–7334. [Google Scholar] [CrossRef]
- Boudou, J.-P.; Curmi, P.A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 2009, 20, 235602. [Google Scholar] [CrossRef] [PubMed]
- Gibson, N.; Shenderova, O.; Luo, T.J.M.; Moseenkov, S.; Bondar, V.; Puzyr, A.; Purtov, K.; Fitzgerald, Z.; Brenner, D.W. Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater. 2009, 18, 620–626. [Google Scholar] [CrossRef]
- Neu, E.; Steinmetz, D.; Riedrich-Moeller, J.; Gsell, S.; Fischer, M.; Schreck, M.; Becher, C. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 2011, 13, 025012. [Google Scholar] [CrossRef]
- Williams, O.A. Nanocrystalline diamond. Diam. Relat. Mater. 2011, 20, 621–640. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, X.-J. Nano-Carbons as Theranostics. Theranostics 2012, 2, 235–237. [Google Scholar] [CrossRef]
- Kozak, O.; Sudolska, M.; Pramanik, G.; Cigler, P.; Otyepka, M.; Zboril, R. Photoluminescent carbon nanostructures. Chem. Mater. 2016, 28, 4085–4128. [Google Scholar] [CrossRef]
- Reineck, P.; Lau, D.W.M.; Wilson, E.R.; Fox, K.; Field, M.R.; Deeleepojananan, C.; Mochalin, V.N.; Gibsont, B.C. Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano 2017, 11, 10924–10934. [Google Scholar] [CrossRef]
- Petit, T.; Puskar, L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. 2018, 89, 52–66. [Google Scholar] [CrossRef]
- Fattahi, M.; Azizian-Kalandaragh, Y.; Delbari, S.A.; Namini, A.S.; Ahmadi, Z.; Asl, M.S. Nano-diamond reinforced ZrB2-SiC composites. Ceram. Int. 2020, 46, 10172–10179. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2011, 7, 11–23. [Google Scholar] [CrossRef]
- Konstanty, J. Production parameters and materials selection of powder metallurgy diamond tools. Powder Metall. 2006, 49, 299–306. [Google Scholar] [CrossRef]
- Luo, H.Y.; Liu, J.Y.; Wang, L.J.; Zhong, Q.P. The effect of burnishing parameters on burnishing force and surface microhardness. Int. J. Adv. Manuf. Technol. 2006, 28, 707–713. [Google Scholar] [CrossRef]
- Peng, D.-X.; Kang, Y.; Chen, C.-H.; Chen, S.-K.; Shu, F.-C. The tribological behavior of modified diamond nanoparticles in liquid paraffin. Ind. Lubr. Tribol. 2009, 61, 213–219. [Google Scholar] [CrossRef]
- Yu, D.P.; Hong, G.S.; Wong, Y.S. Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int. J. Mach. Tool Manu. 2012, 52, 13–23. [Google Scholar] [CrossRef]
- Hatefi, S.; Abou-El-Hossein, K. Review of single-point diamond turning process in terms of ultra-precision optical surface roughness. Int. J. Adv. Manuf. Technol. 2020, 106, 2167–2187. [Google Scholar] [CrossRef]
- Fan, J.; Chu, P.K. Group IV Nanoparticles: Synthesis, Properties, and Biological Applications. Small 2010, 6, 2080–2098. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. T. R. Soc. A 2004, 362, 2477–2512. [Google Scholar] [CrossRef] [PubMed]
- Maldovan, M.; Thomas, E.L. Diamond-structured photonic crystals. Nat. Mater. 2004, 3, 593–600. [Google Scholar] [CrossRef]
- Yu, S.J.; Kang, M.W.; Chang, H.C.; Chen, K.M.; Yu, Y.C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604–17605. [Google Scholar] [CrossRef]
- Hartl, A.; Schmich, E.; Garrido, J.A.; Hernando, J.; Catharino, S.C.R.; Walter, S.; Feulner, P.; Kromka, A.; Steinmuller, D.; Stutzmann, M. Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 2004, 3, 736–742. [Google Scholar] [CrossRef]
- Behler, K.D.; Stravato, A.; Mochalin, V.; Korneva, G.; Yushin, G.; Gogotsi, Y. Nanodiamond-polymer composite fibers and coatings. ACS Nano 2009, 3, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, B.J.M.; Shields, B.; Quan, Q.; Maletinsky, P.; McCutcheon, M.; Choy, J.T.; Babinec, T.M.; Kubanek, A.; Yacoby, A.; Lukin, M.D.; et al. Integrated diamond networks for quantum nanophotonics. Nano Lett. 2012, 12, 1578–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maletinsky, P.; Hong, S.; Grinolds, M.S.; Hausmann, B.; Lukin, M.D.; Walsworth, R.L.; Loncar, M.; Yacoby, A. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 2012, 7, 320–324. [Google Scholar] [CrossRef]
