Controlling the Thermal Stability of a Bainitic Structure by Alloy Design and Isothermal Heat Treatment
Abstract
:1. Introduction
- Strength–ductility combination related to the structural morphology consisting of bainitic ferrite and retained austenite with a low fraction of carbides (carbide-free bainite);
- Improvement of the thermal stability of bainitic ferrite including carbon supersaturation, thickness refinement by controlling the martensite start (Ms) temperature, and increasing the dislocations density [8];
- The potential of secondary hardening [12].
Design Process of Experimental Steel
2. Materials and Methods
Methods
3. Results and Discussion
3.1. Examination of Phase Transformation Kinetics Based on Dilatometry
3.2. Examination of Bainitic Ferrite Thickness and Morphology of Retained Austenite
3.3. Tempering Process—Thermal Stability Evaluation
4. Conclusions
- A novel medium-carbon bainitic steel (Fe-0.5C-2.0Si-0.5Mn-1.5Cr-0.5Mo-0.2V) was developed along with the comprehensive characteristics of the phase transformations. The process of designing the chemical composition included the reduction in the Ms temperature, bainitic hardenability, and the improvement of the thermal stability of the structure under the influence of elevated temperatures.
- Experimental TTT and CCT diagrams were developed based on dilatometry investigations. The bainite transformation time was determined at different temperatures, which, in terms of the lowest bainite transformation temperature, was longest (275 °C, ~7 h) when it was shortest at 350 °C (51 min). The critical cooling rate of steel was between 1 °C/s and 2 °C/s, while the cooling rate required to avoid diffusional transformations was between 1 °C/s to 0.5 °C/s. Despite the assumptions, the designed steel had a moderate bainitic hardenability, and the potential processes of continuous cooling toward a bainitic structure were excluded.
- Overall, the hardenability of designed steel (except for bainitic hardenability) was relatively high—air cooling between the austenitization temperature and the isothermal heat treatment was ensured. This suggests that this material is suitable for the heat treatment of parts with larger cross-sections. In addition, it is also a premise for potential welding processes with the regeneration technique and the possibility of performing longer welded joints.
- The refinement level of designed steels was evaluated as nano- and sub-micro scales. In terms of temperatures below 300 °C, the average thickness of bainitic ferrite was 89 ± 6 nm (median 87 nm). Starting at 300 °C, the thickness gradually increased up to 350 °C and may be referred to the sub-micro scale. Above 350 °C, a sudden coarsening of bainitic ferrite laths was observed (155 ± 10 nm). The dimensions of retained blocky austenite were inversely proportional to transformation temperature. At the temperature closest to Ms (275 °C), locally coarse blocky austenite was identified, which was characterized by a larger surface area in relation to the adjacent temperatures. The blocky retained austenite increased with the transformation temperature from 16 ± 3% to 34 ± 3%.
- The thermal stability of the structure at elevated temperatures was evaluated as satisfactory. The microstructure up to the tempering temperature of 550 °C did not contain severe differences concerning samples not subjected to tempering processes. After tempering at 400 °C, the first, subtle symptoms of the decomposition of retained austenite with film-like morphology were noticed. The hardness after tempering at 550 °C increased to a value comparable to the samples before tempering. This suggests that the alloying additives (Mo, V, and Cr) tended to secondary hardening at higher tempering temperatures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhadeshia, H.K.D.H. Nanostructured bainite. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Garcia-Mateo, C.; Miller, M.K. Design of novel bainitic steels: Moving from ultrafine to nanoscale structures. JOM J. Miner. Met. Mater. 2014, 66, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Yang, J.G.; Zhao, D.L.; Song, K.J.; Yan, Z.J.; Fang, H.Y. Review of Nanobainite Steel Welding. Adv. Mater. Res. 2012, 482–484, 2405–2408. [Google Scholar] [CrossRef]
- Singh, K.; Singh, A. Comparative electrochemical impedance spectroscopy study in chloride environment of nano-structured bainitic steels prepared by austempering at varied temperatures. Eng. Res. Express 2020, 2, 035040. [Google Scholar] [CrossRef]
- Skołek, E.; Dudzińska, K.; Kamiński, J.; Świątnicki, W.A. Corrosion Resistance of The Bearing Steel 67SiMnCr6-6-4 with Nanobainitic Structure. Arch. Metall. Mater. 2015, 60, 503–509. [Google Scholar] [CrossRef]
- Peet, M.J.; Babu, S.S.; Miller, M.K.; Bhadeshia, H.K.D.H. Tempering of Low-Temperature Bainite. Metall. Mater. Trans. A 2017, 48, 3410–3418. [Google Scholar] [CrossRef] [Green Version]
