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Abstract: In machining 508III steel, the cemented carbide tool is subjected to a strong periodic thermal
load impact, leading to serious tool-chip adhesion and shortening the tool life. Considering the
influence of cutting parameters on temperature, temperature experiments and finite element (FE)
simulations were carried out based on Box-Behnken experimental design criteria in the response
surface method (RSM). Based on the experimental results, A second-order polynomial regression
prediction model for temperature was constructed as the optimization objective function based on
RSM. A temperature prediction model based on GA-SVM was established to predict temperature
change. Taking cutting temperature and efficiency as evaluation indicators, the elitist nondominated
sorting genetic algorithm was used to optimize cutting parameters. These findings may be important
for the tool life improvement and reasonable parameter selection.

Keywords: temperature experiment; parameter optimization; response surface method; cemented
carbide tool; 508IIIsteel

1. Introduction

The water chamber head is an important part of the steam generator of the nuclear
island. The material is high-intensity 508III steel. The blank of the workpiece is forged as a
whole, and the surface to be processed is poor [1,2]. The cemented carbide tool usually was
adopted. Due to the high strength, good low-temperature impact toughness, and low non-
ductility transition temperature of the 508III steel, it causes a higher cutting temperature in
the cutting. Due to the large thermal load shock and the difficult machining of 508III steel,
the phenomenon of tool-chip bonding often occurs during machining, which shortens the
tool life and seriously affects the machining efficiency and machining quality [3]. Aiming at
the above problems, it is necessary to conduct an in-depth study of the cutting temperature
during the process of milling 508III steel with the cemented carbide tool.

The cutting temperature is one of the primary reasons for tool failure in machining.
Periodic and thermal shocks can cause cracks easily in the tool material, leading to its
failure and affecting the tool’s life seriously. Over the years, many scholars at home and
abroad have studied cutting temperature from different angles. Ueda et al. [4] measured
the cutting temperature of Ti-6Al-4V and Inconel718 material using a self-developed optical
fiber two-color pyrometer. Patru et al. [5] used an infrared thermometer to measure the
temperature while milling the aluminum alloy. Bhirud et al. [6] measured the temperature
during end-milling aluminum alloys using a K-type thermocouple. Sato et al. [7] used an
infrared radiation pyrometer to measure the temperature of end-milling titanium alloys.
Yang et al. [8] studied the temperature of turning titanium alloys based on FE simulation
and found that the influence degree was vc > ap >γ0 > α0 > r. Gao et al. [9] established a
thermal model for predicting the temperature field of turning tools based on modulation-
assisted. Liu et al. [10] proposed a method of transmitting temperature signals through
wireless communication to measure the temperature. Bi et al. [11] established the FE
model of temperature based on the given heat source method. Geng et al. [12] conducted a
temperature test on titanium alloy by sandwich semi-artificial thermocouple method.
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For many years, parameter optimization has been a hot issue with which scholars
are concerned. Many scholars have studied parameter optimization based on different
methods with different response variables as optimization objectives. George et al. [13]
optimized the parameters of stainless steel based on the Taguchi method, taking the surface
roughness as the target. Nguyen et al. [14] adopted the Taguchi method to optimize
cutting parameters with the objective of optimizing surface roughness and productivity
and obtaining the best parameter combination. Santhanakrishnan et al. [15] used GA
to optimize the processing parameters of aluminum alloy with the optimization goal of
temperature rise. Librantz et al. [16] took production and machining efficiency as the
optimization goal, and GA was used to optimize the milling parameters. Zain et al. [17]
used the combination of GA and neural networks to predict and optimize the surface
roughness of milling titanium alloy. Tao et al. [18] used cutting simulation and GA to
optimize the parameters of superalloy and obtained the optimal processing parameters.
Chen et al. [19] used the extended non-dominated sorting genetic algorithm to optimize
milling parameters with production efficiency and tool life consumption as the target.