- Raty, J.Y.; Galli, G. Ultradispersity of diamond at the nanoscale. Nat. Mater. 2003, 2, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Krueger, A. New carbon materials: Biological applications of functionalized nanodiamond materials. Chem.-A Eur. J. 2008, 14, 1382–1390. [Google Scholar] [CrossRef]
- Williams, O.A.; Hees, J.; Dieker, C.; Jaeger, W.; Kirste, L.; Nebel, C.E. Size-dependent reactivity of diamond nanoparticles. ACS Nano 2010, 4, 4824–4830. [Google Scholar] [CrossRef] [PubMed]
- Schrand, A.M.; Huang, H.; Carlson, C.; Schlager, J.J.; Osawa, E.; Hussain, S.M.; Dai, L. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B 2007, 111, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Rodulaski, M.; Zhang, J.; Tzeng, Y.K.; Lagoudakis, K.G.; Ishiwata, H.; Dory, C.; Fischer, K.A.; Kelaita, Y.A.; Sun, S.; Maurer, P.C.; et al. Nanodiamond integration with photonic devices. Laser Photonics Rev. 2019, 13, 1800316. [Google Scholar] [CrossRef] [Green Version]
- Beha, K.; Fedder, H.; Wolfer, M.; Becker, M.C.; Siyushev, P.; Jamali, M.; Batalov, A.; Hinz, C.; Hees, J.; Kirste, L.; et al. Diamond nanophotonics. Beilstein J. Nanotechnol. 2012, 3, 895–908. [Google Scholar] [CrossRef]
- Radtke, M.; Bernardi, E.; Slablab, A.; Nelz, R.; Neu, E. Nanoscale sensing based on nitrogen vacancy centers in single crystal diamond and nanodiamonds: Achievements and challenges. Nano Futures 2019, 3, 042004. [Google Scholar] [CrossRef]
- Johnstone, G.E.; Cairns, G.S.; Patton, B.R. Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. R. Soc. Open Sci. 2019, 6, 190589. [Google Scholar] [CrossRef] [Green Version]
- Alagappan, G.; Krivitsky, L.A.; Png, C.E. Purcell enhancement of light emission in nanodiamond using a trenched nanobeam cavity. J. Opt. 2020, 22, 025401. [Google Scholar] [CrossRef]
- Aharonovich, I.; Neu, E. Diamond Nanophotonics. Adv. Opt. Mater. 2014, 2, 911–928. [Google Scholar] [CrossRef]
- Castelletto, S.; Rosa, L.; Boretti, A. Micro-manipulation of nanodiamonds containing NV centers for quantum applications. Diam. Relat. Mater. 2020, 106, 107840. [Google Scholar] [CrossRef]
- Zhang, H.J.; Chen, X.Y.; Yin, Z.Q. Quantum information processing and precision measurement using a levitated nanodiamond. Adv. Quantum Technol. 2021, 4, 2000154. [Google Scholar] [CrossRef]
- Hui, Y.Y.; Su, L.J.; Chen, O.Y.; Chen, Y.T.; Liu, T.M.; Chang, H.C. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci. Rep. 2014, 4, 5574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mzyk, A.; Ong, Y.; Moreno, A.R.O.; Padamati, S.K.; Zhang, Y.; Reyes-San-Martin, C.A.; Schirhagl, R. Diamond color centers in diamonds for chemical and biochemical analysis and visualization. Anal. Chem. 2022, 94, 225–249. [Google Scholar] [CrossRef]
- Morita, A.; Hamoh, T.; Sigaeva, A.; Norouzi, N.; Nagl, A.; van der Laan, K.J.; Evans, E.P.P.; Schirhagl, R. Targeting nanodiamonds to the nucleus in yeast cells. Nanomaterials 2020, 10, 1962. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Chang, B.M.; Chang, H.C. Nanodiamond-enabled biomedical imaging. Nanomedicine 2020, 15, 1599–1616. [Google Scholar] [CrossRef]
- Bhogale, D.; Mazahir, F.; Yadav, A.K. Recent synergy of nanodiamonds: Role in brain-targeted drug delivery for the management of neurological disorders. Mol. Neurobiol. 2022, 59, 4806–4824. [Google Scholar] [CrossRef]
