Optoelectronic Properties of In0.87Ga0.13As0.25P0.75(001)β2(2×4) Surface: A First-Principles Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Surface Energy
3.2. Work Function
3.3. Electronic Structure
3.4. Mulliken Population
3.5. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adachi, S.; Tu, C.W. III-V Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs and lnGaAsP. Phys. Today 2007, 47, 735–752. [Google Scholar] [CrossRef]
- Singh, A.K.; Rathi, A.; Riyaj, M.; Bhardwaj, G.; Alvi, P.A. Optical gain tuning within IR region in type-II In0.5Ga0.5As0.8P0.2/GaAs0.5Sb0.5 nano-scale heterostructure under external uniaxial strain. Superlattices Microstruct 2017, 111, 591–602. [Google Scholar] [CrossRef]
- Sachno, V.; Dolgyh, A.; Loctionov, V. Image intensifier tube (I) with 1.06-μm InGaAs-photocathode. In Proceedings of the 18th International Conference on Photoelectronics and Night Vision Devices, Moscow, Russia, 7 June 2005; Volume 5834, pp. 169–175. [Google Scholar] [CrossRef]
- Bae, J.K.; Andorf, M.; Bartnik, A.; Galdi, A.; Cultrera, L.; Maxson, J.; Bazarov, I. Operation of cs-sb-o activated GaAs in a high voltage dc electron gun at high average current. AIP Adv. 2022, 12, 13632. [Google Scholar] [CrossRef]
- Butson, J.D.; Narangari, P.R.; Lysevych, M.; Wong-Leung, J.; Wan, Y.; Karuturi, S.K.; Tan, H.H.; Jagadish, C. InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 25236–25242. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.G.; Enstrom, R.E.; Williams, B.F. Long-Wavelength Photoemission from Ga1-xInxAs Alloys. Appl. Phys. Lett. 1971, 18, 371–373. [Google Scholar] [CrossRef]
- Xi, S.P.; Gu, Y.; Zhang, G.; Chen, X.Y.; Ma, Y.J.; Zhou, L.; Du, B.; Shao, X.M.; Fang, J.X. InGaAsP/InP photodetectors targeting on 1.06μm wavelength detection. Infrared Phys. Technol. 2016, 75, 65–69. [Google Scholar] [CrossRef]
- Escher, J.S.; Antypas, G.A.; Edgecumbe, J. High-quantum-efficiency photoemission from an InGaAsP photocathode. Appl. Phys. Lett. 1976, 29, 153–155. [Google Scholar] [CrossRef]
- Williams, B.F.; Tietjen, J.J. Current status of negative electron affinity devices. Proc. IEEE. 1971, 59, 1489–1497. [Google Scholar] [CrossRef]
- Hashizume, T.; Xue, Q.K.; Zhou, J.; Ichimiya, A.; Sakurai, T. Structures of As-Rich GaAs(001)-(2×4) As-rich reconstuctions. Phys. Rev. B. 1994, 73, 2208–2211. [Google Scholar] [CrossRef]
- Biegelsen, D.K.; Bringans, R.D.; Northrup, J.E.; Swartz, A. Reconstructions of GaAs(100) surfaces observed by scanning tunneling microscopy. Phys. Rev. Lett. B 1990, 41, 5701–5706. [Google Scholar] [CrossRef]
- Ohtake, A.; Ozeki, M.; Yasuda, T.; Hanada, T. Atomic structure of the GaAs(001)-(2×4) surface under As flux-art. Phys. Rev. Matter. 2002, 65, 165315. [Google Scholar] [CrossRef]
- Karmo, M.; Alvarado, I.; Schmidt, W.G.; Runge, E. Reconstructions of the as-terminated GaAs(001) surface exposed to atomic hydrogen. ACS Omega 2022, 7, 5064–5068. [Google Scholar] [CrossRef]
- Chadi, D.J. Atomic structure of GaAs(100)-(2×1) and (2×4) reconstructed surfaces. J. Vac. Sci. Technol. A 1987, 5, 834–837. [Google Scholar] [CrossRef]
- Prasolov, N.D.; Gutkin, A.A.; Brunkov, P.N. Molecular dynamics study of As dimer formation on the GaAs (001) As-rich surface. J. Phys. Conf. Ser. 2019, 1410, 012225. [Google Scholar] [CrossRef]
- Hasan Khan, M.; Islam, M.; Hasan, M.T. Electronic and Optical Properties of BeO Co-doped 2D GaN using First-principles. Proc. ICECE 2021, 51571, 9393143. [Google Scholar] [CrossRef]
- Floris, A.; Timrov, I.; Himmetoglu, B.; Marzari, N.; de Gironcoli, S.; Cococcioni, M. Hubbard-corrected density functional perturbation theory with ultrasoft pseudopotentials. Phys. Rev. B 2019, 101, 064305. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.A.; Naqib, S.H. A DFT based first-principles investigation of optoelectronic and structural properties of Bi2Te2Se. Phys. Scr. 2021, 96, 045810. [Google Scholar] [CrossRef]
