Influence of Barrier Layers on ZrCoCe Getter Film Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Outgassing Test
2.2. Fabrication of Barrier Layers and ZrCoCe Films
2.3. Characterization
3. Results and Discussion
3.1. Surface and Cross-Sectional Micromorphologies of Barrier Layers and Getter Films
3.1.1. Surface and Cross-Sectional SEM Images of ZrCoCe and Ti Barrier Layers
3.1.2. Surface and Cross-Sectional Elements and Micromorphologies of ZrCoCe Getter Films
3.2. Sorption Performance of the ZrCoCe Getter Films with Different Barrier Layers
3.3. Sorption Performance of ZrCoCe Getter Films with Ti Barrier Layers
3.4. The Binding Force of ZrCoCe Getter Films with Different Barrier Layers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Fu, M.; Meng, C.; Li, J.; Li, K.; Hu, J.; Chen, X. Consideration of Thermo-Vacuum Stability of a MEMS Gyroscope for Space Applications. Gyroscope for Space Applications. Sensors 2020, 20, 7172. [Google Scholar] [CrossRef]
- Chircov, C.; Grumezescu, A.M. Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines 2022, 13, 164. [Google Scholar] [CrossRef]
- Hommel, M.; Knab, K.; Yousef, S.G. Reliability of automotive and consumer MEMS sensors—An overview, Samsung Advanced Institute of Technology. Microelectron. Reliab. 2021, 126, 114252. [Google Scholar] [CrossRef]
- Cheng, H.F.; Zhu, X.; Hou, F.; Wang, W.; Shen, L.; Hu, S. Compact 31-W 96-GHz Amplifier Module in GaN-MEMS for Wireless Communications. IEEE Trans. Microw. Theory Tech. 2022, 70, 1233–1241. [Google Scholar] [CrossRef]
- Wang, C.G.; Hao, Y.; Sun, Z.; Zu, L.; Yuan, W.; Chang, H. Design of a Capacitive MEMS Accelerometer with Softened Beams. Micromachines 2022, 13, 459. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, K.; Bai, Z.; Sun, Y.; Yao, M. Design Study of a Large-Angle Optical Scanning System for MEMS LIDAR. Appl. Sci. 2022, 12, 1283. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Lim, C.M.; Ho, G.; Sumita, K.; Miyatake, Y.; Toprasertpong, K.; Takggi, S.; Takenaka, M. Low-loss Ge waveguide at the 2-µm band on an n-type Ge-on-insulator wafer. Opt. Mater. Espress 2021, 11, 4097. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Ghatak, A.; Kanjilal, D.; Kabiraj, D.; Singha, A.; Bysakh, S.; Medda, S.K.; Chakraborty, S.; Raychaudhuri, A.K. Fabrication of Germanium-on-insulator in a Ge wafer with a crystalline Ge top layer and buried GeO2 layer by Oxygen ion implantation. Mater. Sci. Eng. B 2020, 260, 114616. [Google Scholar] [CrossRef]
- Nanver, L.K.; Knezevic, T.; Liu, X.; Thammaiah, S.D.; Krakers, M. On the Many Applications of Nanometer-Thin Pure Boron Layers in IC and Microelectromechanical Systems Technology. J. Nanosci. Nanotechnol. 2021, 21, 2472–2482. [Google Scholar] [CrossRef]
- Mu, M.; Moulin, J.; Bosseboeuf, A. Multilayer Thin Film Getter for Sustainable Vacuum in MEMS Packaging. J. Solid State Sci. Technol. 2018, 7, Q267–Q270. [Google Scholar] [CrossRef]