- Garifo, S.; Stanicki, D.; Ayata, G.; Muller, R.N.; Laurent, S. Nanodiamonds as nanomaterial for biomedical field. Front Mater. Sci. 2021, 15, 334–351. [Google Scholar] [CrossRef]
- Jung, H.S.; Neuman, K.C. Surface modification of fluorescent nanodiamonds for biological applications. Nanomaterials 2021, 11, 153. [Google Scholar] [CrossRef]
- Xu, T.; Zhao, J.Z.; Xu, K. The ball-bearing effect of diamond nanoparticles as an oil additive. J. Phys. D. Appl. Phys. 1996, 29, 2932–2937. [Google Scholar]
- Ajikumar, P.K.; Ganesan, K.; Kumar, N.; Ravindran, T.R.; Kalavathi, S.; Kamruddin, M. Role of microstructure and structural disorder on tribological properties of polycrystalline diamond films. Appl. Surf. Sci. 2019, 469, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Jetpurwala, A.M.; Dikshit, M. Chemical vapor deposition diamond dental burs for high speed air turbine handpieces. Surf. Coat. Technol. 2021, 418, 127244. [Google Scholar] [CrossRef]
- Wang, H.; Song, X.; Wang, X.; Sun, F. Tribological performance and wear mechanism of smooth ultrananocrystalline diamond films. J. Mater. Process. Technol. 2021, 290, 116993. [Google Scholar] [CrossRef]
- Li, C.-C.; Huang, C.-L. Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surf. A Physicochem. Eng. Asp. 2010, 353, 52–56. [Google Scholar] [CrossRef]
- Chu, H.Y.; Hsu, W.C.; Lin, J.F. Scuffing mechanism during oil-lubricated block-on-ring test with diamond nanoparticles as oil additive. Wear 2010, 268, 1423–1433. [Google Scholar] [CrossRef]
- Li, C.; Wu, K.; Wu, B.; Feng, W.; Hu, X. Synthesis and tribological properties of lubricant oil with highly dispersed and stable nanodiamond. Chin. J. Process. Eng. 2019, 19, 809–816. [Google Scholar]
- Luo, J.B.; Wen, S.Z.E. Mechanism and characters of thin film lubrication at nanometer scale. Sci. China Ser. A 1996, 39, 1312–1322. [Google Scholar]
- Chen, H.; Cai, T.; Ruan, X.; Jiao, C.; Xia, J.; Wei, X.; Wang, Y.; Gong, P.; Li, H.; Atkin, R.; et al. Outstanding Bio-Tribological Performance Induced by the Synergistic Effect of 2D Diamond Nanosheet Coating and Silk Fibroin. ACS Appl. Mater. Interfaces 2022, 14, 48091–48105. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.T.; Gong, J.L.; Zhu, Z.Y.; Zhu, D.Z.; He, S.X.; Wang, Z.X.; Chen, Y.; Hu, G. Nanocrystalline diamond from carbon nanotubes. Appl. Phys. Lett. 2004, 84, 2901–2903. [Google Scholar] [CrossRef] [Green Version]
- Amaral, M.; Fernandes, A.J.S.; Vila, M.; Oliveira, F.J.; Silva, R.F. Growth rate improvements in the hot-filament CVD deposition of nanocrystalline diamond. Diam. Relat. Mater. 2006, 15, 1822–1827. [Google Scholar] [CrossRef]
- Baudrillart, B.; Bénédic, F.; Brinza, O.; Bieber, T.; Chauveau, T.; Achard, J.; Gicquel, A. Microstructure and growth kinetics of nanocrystalline diamond films deposited in large area/low temperature distributed antenna array microwave-plasma reactor. Phys. Status Solidi 2015, 212, 2611–2615. [Google Scholar] [CrossRef]
- Gracio, J.J.; Fan, Q.H.; Madaleno, J.C. Diamond growth by chemical vapour deposition. J. Phys. D 2010, 43, 374017. [Google Scholar] [CrossRef] [Green Version]
- Inzoli, F.; Dellasega, D.; Russo, V.; Caniello, R.; Conti, C.; Ghezzi, F.; Passoni, M. Nanocrystalline diamond produced by direct current micro-plasma: Investigation of growth dynamics. Diam. Relat. Mater. 2017, 74, 212–221. [Google Scholar] [CrossRef]
- Park, J.-W.; Kim, K.-S.; Hwang, N.-M. Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon 2016, 106, 289–294. [Google Scholar] [CrossRef]
- Bochechka, O.O. Production of Polycrystalline Materials by Sintering of Nanodispersed Diamond Nanopowders at High Pressure. Review. J. Superhard Mater. 2018, 40, 325–334. [Google Scholar] [CrossRef]