Relevant scholars have laid a certain foundation for the research of temperature exper-
iments and parameter optimization in machining, and most of the research mainly focused
on materials such as titanium alloy, aluminum alloy, and carbon steel. However, there
were relatively few studies on temperature experiments and parameters of heavy-milling
508III steel. Therefore, through the combination of FE simulation, GA-SVM prediction,
and multi-objective optimization methods, this paper made an in-depth study of the tool
temperature experiment and cutting parameter optimization in milling 508III steel. The
findings have important theoretical and practical significance for the reasonable selection
of machining parameters, the extension of tool life, and the improvement of machining
efficiency and quality.

2. Temperature Experiment and FE Analysis of Milling 508III Steel
2.1. Temperature Experimental Protocol and Measurement Method Design

The milling experiment was carried out on the vertical lifting table milling machine.
The cutting temperature was measured by the method of the wire-clamping semi-artificial
thermocouple. A nickel-chromium wire was clamped in the middle of the workpiece,
which was divided into two parts as the hot end. The other thermocouple was welded at
the bottom of the workpiece as the cold end. When the thermocouple wire was cut off, the
semi-artificial thermocouple converted the temperature difference between the hot end
and the cold end into a voltage signal and collected voltage data through the amplification
circuit and the data acquisition box. The model of the cutter head used was the FMR04-
100-B32-RD16-06, the cemented carbide insert was WIDIA-RDMT1605MOTX, and the
workpiece material was the 508III steel in the experiment. The experimental site is shown
in Figure 1. According to the common parameters of milling 508III steel in a large number
of production practices and scientific experiments, the range of cutting parameters was
determined as follows: 188 ≤ vc ≤ 370 m/min, 0.04 ≤ fz ≤ 0.08 mm/z, 1 ≤ ap ≤ 2.5 mm.
Where vc is the cutting speed, fz is the feed per tooth, and ap is the axial depth of cut.

The response surface method (RSM) based on statistics is derived from the graph
generated after the mathematical model fitting. Experimental data related to the empirical
model and the experimental design can be used to fit to describe the research object.
Since RSM can analyze the coupling relationship of multiple factors while considering the
random error of the experiment, the complex response relationship can be well-fitted based
on different order polynomials [20]. Therefore, in order to analyze the influence of different
cutting parameters on milling temperature comprehensively and obtain the optimization
objective function of milling temperature, the follow-up milling temperature experiment
and FE simulation research are carried out based on the Box-Behnken experimental design
criteria in the RSM.
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Figure 1. Field diagram of the milling temperature experiment.

2.2. Temperature Signal Test of Milling 508III Steel

Figure 2 shows the thermoelectric potential signal measured experimentally. The
machining parameters: vc = 298 m/min, fz = 0.06 mm/z, and ap = 2.5 mm.

Materials 2023, 16, x FOR PEER REVIEW 3 of 16 
 

 

  

Figure 1. Field diagram of the milling temperature experiment. 

The response surface method (RSM) based on statistics is derived from the graph 
generated after the mathematical model fitting. Experimental data related to the empirical 
model and the experimental design can be used to fit to describe the research object. Since 
RSM can analyze the coupling relationship of multiple factors while considering the ran-
dom error of the experiment, the complex response relationship can be well-fitted based 
on different order polynomials [20]. Therefore, in order to analyze the influence of differ-
ent cutting parameters on milling temperature comprehensively and obtain the optimiza-
tion objective function of milling temperature, the follow-up milling temperature experi-
ment and FE simulation research are carried out based on the Box-Behnken experimental 
design criteria in the RSM. 

2.2. Temperature Signal Test of Milling 508III Steel 
Figure 2 shows the thermoelectric potential signal measured experimentally. The ma-

chining parameters: vc = 298 m/min, fz = 0.06 mm/z, and ap = 2.5 mm. 

 

Figure 2. Thermoelectric potential signal diagram of the milling process measured by the e
x−periment. 