- Albavera-Mata, A.; Botello-Mancilla, K.; Trickey, S.; Gázquez, J.; Vela, A. Generalized gradient approximations with local parameters. Phys. Rev. B 2020, 102, 035129. [Google Scholar] [CrossRef]
- Pack, J.; Monkhorst, H. “Special points for Brillouin-zone integrations”—A reply. Phys. Rev. B 1977, 16, 1748–1749. [Google Scholar] [CrossRef]
- Wang, W.; Lee, G.; Huang, M.; Wallace, R.M.; Cho, K. First-principles study of GaAs(001)-β2(2×4) surface oxidation and passivation with H, Cl, S, F, and GaO. J. Appl. Physics. 2015, 107, 103720. [Google Scholar] [CrossRef]
- Rosa, A.L.; Neugebauer, J. First-principles calculations of the structural and electronic properties of clean GaN (0001) surfaces. Phys. Rev. B 2006, 73, 205346. [Google Scholar] [CrossRef]
- Tsuda, H.; Mizutani, T. Photoionization energy variation among three types of As-stabilized GaAs (001) 2×4 surfaces. Appl. Phys. Lett. 1992, 60, 1570–1572. [Google Scholar] [CrossRef]
- Guo, J.; Chang, B.; Jin, M.; Yang, M.; Wang, H.; Wang, M. Geometry and electronic structure of the Zn-doped GaAs (100) β2(2×4) surface: A first-principle study. Appl. Surf. Sci. 2013, 283, 954–957. [Google Scholar] [CrossRef]
- Bagayoko, D. A Mathematical Solution to the Theoretical Band Gap Underestimation: Predictive Calculations of Properties of Semiconductors. In Proceedings of the APS March Meeting Abstracts, New Orleans, LA, USA, 10–14 March 2008. [Google Scholar]
- Tasker, P.W. The stability of ionic crystal surfaces. Solid State Phys. 1979, 12, 4977. [Google Scholar] [CrossRef]
- Mori-Sánchez, P.; Pendás, A.M.; Luaña, V. A Classification of Covalent, Ionic, and Metallic Solids Based on the Electron Density. J. Am. Chem. Soc. 2002, 124, 14721–14723. [Google Scholar] [CrossRef]
- Koppolu, U.M.K. Electronic Band Structure and Complex Dielectric Function of zb-AlP: A First Principles Study. Acta. Phys. Pol. A 2019, 136, 486–489. [Google Scholar] [CrossRef]
- Seifert, S.; Runge, P. Revised refractive index and absorption of In1-xGaxAsyP1-y lattice-matched to InP in transparent and absorption IR-region. Opt. Mater. Express 2016, 6, 629–639. [Google Scholar] [CrossRef]
Variation | In | Ga | As | P | ||||||
s | p | d | s | p | d | s | p | s | p | |
−33% | −23.1% | −17% | −28% | −25.3% | −14.9% | −13% | −11.5% | +39.3% | −32.7% |
First Layer | Second Layer | Third Layer | Fourth Layer | Fifth Layer | Sixth Layer | Seventh Layer | |
---|---|---|---|---|---|---|---|
In | / | 0.42 | / | 0.57 | / | 0.46 | / |
Ga | / | 0.42 | / | 0.71 | / | 0.45 | / |
As | −0.21 | / | −0.17 | / | 0.11 | / | / |
P | / | / | −0.55 | / | −0.53 | / | −0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, J.; Zhang, J.; Sha, W. Optoelectronic Properties of In0.87Ga0.13As0.25P0.75(001)β2(2×4) Surface: A First-Principles Study. Materials 2023, 16, 2834. https://doi.org/10.3390/ma16072834
Wang Y, Li J, Zhang J, Sha W. Optoelectronic Properties of In0.87Ga0.13As0.25P0.75(001)β2(2×4) Surface: A First-Principles Study. Materials. 2023; 16(7):2834. https://doi.org/10.3390/ma16072834
Chicago/Turabian StyleWang, Yong, Jianxin Li, Junju Zhang, and Weiwei Sha. 2023. "Optoelectronic Properties of In0.87Ga0.13As0.25P0.75(001)β2(2×4) Surface: A First-Principles Study" Materials 16, no. 7: 2834. https://doi.org/10.3390/ma16072834
APA StyleWang, Y., Li, J., Zhang, J., & Sha, W. (2023). Optoelectronic Properties of In0.87Ga0.13As0.25P0.75(001)β2(2×4) Surface: A First-Principles Study. Materials, 16(7), 2834. https://doi.org/10.3390/ma16072834