- Koreshkova, A.N.; Gupta, V.; Peristyy, A.; Hasan, C.K.; Nesterenko, P.N.; Paull, B. Recent advances and applications of synthetic diamonds in solid-phase extraction and high-performance liquid chromatography. J. Chromatogr. A 2021, 1640, 461936. [Google Scholar] [CrossRef]
- Ivanov, M.; Shenderova, O. Nanodiamond-based nanolubricants for motor oils. Curr. Opin. Solid State Mater. Sci. 2017, 21, 17–24. [Google Scholar] [CrossRef]
- He, X.; Luo, S.; Cao, X. Research progress in application and surface treatment technology of nano-diamond. Bull. Chin. Ceram. Soc. 2013, 32, 884–889. [Google Scholar]
- Novak, C.; Kingman, D.; Stern, K.; Zou, Q.; Gara, L. Tribological properties of paraffinic oil with nanodiamond particles. Tribol. Trans. 2014, 57, 831–837. [Google Scholar] [CrossRef]
- Chu, H.Y.; Hsu, W.C.; Lin, J.F. The anti-scuffing performance of diamond nano-particles as an oil additive. Wear 2010, 268, 960–967. [Google Scholar] [CrossRef]
- Shenderova, O.; Vargas, A.; Turner, S.; Ivanov, D.M.; Ivanov, M.G. Nanodiamond-based nanolubricants: Investigation of friction surfaces. Tribol. Trans. 2014, 57, 1051–1057. [Google Scholar] [CrossRef]
- Ahmed Ali, M.K.; Xianjun, H.; Abdelkareem, M.A.A.; Elsheikh, A.H. Role of nanolubricants formulated in improving vehicle engines performance. IOP Conf. Ser. Mater. Sci. Eng. 2019, 563, 022015. [Google Scholar] [CrossRef]
- Akl, S.; Elsoudy, S.; Abdel-Rehim, A.A.; Salem, S.; Ellis, M. Recent Advances in Preparation and Testing Methods of Engine-Based Nanolubricants: A State-of-the-Art Review. Lubricants 2021, 9, 85. [Google Scholar] [CrossRef]
- Huang, R.; Wang, Z.; Yuan, X.; Zhang, T.; Ma, S.; Chen, X.; Xu, J. Tribological performance of nano-diamond composites-dispersed lubricants on commercial cylinder liner mating with CrN piston ring. Nanotechnol. Rev. 2020, 9, 455–464. [Google Scholar] [CrossRef]
- Ivanov, M.G.; Pavlyshko, S.V.; Ivanov, D.M.; Petrov, I.; Shenderova, O. Synergistic compositions of colloidal nanodiamond as lubricant-additive. J. Vac. Sci. Technol. B 2010, 28, 869–877. [Google Scholar] [CrossRef]
- Raina, A.; Irfan Ul Haq, M.; Anand, A.; Mohan, S.; Kumar, R.; Jayalakshmi, S.; Arvind Singh, R. Nanodiamond Particles as Secondary Additive for Polyalphaolefin Oil Lubrication of Steel-Aluminium Contact. Nanomaterials 2021, 11, 1438. [Google Scholar] [CrossRef]
- Wang, X.; Sato, H.; Adachi, K. Low friction in self-mated silicon carbide tribosystem using nanodiamond as lubricating additive in water. Friction 2020, 9, 598–611. [Google Scholar] [CrossRef]
- Alias, A.A.; Kinoshita, H.; Fujii, M. Tribological properties of diamond nanoparticle additive in water under a lubrication between steel plate and tungsten carbide ball. J. Adv. Mech. Des. Syst. 2015, 9, JAMDSM0006. [Google Scholar] [CrossRef] [Green Version]
- Mirzaamiri, R.; Akbarzadeh, S.; Ziaei-Rad, S.; Shin, D.-G.; Kim, D.-E. Molecular dynamics simulation and experimental investigation of tribological behavior of nanodiamonds in aqueous suspensions. Tribol. Int. 2021, 156, 106838. [Google Scholar] [CrossRef]
- Shirani, A.; Nunn, N.; Shenderova, O.; Osawa, E.; Berman, D. Nanodiamonds for improving lubrication of titanium surfaces in simulated body fluid. Carbon 2019, 143, 890–896. [Google Scholar] [CrossRef]
- Shirani, A.; Hu, Q.; Su, Y.; Joy, T.; Zhu, D.; Berman, D. Combined Tribological and Bactericidal Effect of Nanodiamonds as a Potential Lubricant for Artificial Joints. ACS Appl. Mater. Interfaces 2019, 11, 43500–43508. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xin, H.W.; Zhang, Z.M.; Dai, Y.B.; Shen, H.S. The fabrication of nanocrystalline diamond films using hot filament CVD. Diam. Relat. Mater. 2004, 13, 6–13. [Google Scholar] [CrossRef]