Due to the soft material of the thermocouple wire, it is difficult to mill and break at 
one time. Thus, the thermoelectric potential signals (A, B, C, etc.) appeared when cutting 
to the thermocouple wire. It can be seen from Figure 2 that the intensity of signal E is 
significantly lower than A, B, C, and D signals. Mainly because after cutting by the front 
insert, the remaining shorter thermocouple wire is basically insulated from the workpiece. 
Curve F is the voltage signal between the workpiece and the thermocouple wire. 

The time interval between A and B was 33.523 s − 33.466 s = 0.063 s. 
The time interval between B and C was 33.582 s − 33.523 s = 0.061 s. 
The time interval between C and D was 33.647 s − 33.582 s = 0.065 s. 

Nickel 
chromium wire

Amplifying 
circuit

Data acquisition box

Time (s) 

V
ol

ta
ge

 

Figure 2. Thermoelectric potential signal diagram of the milling process measured by the experiment.

Due to the soft material of the thermocouple wire, it is difficult to mill and break at
one time. Thus, the thermoelectric potential signals (A, B, C, etc.) appeared when cutting
to the thermocouple wire. It can be seen from Figure 2 that the intensity of signal E is
significantly lower than A, B, C, and D signals. Mainly because after cutting by the front
insert, the remaining shorter thermocouple wire is basically insulated from the workpiece.
Curve F is the voltage signal between the workpiece and the thermocouple wire.

The time interval between A and B was 33.523 s − 33.466 s = 0.063 s.
The time interval between B and C was 33.582 s − 33.523 s = 0.061 s.
The time interval between C and D was 33.647 s − 33.582 s = 0.065 s.
Due to the problems such as signal interference and measurement equipment response,

the voltage signal time interval measured has a certain error. However, the error is small,
satisfying the measurement at equal time intervals.

Semi-artificial thermocouples are non-standard thermocouples and need to be cali-
brated before being used to determine the corresponding relationship between thermo-
electric potential and temperature. In this paper, the comparison method of thermocouple
indexing [21] was used to obtain the relationship equation between thermoelectric potential
and temperature of the semi-artificial thermocouple of the 508III-NiCr.

The main structure of thermocouple indexing calibration is shown in Figure 3. One
end of a 508III steel specimen was machined into a thin wall with a thickness of less than
0.5 mm. Meanwhile, one end of the standard nickel silicon wire and nickel-chromium wire
was sharpened and pressed against a thin-walled 508III steel test piece with a certain spring
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pressure. Since the nickel-silicon wire and the nickel-chromium wire were strictly aligned
during the operation, the standard nickel-silicon wire, the nickel-chromium wire, and the
508III steel test material were jointly connected to the common node O.
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When the nickel-silicon and the nickel-chromium wires formed the temperature cali-
bration through node O, the standard thermocouple MN that gave the temperature signal
was used as one input end of the amplifying circuit. When the 508III steel specimen and
the nickel-chromium wire passed through node O to form a temperature calibration, the
thermocouple to be calibrated gave a temperature signal that was ON, as the other input
end of the amplifying circuit. The dynamic signal analyzer was used to collect data from
two pairs of thermocouples synchronously, and then the thermoelectric characteristic curve
of the 508III-NiCr thermocouple was obtained.

The thermocouple index table of standard NiCr-NiSi at 0 ◦C is shown in Table 1 [22].
The fitting method for these data can be used to obtain the corresponding relationship
between the temperature and electric potential obtained in the experiment. Generally, the
voltage curve of the thermocouple is nonlinear, which needs to be corrected when used.
The piecewise linear processing method was adopted to correct it in the article.

Table 1. Comparison of fitting equations of the standard thermocouple.