- Jo, G.; Edinger, P.; Bleiker, S.J.; Wang, X.; Takabayashi, A.Y.; Sattari, H.; Quack, N.; Jezzini, M.; Lee, J.S.; Verheyen, P.; et al. Wafer-level hermetically sealed silicon photonic MEMS. J. Photonic Res. 2022, 10, I0001–I0008. [Google Scholar] [CrossRef]
- Temel, O.; Kalay, Y.E.; Akin, T. Wafer-Level Low-Temperature Solid-Liquid Inter-Diffusion Bonding With Thin Au-Sn Layers for MEMS Encapsulation. J. Microelectromech. Syst. 2021, 30, 64–71. [Google Scholar] [CrossRef]
- Wang, A.; Sahandabadi, S.; Harrison, T.; Spicer, D.; Ahamed, M.J. Modelling of air damping effect on the performance of encapsulated MEMS resonators. Microsyst. Technol. 2022, 28, 2529–2539. [Google Scholar] [CrossRef]
- Guo, Y.X.; Ma, Z.P.; Zhang, T.F.; Zheng, X.D.; Jin, Z.H. A stiffness-tunable MEMS accelerometer. J. Micromech. Microeng. 2021, 31, 025005. [Google Scholar] [CrossRef]
- Lysenko, L.E.; Naumenko, D.V.; Ezhova, O.A. Analysis of frequency response sensor of MEMS gyroscope in vacuum chamber. J. Phys. Conf. Ser. 2021, 2086, 1742–6588. [Google Scholar] [CrossRef]
- Merdassi, A.; Yang, P.; Chodavarapu, V.P. A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process. Sensors 2015, 15, 7349–7359. [Google Scholar] [CrossRef] [Green Version]
- Petti, D.; Cantoni, M.; Leone, M.; Bertacco, R.; Rizzi, E. Activation of Zr–Co–rare earth getter films: An XPS study. Appl. Surf. Sci. 2010, 256, 6291–6296. [Google Scholar] [CrossRef]
- Yuan, P.; Sui, Y.Z.; Zhang, X.; Liu, H.; Wei, F.; Xu, Y.H. Preparation and Characterization of Ni/ZrCoCe Stack Getter Films. Mater. Sci. Forum 2018, 944, 619–624. [Google Scholar] [CrossRef]
- Xiong, Y.H.; Wu, H.T.; Liu, X.P. Hydrogen absorption performance and mechanism of low-temperature activated Ti-Co-Ce bulk getter. J. Alloys Compd. 2021, 888, 161541. [Google Scholar] [CrossRef]
- Bu, J.G.; Mao, C.H.; Zhang, Y.; Wei, X.Y.; Du, J. Preparation and sorption characteristics of Zr–Co–RE getter films. J. Alloys Compd. 2012, 529, 69–72. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Yang, Y.C.; Ma, Y.S.; Wang, X.J.; Liu, B.Q.; He, P. Deposition and characterization of Pd–Ti thin film by sublimation. Radiat. Detect. Technol. Methods 2020, 4, 465–471. [Google Scholar] [CrossRef]
- Kurashima, Y.; Matsumae, T.; Higurashi, E.; Yanagimachi, S.; Takagi, H. Application of thin Au/Ti double-layered films as both low-temperature bonding layer and residual gas gettering material for MEMS encapsulation. Microelectron. Eng. 2021, 238, 111513. [Google Scholar] [CrossRef]
- Wu, M.; Moulin, J.; Bosseboeuf, A. Oblique angle deposition of Au/Ti porous getter films. J. Appl. Phys. 2018, 124, 055301. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, T.; Kurihara, M.; Ohno, S.; Terashima, N.; Natsui, Y.; Kato, H.; Kato, Y.; Hashimoto, A.; Kikuchi, T.; Mase, K. Oxygen-free palladium/titanium coating, a novel nonevaporable getter coating with an activation temperature of 133 °C. J. Vac. Sci. Technol. A 2018, 36, 051601. [Google Scholar] [CrossRef] [Green Version]
- Choa, S.H. Reliability of vacuum packaged MEMS gyroscopes. Microelectron. Reliab. 2005, 45, 361–369. [Google Scholar] [CrossRef]