- Abreu, C.S.; Amaral, M.; Fernandes, A.J.S.; Oliveira, F.J.; Silva, R.F.; Gomes, J.R. Friction and wear performance of HFCVD nanocrystalline diamond coated silicon nitride ceramics. Diam. Relat. Mater. 2006, 15, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Wiora, M.; Bruehne, K.; Floeter, A.; Gluche, P.; Willey, T.M.; Kucheyev, S.O.; Van Buuren, A.W.; Hamza, A.V.; Biener, J.; Fecht, H.J. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD. Diam. Relat. Mater. 2009, 18, 927–930. [Google Scholar] [CrossRef]
- Klauser, F.; Steinmueller-Nethl, D.; Kaindl, R.; Bertel, E.; Memmel, N. Raman Studies of Nano- and Ultra-nanocrystalline Diamond Films Grown by Hot-Filament CVD. Chem. Vap. Depos. 2010, 16, 127–135. [Google Scholar] [CrossRef]
- Wei, Q.-P.; Yu, Z.M.; Ashfold, M.N.R.; Ye, J.; Ma, L. Synthesis of micro- or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition. Appl. Surf. Sci. 2010, 256, 4357–4364. [Google Scholar] [CrossRef]
- Ali, M.; Urgen, M. Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations. Appl. Surf. Sci. 2011, 257, 8420–8426. [Google Scholar] [CrossRef]
- Wei, Q.; Ashfold, M.N.R.; Mankelevich, Y.A.; Yu, Z.M.; Liu, P.Z.; Ma, L. Diamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filament-substrate separation. Diam. Relat. Mater. 2011, 20, 641–650. [Google Scholar] [CrossRef]
- Qin, L.C.; Zhou, D.; Krauss, A.R.; Gruen, D.M. TEM characterization of nanodiamond thin films. Nanostruct. Mater. 1998, 10, 649–660. [Google Scholar] [CrossRef]
- Yang, T.S.; Lai, J.Y.; Cheng, C.L.; Wong, M.S. Growth of faceted, ballas-like and nanocrystalline diamond films deposited in CH4/H-2/Ar MPCVD. Diam. Relat. Mater. 2001, 10, 2161–2166. [Google Scholar] [CrossRef]
- Fries, M.D.; Vohra, Y.K. Properties of nanocrystalline diamond thin films grown by MPCVD for biomedical implant purposes. Diam. Relat. Mater. 2004, 13, 1740–1743. [Google Scholar] [CrossRef]
- Takano, Y.; Nagao, M.; Takenouchi, T.; Umezawa, H.; Sakaguchi, I.; Tachiki, M.; Kawarada, H. Superconductivity in polycrystalline diamond thin films. Diam. Relat. Mater. 2005, 14, 1936–1938. [Google Scholar] [CrossRef] [Green Version]
- Stacey, A.; Aharonovich, I.; Prawer, S.; Butler, J.E. Controlled synthesis of high quality micro/nano-diamonds by microwave plasma chemical vapor deposition. Diam. Relat. Mater. 2009, 18, 51–55. [Google Scholar] [CrossRef]
- Auciello, O.; Sumant, A.V. Status review of the science and technology of ultrananocrystalline diamond (UNCD (TM)) films and application to multifunctional devices. Diam. Relat. Mater. 2010, 19, 699–718. [Google Scholar] [CrossRef]
- Yang, G.; Zheng, W.; Tian, H.; Wang, X.; Xu, Q.; Cheng, J.; Ho, Y.; Jiang, Q. Investigation on nanodiamond and carbon nanotube-diamond nanocomposite synthesized using RF-PECVD. Chem. Vap. Depos. 2008, 14, 236–240. [Google Scholar] [CrossRef]
- Banerjee, A.; Das, D. Low temperature synthesis of spherical nano-diamond. J. Exp. Nanosci. 2014, 9, 818–824. [Google Scholar] [CrossRef]
- Das, D.; Banerjee, A. Further improvements of nano-diamond structures on unheated substrates by optimization of parameters with secondary plasma in MW-PECVD. Surf. Coat. Technol. 2015, 272, 357–365. [Google Scholar] [CrossRef]
- Khalaj, Z. Comparative study of nanocrystalline diamond growth using PECVD and HFCVD techniques. Stud. U. Babes-Bol. Che. 2016, 61, 235–242. [Google Scholar]
- Baudrillart, B.; Benedic, F.; Tardieu, A.; Achard, J. Investigation of nucleation and growth of nanocrystalline diamond films deposited at low temperature using in situ laser reflectance interferometry. Phys. Status Solidi 2017, 214, 1700205. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Morel, C.; Koga, Y. Synthesis of nanocrystalline diamond films using microwave plasma CVD. Diam. Relat. Mater. 2001, 10, 1588–1591. [Google Scholar] [CrossRef]