Temperature
(◦C)

Quadratic
Fitting
Voltage

Value (mV)

Cubic
Fitting
Voltage

Value (mV)

Quartic
Fitting
Voltage

Value (mV)

Standard
Voltage

Value (mV)

Quadratic
Fitting

Relative
Error (%)

Cubic
Fitting

Relative
Error (%)

Quartic
Fitting

Relative
Error (%)

100 3.9193 4.0363 4.0382 4.0950 −4.2906 −1.4543 −1.3871
200 8.2088 8.0912 8.0997 8.1370 0.8824 −0.5661 −0.4584
300 12.4579 12.2336 12.2406 12.2070 2.0554 0.2174 0.2753
400 16.6666 16.4348 16.4369 16.3950 1.6566 0.2422 0.2556
500 20.8350 20.6667 20.6637 20.6400 0.9448 0.1292 0.1148
600 24.9630 24.9008 24.8947 24.9020 0.2450 −0.0048 −0.0293
700 29.0507 29.1087 29.1027 29.1280 −0.2654 −0.0663 −0.0869
800 33.098 33.2621 33.2594 33.2770 −0.5379 −0.0448 −0.0529
900 37.1049 37.3327 37.3354 37.3250 −0.5897 0.0206 0.0279
1000 41.0715 41.292 41.2998 41.2690 −0.4786 0.0557 0.0746
1100 44.9977 45.1116 45.1212 45.1080 −0.2445 0.0080 0.0293
1200 48.8836 48.7633 48.7666 48.8280 0.1139 −0.1327 −0.1258
1300 52.7291 52.2186 52.2021 52.3930 0.6415 −0.3340 −0.3644
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According to the temperature-thermoelectric potential table of the standard thermo-
couple of NiCr-NiSi, the quadratic, cubic, and quartic fitting equations of the standard
thermocouple can be expressed as:

y2 = −2.018× 10−6x2 + 0.0435x− 0.4105 (1)

y3 = −4.728× 10−9x3 + 7.203× 10−6x2 + 0.03872x + 0.09695 (2)

y4 = −4.65× 10−13x4 − 3.519× 10−9x3 + 6.195× 10−6x2 + 0.03901x + 0.07884 (3)

where x is temperature (◦C); y2, y3 and y4 are voltage (mV).
The voltage value of the quadratic fitting equation of the thermocouple has a large

error with the standard thermocouple value. However, the error of the voltage value of the
cubic and quartic fitting equations is relatively small, and the error value is basically the
same. In order to reduce the influence of error accumulation on the accuracy of temperature
calculation in the process of indexing and calibration, the semi-artificial thermocouple
used in the experiment is also fitted with a cubic equation to obtain its thermoelectric
characteristic curve.

The signals of the standard NiCr-NiSi thermocouple and the 508III steel-NiCr thermo-
couple to be indexed were collected when amplified by 100 times by the amplifier circuit.
The sampling frequency was 1000 Hz. The voltage signal collected during the process
of indexing and calibrating the 508III steel-NiCr semi-manual thermocouple is shown in
Figure 4a. It can be seen that the voltage change trends of the two thermocouples are
basically the same, indicating that the temperature felt is basically the same at the connec-
tion point of the two thermocouples. It can satisfy the basic conditions of the comparison
method for indexing and calibrating thermocouples and ensure the accuracy and reliability
of the calibration results.
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By repeating indexing and calibration experiments, the fitting curve of the 508III steel-
NiCr semi-artificial thermocouple obtained is shown in Figure 4b. The fitting equation of
the 508III steel-NiCr semi-artificial thermocouple is shown in Equation (4). From Figure 4b,
it can be found that the sampling points are basically evenly distributed on both sides of
the fitting equation curve, and the overall linearity of the fitting curve is good, which can
provide an effective way for the experimental measurement of the cutting temperature of
508III steel.

y = 1.12155× 10−9x3 − 1.84643× 10−6x2 + 0.029072086x + 0.50059124 (4)

where x is temperature (◦C); y is voltage (mV).
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2.3. Simulation Analysis of the Temperature

The DEFORM-3D simulation software was adopted to simulate and explore the
changes in temperature under given cutting parameters during the milling of 508III steel.
In this study, the maximum value of the simulation temperature, which is approximately
stable, is used as the value of the milling temperature. FE models of the insert and the
workpiece are shown in Figure 5a. A simulation of the milling process is depicted in
Figure 5b. Some common performance parameters of tool and workpiece materials are
shown in Table 2.
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Table 2. Parameters of tool and workpiece materials.