- Benvenuti, C.; Chiggiato, P.; Mongelluzzo, A.; Prodromides, A.; Ruzinov, V.; Scheuerlein, C.; Taborelli, M.; Lévy, F. Influence of the elemental composition and crystal structure on the vacuum properties of Ti-Zr-V non-evaporable getter films. J. Vac. Sci. Technol. 2001, 19, 2925. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.H.; Cui, J.D.; Cui, H.; Zhou, H.; Yang, Z.M.; Du, J. ZrCoCe Getter Films for MEMS Vacuum Packaging. J. Electron. Mater. 2016, 45, 386–390. [Google Scholar] [CrossRef]
- Cui, J.D.; Wu, H.T.; Zhang, Y.; Xu, Y.H.; Yang, Z.M. Structure and properties of ZrCoCe getter film with Pd protection layer. Rare Met. 2020, 40, 2579–2583. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Shu, X.; Wei, W.; Gao, Y.; Wang, Y. Activation characterization of the Ti-Zr-V getter films deposited by magnetron sputtering. Appl. Surf. Sci. 2020, 528, 147059. [Google Scholar] [CrossRef]
- Eddings, M.A.; Johnson, M.A.; Gale, B.K. Determining the optimal PDMS-PDMS bonding technique for microfluidic devices(Article). J. Micromech. Microeng. 2008, 18, 067001. [Google Scholar] [CrossRef]
Gettering Materials | Activation Temperature/°C | Advantages and Disadvantages |
---|---|---|
TiZrV | 180 | Low activation temperature; oxides of V are toxic |
ZrVFe | 300~450 | |
ZrCoRE | 250–450 | Low activation temperature; environmental friendliness; MEMS compatibility |
Parameters | Barrier Layer | Getter Film | |
---|---|---|---|
Ti | ZrCoRE | ZrCoRE | |
Power supply | DC | DC | DC |
Target to substrate distance/cm | 7 | 7 | 7 |
Sputtering power/W | 130 | 130 | 150 |
Deposition time/min | 10 | 5 | 180 |
Sputtering Ar gas pressure/Pa | 0.4 | 0.4 | 4.0 |
Getter Film/2 μm | Initial Sorption Speed/cm3·s−1·cm−2 | Sorption Quantity in 2 h/Pa·cm3·cm−2 |
---|---|---|
Ti/ZrCoCe | 176 | 289 |
ZrCoCe/ZrCoCe | 141 | 223 |
ZrCoCe in this work | 95 | 182 |
ZrCoCe in the literature | 84 | 138 |
Pd/ZrCoCe | 100 | 180 |
The Thickness of Ti/nm | Initial Sorption Speed/cm3·s−1·cm−2 | Sorption Quantity in 2 h/Pa·cm3·cm−2 |
---|---|---|
85 | 190 | 300 |
156 | 200 | 323 |
240 | 213 | 354 |
396 | 221 | 378 |
Materials of Barrier Layer | Binding Force/mN | Materials of Barrier Layer |
---|---|---|
Without barrier layer | 114 | Without barrier layer |
ZrCoCe | 154 | ZrCoCe |
Ti | 171 | Ti |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Xiong, Y.; Wu, H. Influence of Barrier Layers on ZrCoCe Getter Film Performance. Materials 2023, 16, 2916. https://doi.org/10.3390/ma16072916
Shi X, Xiong Y, Wu H. Influence of Barrier Layers on ZrCoCe Getter Film Performance. Materials. 2023; 16(7):2916. https://doi.org/10.3390/ma16072916
Chicago/Turabian StyleShi, Xin, Yuhua Xiong, and Huating Wu. 2023. "Influence of Barrier Layers on ZrCoCe Getter Film Performance" Materials 16, no. 7: 2916. https://doi.org/10.3390/ma16072916
APA StyleShi, X., Xiong, Y., & Wu, H. (2023). Influence of Barrier Layers on ZrCoCe Getter Film Performance. Materials, 16(7), 2916. https://doi.org/10.3390/ma16072916