- Kumar, N.; Sankaran, K.J.; Kozakov, A.T.; Sidashov, A.V.; Nicolskii, A.V.; Haenen, K.; Kolesnikov, V.I. Surface and bulk phase analysis of the tribolayer of nanocrystalline diamond films sliding against steel balls. Diam. Relat. Mater. 2019, 97, 107472. [Google Scholar] [CrossRef]
- Drijkoningen, S.; Pobedinskas, P.; Korneychuk, S.; Momot, A.; Balasubramaniam, Y.; Van Bael, M.K.; Turner, S.; Verbeeck, J.; Nesládek, M.; Haenen, K. On the origin of diamond plates deposited at low temperature. Cryst. Growth Des. 2017, 17, 4306–4314. [Google Scholar] [CrossRef]
- Das, D.; Roy, A. Growth of nanostructured diamond films on glass substrates by low-temperature microwave plasma-enhanced chemical vapor deposition for applications in nanotribology. ACS Appl. Nano Mater 2022, 5, 3558–3571. [Google Scholar] [CrossRef]
- Peng, J.; Xiong, C.; Liao, J.; Liao, J.; Yuan, L.; Li, L. Study on the effect of Ar-containing work gas on the microstructure and tribological behavior of nanocrystalline diamond coatings. Tribol. Int. 2021, 153, 106667. [Google Scholar] [CrossRef]
- Buijnsters, J.G.; Tsigkourakos, M.; Hantschel, T.; Gomes, F.O.; Nuytten, T.; Favia, P.; Bender, H.; Arstila, K.; Celis, J.P.; Vandervorst, W. Effect of boron doping on the wear behavior of the growth and nucleation surfaces of micro- and nanocrystalline diamond films. ACS Appl. Mater. Interfaces 2016, 8, 26381–26391. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Lei, X.; He, Y. Experimental study on the effect of surface texture on tribological properties of nanodiamond films under water lubrication. P. I. Mech. Eng. J.-J. Eng. 2021, 236, 995–1007. [Google Scholar] [CrossRef]
- Gujrati, A.; Sanner, A.; Khanal, S.R.; Moldovan, N.; Zeng, H.; Pastewka, L.; Jacobs, T.D.B. Comprehensive topography characterization of polycrystalline diamond coatings. Surf. Topogr. Metrol. Prop. 2021, 9, 014003. [Google Scholar] [CrossRef]
- Cicala, G.; Magaletti, V.; Carbone, G.; Senesi, G.S. Load sensitive super-hardness of nanocrystalline diamond coatings. Diam Relat Mater 2020, 101, 107653. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wang, X.; Sun, F. Effects of carbon concentration and gas pressure with hydrogen-rich gas chemistry on synthesis and characterizations of HFCVD diamond films on WC-Co substrates. Surf. Coat. Technol. 2021, 409, 126839. [Google Scholar] [CrossRef]
- Wang, H.; Song, X.; Wang, X.; Sun, F. Fabrication, tribological properties and cutting performances of high-quality multilayer graded MCD/NCD/UNCD coated PCB end mills. Diam. Relat. Mater. 2021, 118, 108505. [Google Scholar] [CrossRef]
- Shabani, M.; Carrapichano, J.M.; Oliveira, F.J.; Silva, R.F. Multilayered diamond mechanical seal rings under biodiesel lubrication and the full sealing conditions of pressurized water. Wear 2017, 384–385, 178–184. [Google Scholar] [CrossRef]
- Gopal, V.; Chandran, M.; Rao, M.S.R.; Mischler, S.; Cao, S.; Manivasagam, G. Tribocorrosion and electrochemical behaviour of nanocrystalline diamond coated Ti based alloys for orthopaedic application. Tribol. Int. 2017, 106, 88–100. [Google Scholar] [CrossRef]
- Xu, H.; Yang, Z.; Li, M.-K.; Shi, Y.-L.; Huang, Y.; Li, H.-L. Synthesis and properties of electroless Ni–P–Nanometer Diamond composite coatings. Surf. Coat. Technol. 2005, 191, 161–165. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Xue, Q.; Liu, H.; Xu, T. Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings. Mat. Sci. Eng. A-Struct. 2005, 390, 313–318. [Google Scholar] [CrossRef]