Name Cemented Carbide 508III Steel

Elastic modulus (GPa) 600 212
Density (g/cm3) 14.5 7.9

Thermal conductivity (W/(m·K)) 62.8 14.5
Specific heat capacity (kg·K) 460 460

Poisson’s ratio 0.33 0.3

The number of tool and workpiece model elements is 30,000 and 40,000, respectively.
The Johnson-Cook constitutive equation was selected as the original construction model,
and its expression is shown in Equation (5).

σ = (A + Bεn)

(
1 + C ln

.
ε
.
ε0

)[
1−

(
T − Troom

Tmelt − Troom

)m]
(5)

where A, B, C, m, and n are the material constants of the Johnson-Cook constitutive equation,
T is the local temperature, Troom is the room temperature, Tmelt is the melting temperature,
ε is the equivalent plastic strain,

.
ε is the equivalent strain rate, and

.
ε0 is the reference value

of the strain rate. The model constants adopted are listed in Table 3.

Table 3. Relevant parameters of the J-C model.

Parameters Value

A 1766
B 904
C 0.001
n 0.144
m 0.72
.
ε0 1

Troom (◦C) 20
Tmelt (◦C) 1650
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3. Results and Discussion
3.1. Simulated and Experimental Results

This section gives some temperature simulation cloud diagrams with different com-
binations of cutting parameters in Table 4, as shown in Figure 6. The temperature simulation
cloud pictures under other cutting parameter combinations are no longer listed individually.

It can be observed from Figure 6 that the temperature of the area near the main cutting
edge of the rake face of the milling insert is the highest, and the temperature away from the
main cutting edge of the rake face is lower. The main reason is that the area is the actual
cutting part during the milling process. Due to the high pressure and severe friction at this
place, a large amount of frictional heat is generated in contact with the chip, and the heat
is concentrated, resulting in the high temperature in this area. Other parts not involved
in cutting would produce a temperature effect under the heat transfer of blade material,
resulting in a decrease in temperature away from the main cutting edge.

Table 4. Simulated and experimental results.

Exp. No. Cutting Speed
vc (m/min)

Feed Per Tooth
fz (mm/z)

Axial Depth of Cut
ap (mm)

Milling Temperature (◦C)

Experimental
Results

Simulated
Results

Relative
Error

1 298 0.06 2 656 661 −0.76%
2 370 0.06 1 723 728 −0.69%
3 298 0.08 2.5 677 693 −2.31%
4 298 0.04 2.5 620 610 1.64%
5 370 0.06 2.5 697 706 −1.27%
6 298 0.08 1 693 678 2.21%
7 188 0.08 2 593 578 2.66%
8 298 0.06 1 668 686 −2.62%
9 188 0.04 1 553 542 2.03%
10 188 0.06 2 574 579 −0.86%
11 298 0.06 2.5 641 658 −2.58%
12 370 0.04 2.5 672 692 −2.89%
13 298 0.04 2 611 620 −1.45%
14 298 0.08 2 681 659 3.34%
15 188 0.08 2.5 594 593 0.17%
16 298 0.04 1 634 651 −2.61%
17 370 0.08 2 734 737 −0.41%
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The comparison results of milling temperature experiment data and FE simulation
are shown in Table 4. The absolute value of the relative error calculated is within 5%.
Results show that the FE analysis can accurately simulate the milling process of 508III
steel, and simulation data have a certain validity. Meanwhile, it can also provide reli-
able data for the following temperature prediction, parameter optimization, and validity
verification research.