- Karaguiozova, Z.; Kaleicheva, J.; Mishev, V.; Nikolcheva, G. Enhancement in the tribological and mechanical properties of electroless nickel-nanodiamond coatings plated on iron. Tribol. Ind. 2017, 39, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.F.; Zhu, Y.W.; Liu, T.T.; Zhang, S.W.; Peng, Y.J.M.X.T. Friction and wear properties of Ni-P electroless composite coatings with core-shell nanodiamond. Tribology 2013, 33, 267–274. [Google Scholar]
- Ekoi, E.J.; Dowling, D.P. Evaluation of the microstructure, mechanical and tribological properties of nickel-diamond nanocomposite coatings. Diam. Relat. Mater. 2019, 94, 118–128. [Google Scholar] [CrossRef]
- Ajdelsztajn, L.; Jodoin, B.; Kim, G.E.; Schoenung, J.M. Cold spray deposition of nanocrystalline aluminum alloys. Metall. Mater. Trans. A 2005, 36A, 3263. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.C.; Brewer, L.N.; Roemer, T.J. Preparation of aluminum coatings containing homogenous nanocrystalline microstructures using the cold spray process. J. Therm. Spray Technol. 2008, 17, 352–359. [Google Scholar] [CrossRef]
- Woo, D.J.; Heer, F.C.; Brewer, L.N.; Hooper, J.P.; Osswald, S. Synthesis of nanodiamond-reinforced aluminum metal matrix composites using cold-spray deposition. Carbon 2015, 86, 15–25. [Google Scholar] [CrossRef]
- Loganathan, A.; Rengifo, S.; Hernandez, A.F.; Zhang, C.; Agarwal, A. Effect of nanodiamond reinforcement and heat-treatment on microstructure, mechanical and tribological properties of cold sprayed aluminum coating. Surf. Coat. Technol. 2021, 412, 127037. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Zhang, F.-L.; Zhai, M.-J.; Zhu, M.-X.; Zhou, Y.-M.; Tang, H.-Q.; Xie, D.-L. Mechanical properties and tribological behavior of Fe/nano-diamond composite prepared by hot-press sintering. Int. J. Refract. Met. Hard Mater. 2021, 95, 105412. [Google Scholar] [CrossRef]
- Gong, H.; Anasori, B.; Dennison, C.R.; Wang, K.; Kumbur, E.C.; Strich, R.; Zhou, J.G. Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application. J. Mater. Sci.-Mater. Med. 2015, 26, 1–9. [Google Scholar] [CrossRef]
- Razavi, M.; Fathi, M.H.; Meratian, M. Fabrication and characterization of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Charact. 2010, 61, 1363–1370. [Google Scholar] [CrossRef]
- Saba, F.; Zhang, F.; Liu, S.; Liu, T. Tribological properties, thermal conductivity and corrosion resistance of titanium/nanodiamond nanocomposites. Compos. Commun. 2018, 10, 57–63. [Google Scholar] [CrossRef]
- Shang, C.; Liu, T.; Zhang, F.; Chen, F. Effect of network size on mechanical properties and wear resistance of titanium/nanodiamonds nanocomposites with network architecture. Compos. Commun. 2020, 19, 74–81. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, T. Nanodiamonds reinforced titanium matrix nanocomposites with network architecture. Compos. B. Eng. 2019, 165, 143–154. [Google Scholar] [CrossRef]
- Shang, C.; Zhang, F.; Wang, J.; Chen, F. Interface configuration effect on mechanical and tribological properties of three-dimension network architectural titanium alloy matrix nanocomposites. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106981. [Google Scholar] [CrossRef]
- Schubert, T.; Ciupinski, L.; Zielinski, W.; Michalski, A.; Weissgaber, T.; Kieback, B. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scr. Mater. 2008, 58, 263–266. [Google Scholar] [CrossRef]
- Nunes, D.; Correia, J.B.; Carvalho, P.A.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, L.C.; Hanada, K.; Osawa, E. Production of Cu/diamond composites for first-wall heat sinks. Fusion Eng. Des. 2011, 86, 2589–2592. [Google Scholar] [CrossRef]