3.2. Influence of Cutting Parameters Interaction on Milling Temperature

According to the experimental results of milling temperature in Table 4, the influence
of the interaction was analyzed between cutting parameters on the milling temperature
based on RSM.

The response surface of the influence of feed rate per tooth and cutting speed on
milling temperature is shown in Figure 7a. It can be obtained that with the increase in
cutting speed and feed rate per tooth, the milling temperature shows an obvious upward
trend. The main reason is that with the increase in cutting speed and feed rate per tooth, the
amount of metal removal per unit of time increases, resulting in greater heat in the milling
area, and less heat is taken away by chips. Thus, the milling temperature increases. The
combination of a smaller feed per tooth and a lower cutting speed can reduce the milling
temperature of the tool.

The response characteristics of the temperature to the combination of axial depth of
cut and feed per tooth and the combination of axial depth of cut and cutting speed are,
respectively, shown in Figure 7b,c. It can be found that with the increase in the axial cutting
depth, the range of milling temperature change is small and accompanied by a decreasing
trend. The main reason could be that as the axial depth of the cut increases, the contact area
between the tool and the workpiece increases, resulting in more heat taken away by the
workpiece and chip, so that the cutting temperature has a downward trend.

3.3. Construction of Mathematical Model for Temperature Prediction

In actual machining, temperature prediction is of great significance for improving tool
life and ensuring product quality. Cutting parameters are one of the main factors affecting
milling temperature. Thus, based on the above temperature experimental results and
polynomial fitting method in the RSM, the temperature prediction mathematical model is
studied with cutting speed, feed per tooth, and axial depth of cut as independent variables
and temperature as dependent variables.
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In the RSM, the regression prediction model is usually built based on a second-
order polynomial. Therefore, in order to analyze the response characteristics of milling
temperature to process parameters, a quadratic polynomial regression prediction model for
milling temperature is established in this paper. Its expression is shown in Equation (6).

T = g0 +
3

∑
i=1

gi · xi +
3

∑
i=1

3

∑
j=1

gij · xi · xj (6)

where g0 is the initial undetermined value; gi is the influence coefficient of xi; gij is the
interaction influence coefficient of xi and xj; x1, x2, and x3, respectively, represent the cutting
speed, feed per tooth, and axial cutting depth.

Multivariate regression fitting is conducted according to the experimental temperature
results in Table 4. The temperature quadratic polynomial regression prediction model is
constructed, as shown in Equation (7).

T = 377.65379 + 0.62898vc + 1838.37595 fz − 21.63608ap+
1.20172vc fz − 0.031719vcap − 59.58154 fzap+
1.76668× 10−4vc

2 − 4976.34313 fz
2 + 6.31138ap

2
(7)

3.4. Significance Test of Temperature Model

In order to determine the degree of correlation between temperature variation char-
acteristics and cutting parameters, it is necessary to conduct a significance test on the
temperature regression model. The model significance can be determined through variance
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analysis and significance tests [23]. Therefore, the F-test method was adopted for model
significance verification in this paper. The results of the temperature regression model
significance test based on this method are shown in Table 5.

Table 5. Temperature regression model significance test.

Variance Analysis DF SS MS F

Regression 9 43,038.49 4782.05 154.2
Residual 7 217.04 31.01 -

Total 16 43,255.53 - -

From Table 5, it can be found that the F statistic value of the regression model is
110.20, which is far greater than the value of F0.05(9, 7) = 3.68 in the quantile table of F
distribution. Results show that the regression model constructed has a high significance
under 95% confidence.

3.5. Mathematical Model of Cutting Efficiency

Based on metal cutting theory, cutting efficiency can be measured by material removal
rate, and the mathematical model is shown in Equation (8).

Q = v f · ap · ae =
1000z

πd
vc · fz · ap · ae (8)

where: z represents the number of cutter teeth involved in machining, d represents the
cutter diameter, and ae is a fixed value of 50 mm.

The mathematical models of temperature prediction and cutting efficiency established
have good effectiveness and reliability as the objective function of cutting parameter
optimization.

4. Temperature Prediction Based on SVM
4.1. GA-Optimized SVM Model

The SVM has strong generalization performance under the condition of a small sample
dataset, which is a powerful machine learning model and more suitable for nonlinear
regression problems [24]. Due to the nonlinearity and limited milling temperature data,
SVM was used for temperature prediction. In this study, the radial basis function was used
as the SVM kernel function, and its form is shown in Equation (9).

K
(
Xi, Xj

)
= exp

(
−1

2

(‖Xi − Xj‖
σ

)2)
(9)

The prediction performance of the SVM model depends on the super parameters
of SVM strongly: penalty parameter C and kernel parameter σ [25]. In order to further
improve the prediction accuracy of SVM, a genetic algorithm was used to optimize the
super parameters of SVM. The prediction model of SVM optimized by the genetic algorithm
was established, and its basic process is shown in Figure 8.

4.2. Temperature Prediction Based on GA-SVM

MATLAB and libsvm3.24 program packages were adopted to compile the regression
program, and different cutting parameter combinations were used as the input of the
GA-SVM model to predict the change in milling temperature. Temperature data obtained
by simulation were used in the training set, and the 5-fold cross-validation was carried out
using the experimental data as the test set.
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In this study, the maximum iteration was used as the termination standard of the
algorithm, and the average value of the mean square error of the output results of the
5-fold cross-validation was used as the fitness of the search particle in the optimization
process. Therefore, the search particle corresponding to the minimum fitness function
value was the ideal model parameter of SVM. The initial range of SVM super parameters:
C ∈ [10−4,104], σ ∈ [10−4,104]. GA algorithm: population size is 20, maximum iteration is
200, and individual selection probability is 0.9.

Regression prediction of milling temperature was carried out based on the GA-SVM
model, and the prediction results are shown in Figure 9a. It can be found that the predicted
value of the GA-SVM model is basically consistent with the changing trend of temperature
experiment results. Figure 9b shows the relative error of temperature predicted by the
GA-SVM model. The error range is −3.37%~5.48% and the absolute value of the maximum
relative error is within 6%, indicating that the temperature prediction method based on the
GA-SVM model has certain effectiveness and reliability.
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5. Cutting Parameter Optimization Based on NSGA-II Algorithm
5.1. NSGA-II Algorithm

Elitist nondominated sorting genetic algorithm (NSGA-II) is widely used due to its
strong robustness and convergence, as well as high computational efficiency and good
convergence for multi-objective optimization problems with two or three objectives [26].
Thus, the NSGA-II algorithm is used to study the optimization of cutting parameters. The
specific process is shown in Figure 10.
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5.2. Construction of Optimization Objective Function and Constraint Conditions

Since 508III steel is difficult to machine, cutting parameter optimization is very im-
portant to reduce cutting temperature and improve tool life and machining efficiency.
Therefore, this study optimizes the cutting parameters based on the NSGA-II algorithm
with milling temperature as the optimization objective function. The cutting parameter op-
timization problem in this paper is to solve the minimum value of the objective function of
cutting temperature and the maximum value of the objective function of cutting efficiency.
Thus, the form of the optimization objective function is shown in Equation (10).

min
x∈R

=
(
T
(
vc, fz, ap

)
,−Q

(
vc, fz, ap

))
(10)

It is important to constrain the influencing factors of the optimization objective function
to meet the conditions of the milling process of 508III steel and make it meaningful to
optimize the objective function to optimize the cutting parameters. Since this paper mainly
studies the effect of cutting parameters on cutting temperature and cutting efficiency, the
range of cutting parameters is limited. The set constraints are as follows:

(1) Cutting speed constraints:

vc = 188 ∼ 370 m/min (11)

(2) Constraints of feed rate per tooth:

fz = 0.04 ∼ 0.08 mm/z (12)

(3) Constraints on axial cutting depth:

ap = 1 ∼ 2.5 mm (13)

5.3. Parameter Optimization Results and Discussion

Based on the cutting temperature and efficiency mathematical model constructed
in Section 3 and the process of NSGA-II optimization in Section 5.1 above, the optimal
combination of the cutting parameter is obtained by MATLAB programming. During the
cutting parameter optimization using the NSGA-II algorithm, the specific settings of rele-
vant parameters of the NSGA-II algorithm are as follows: population size = 50, maximum
iteration = 200, individual selection probability = 0.9, and mutation probability = 0.05.