- Jamali, S.; Zare, Y.; Rhee, K.Y. Modeling of mechanical behaviors and interphase properties of polymer/nanodiamond composites for biomedical products. J. Mater. Res. Technol. 2022, 19, 2750–2758. [Google Scholar] [CrossRef]
- Zalieckas, J.; Mondragon, I.R.; Pobedinskas, P.; Kristoffersen, A.S.; Mohamed-Ahmed, S.; Gjerde, C.; Hol, P.J.; Hallan, G.; Furnes, O.N.; Cimpan, M.R.; et al. Polycrystalline Diamond Coating on Orthopedic Implants: Realization and Role of Surface Topology and Chemistry in Adsorption of Proteins and Cell Proliferation. ACS Appl. Mater. Interfaces 2022, 14, 44933–44946. [Google Scholar] [CrossRef]
- Medvedeva, N.N.; Zhukov, E.L.; Inzhevatkin, E.V.; Bezzabotnov, V.E. Antitumor properties of modified detonation nanodiamonds and sorbed doxorubicin on the model of ehrlich ascites carcinoma. Bull. Exp. Biol. Med. 2016, 160, 372–375. [Google Scholar] [CrossRef]
- Puzyr, A.P.; Baron, A.V.; Purtov, K.V.; Bortnikov, E.V.; Skobelev, N.N.; Mogilnaya, O.A.; Bondar, V.S. Nanodiamonds with novel properties: A biological study. Diam. Relat. Mater. 2007, 16, 2124–2128. [Google Scholar] [CrossRef]
- Zhai, W.; Srikanth, N.; Kong, L.B.; Zhou, K. Carbon nanomaterials in tribology. Carbon 2017, 119, 150–171. [Google Scholar] [CrossRef]
- Hu, C.; Bai, M.; Lv, J.; Kou, Z.; Li, X. Molecular dynamics simulation on the tribology properties of two hard nanoparticles (diamond and silicon dioxide) confined by two iron blocks. Tribol. Int. 2015, 90, 297–305. [Google Scholar] [CrossRef]
Lubricating System | Tribological Test and Performance | Refs. | ||||
---|---|---|---|---|---|---|
Method | Environment | Counterpart | COF (Original) | Wear (Original) | ||
electroplating m-Ni/NCD on AISI-1045 steel | ball-on-disk | ambient conditions, 3 N, 65 mm/s | AISI 52100 steel | \ | 1.3 × 10−4 mm3/N·m (2.5 × 10−4 mm3/N·m) | [116] |
electroplating n-Ni/NCD on AISI-1045 steel | \ | 6 × 10−5 mm3/N·m (3 × 10−5 mm3/N·m) | [116] | |||
Sintering Ni/25wt% NCD on stainless steel | pin-on-disc | ambient conditions, 1 N, 30 mm/s | WC-Co | \ | 3.4 × 10−6 mm3/N·m (4.3 × 10−4 mm3/N·m) | [119] |
cold spraying Al/2wt% NCD on AISI 1020 steel | ball-on disk | ambient conditions, 1 N, 10 rpm/min | Al2O3 | ~ 0.74 ± 0.021 | \ | [123] |
cold spraying- heat treating Al/2wt% NCD on AISI 1020 steel | ~ 1.15 ± 0.013 | \ | [123] | |||
hot-press sintering Fe/1wt% NCD | ball-on-disc | ambient conditions, 30 N, 3.3 Hz | GCr15 steel | ~0.5 (~0.8) | ~0.12 mm3 (~0.38 mm3) | [124] |
spark plasma sintering Ti/2 wt% NCD | wear ring electronic tester | 50–200 N | GCr15 steel | \ | 1.9% (0.4%) | [127] |
spark plasma sintering Ti/2.5 wt% NCD | friction-abrasion tester | 3 N, 320 rpm | Si3N4 | 0.503–0.674 (0.654) | 6.349–8.016 mg (12.101 mg) | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Lu, Y.; Yang, G.; Chen, C.; Hu, X.; Song, H.; Deng, L.; Wang, Y.; Yi, J.; Wang, B. Application of Nano-Crystalline Diamond in Tribology. Materials 2023, 16, 2710. https://doi.org/10.3390/ma16072710
Xia Y, Lu Y, Yang G, Chen C, Hu X, Song H, Deng L, Wang Y, Yi J, Wang B. Application of Nano-Crystalline Diamond in Tribology. Materials. 2023; 16(7):2710. https://doi.org/10.3390/ma16072710
Chicago/Turabian StyleXia, Yue, Yunxiang Lu, Guoyong Yang, Chengke Chen, Xiaojun Hu, Hui Song, Lifen Deng, Yuezhong Wang, Jian Yi, and Bo Wang. 2023. "Application of Nano-Crystalline Diamond in Tribology" Materials 16, no. 7: 2710. https://doi.org/10.3390/ma16072710
APA StyleXia, Y., Lu, Y., Yang, G., Chen, C., Hu, X., Song, H., Deng, L., Wang, Y., Yi, J., & Wang, B. (2023). Application of Nano-Crystalline Diamond in Tribology. Materials, 16(7), 2710. https://doi.org/10.3390/ma16072710