Due to the randomness of the parameter optimization of the swarm intelligence
optimization algorithm, optimized programs were run 25 times. The Pareto optimal
frontier of the two optimization objectives is obtained for the 25th optimization, as shown
in Figure 11. It can be found that the cutting efficiency increase with the increase in
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cutting temperature. There is a conflict between cutting efficiency and temperature. By
analyzing the multi-objective optimization function, 30 groups of Pareto optimal solutions
are obtained. Some Pareto optimization solution set results are shown in Table 6. Decision-
makers can reasonably select processing parameters based on actual processing needs,
effectively improving decision−making efficiency.
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Table 6. Pareto optimization solution set.

Number vc (m/min) fz (mm/z) ap (mm) T (◦C) Q(mm3/min)

A1 188.08541 0.0406 2.48802 540.29024 −9070.72647
A2 191.21765 0.0583 2.48442 569.94189 −13,223.27547
A3 251.56217 0.07634 2.46614 635.65477 −22,611.9388
A4 203.50428 0.07651 2.48388 601.58856 −18,465.67747
A5 201.09502 0.06932 2.48247 591.35964 −16,522.64736
A6 295.59058 0.07904 2.48303 671.34076 −27,698.27075
A7 268.83171 0.07841 2.48765 650.66639 −25,037.65621
A8 191.76944 0.05446 2.48339 564.76379 −12,383.03666

...
...

...
...

...
...

6. Conclusions

In this paper, the milling temperature of cemented carbide tool in machining 508III
steel is studied based on the temperature experiment, FE simulation, GA-SVM predic-
tion, and multi-objective parameter optimization. Some main conclusions can be drawn
as follows:

(1) Based on the Box-Behnken experimental design criteria in RSM, a series of milling
temperature experiments and FE simulations were carried out. The temperature
was measured by using the semi-artificial thermocouple fitting equation of 508III
steel-NiCr effectively.

(2) Based on the FE simulation results, it was found that the area near the main cutting
edge of the rake face produced a lot of friction heat in contact with the chip due to
high pressure and serious friction, resulting in a higher temperature. By comparing
the temperature experiment with the FE results, it was found that the absolute value
of the relative error was within 5%. Results showed that the simulation results were
accurate and effective, which verified the reliability of the FE analysis method and
provided data support for the validation of parameter optimization effectiveness.

(3) On an experimental basis, the influence of the interaction of cutting parameters on
the temperature was analyzed based on RSM. It was found that the temperature
increased significantly with the increase in cutting speed and feed rate per tooth, and
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the temperature changed less with the increase in axial cutting depth, accompanied
by a decreasing trend. Based on RSM, a second-order polynomial prediction model
for temperature was constructed. The variance and F-test results showed that the
temperature regression model constructed had high significance at a 95% confidence
level and good effectiveness and reliability.

(4) The SVM method was used for temperature prediction, and the GA-SVM model was
established to predict cutting temperature. It was found that the prediction error range
was −3.37~5.48%, indicating that the method had certain effectiveness and reliability.

(5) Taking cutting temperature and efficiency as evaluation indicators, the NSGA-II
algorithm was used to optimize cutting parameters. The Pareto optimal frontier
and 30 groups of Pareto optimal solutions were obtained, and Decision makers can
reasonably select processing parameters based on actual processing needs, effectively
improving decision-making efficiency.
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