- Królicka, A.; Żak, A.M.; Caballero, F.G. Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite. Mater. Des. 2021, 211, 110143. [Google Scholar] [CrossRef]
- He, S.H.; He, B.B.; Zhu, K.Y.; Ding, R.; Chen, H.; Huang, M.X. Revealing the role of dislocations on the stability of retained austenite in a tempered bainite. Scr. Mater. 2019, 168, 23–27. [Google Scholar] [CrossRef]
- Saha Podder, A.; Bhadeshia, H.K.D.H. Thermal stability of austenite retained in bainitic steels. Mater. Sci. Eng. A 2010, 527, 2121–2128. [Google Scholar] [CrossRef] [Green Version]
- Podder, A.S.; Lonardelli, I.; Molinari, A.; Bhadeshia, H.K.D.H. Thermal stability of retained austenite in bainitic steel: An in situ study. Proc. R. Soc. A Math. Phys. Eng. Sci. 2011, 467, 3141–3156. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Gui, X.; Bai, B.; Gao, G. Effect of tempering on the stability of retained austenite in carbide-free bainitic steel. Mater. Sci. Eng. A 2022, 850, 143525. [Google Scholar] [CrossRef]
- Wang, F.; Qian, D.; Hua, L.; Xie, L. Tempering response and improved mechanical properties in secondary hardened steel by introducing an optimized austempering process. Mater. Sci. Eng. A 2021, 807, 140895. [Google Scholar] [CrossRef]
- Morales-Rivas, L. Viewpoints on Technological Aspects of Advanced High-Strength Bainitic Steels. Metals 2022, 12, 195. [Google Scholar] [CrossRef]
- Hasan, H.S.; Peet, M.J.; Bhadeshia, H.K.D.H. Severe tempering of bainite generated at low transformation temperatures. Int. J. Mater. Res. 2012, 103, 1319–1324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, T.S.; Wang, Y.H.; Yang, J.; Zhang, F.C. Preparation of nanostructured bainite in medium-carbon alloysteel. Mater. Sci. Eng. A 2013, 568, 123–126. [Google Scholar] [CrossRef]
- Zhao, L.; Qian, L.; Zhou, Q.; Li, D.; Wang, T.; Jia, Z.; Zhang, F.; Meng, J. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater. Des. 2019, 183, 108123. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Z.; Zhang, F.; Long, X.; Chen, C. Acceleration of bainitic transformation by introducing AlN in medium carbon steel. Mater. Sci. Technol. 2019, 35, 147–154. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Jimenez, J.A.; Lopez-Ezquerra, B.; Rementeria, R.; Morales-Rivas, L.; Kuntz, M.; Caballero, F.G. Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Mater. Charact. 2016, 122, 83–89. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, K.; He, Y.M.; Wang, Y.F.; Wang, T.S. Extremely high strength achievement in medium-C nanobainite steel. Scr. Mater. 2018, 152, 20–23. [Google Scholar] [CrossRef]
- Peet, M.J.; Hasan, H.S.; Avettand-Fènoël, M.-N.; Raubye, S.H.A.; Bhadeshia, H.K.D.H. Low-temperature transformation to bainite in a medium-carbon steel. Int. J. Mater. Res. 2017, 108, 89–98. [Google Scholar] [CrossRef]
- Singh, S.; Bhadeshia, H.K.D. Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A 1998, 245, 72–79. [Google Scholar] [CrossRef]
- Fang, K.; Yang, J.G.; Liu, X.S.; Song, K.J.; Fang, H.Y.; Bhadeshia, H.K.D.H. Regeneration technique for welding nanostructured bainite. Mater. Des. 2013, 50, 38–43. [Google Scholar] [CrossRef]
- Fang, K.; Yang, J.G.; Song, K.J.; Liu, X.S.; Wang, J.J.; Fang, H.Y. Study on tempered zone in nanostructured bainitic steel welded joints with regeneration. Sci. Technol. Weld. Join. 2014, 19, 572–577. [Google Scholar] [CrossRef]
- Fang, K.; Yang, J.G.; Song, K.J.; Liu, X.S.; Fang, H.Y. Acceleration of regeneration treatment for nanostructured bainitic steel by rotary impacting trailed welding. J. Mater. Process. Technol. 2014, 214, 2935–2940. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Sourmail, T.; Caballero, F.G.; Smanio, V.; Kuntz, M.; Ziegler, C.; Leiro, A.; Vuorinen, E.; Elvira, R.; Teeri, T. Nanostructured steel industrialisation: Plausible reality. Mater. Sci. Technol. 2014, 30, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Varshney, A.; Sangal, S.; Pramanick, A.K.; Mondal, K. On the extent of transformation of austenite to bainitic ferrite and carbide during austempering of high Si steel for prolonged duration and its effect on mechanical properties. Mater. Sci. Eng. A 2020, 793, 139764. [Google Scholar] [CrossRef]
- Klemm-Toole, J.; Benz, J.; Vieira, I.; Clarke, A.J.; Thompson, S.W.; Findley, K.O. Strengthening mechanisms influenced by silicon content in high temperature tempered martensite and bainite. Mater. Sci. Eng. A 2020, 786, 139419. [Google Scholar] [CrossRef]
- Sourmail, T.; Otter, L.; Collin, S.; Billet, M.; Philippot, A.; Cristofari, F.; Secordel, P. Direct and indirect decomposition of retained austenite in continuously cooled bainitic steels: Influence of vanadium. Mater. Charact. 2021, 173, 110922. [Google Scholar] [CrossRef]
- Ruiz-Jimenez, V.; Kuntz, M.; Sourmail, T.; Caballero, F.G.; Jimenez, J.A.; Garcia-Mateo, C. Retained Austenite Destabilization during Tempering of Low-Temperature Bainite. Appl. Sci. 2020, 10, 8901. [Google Scholar] [CrossRef]
- Dépinoy, S.; Toffolon-Masclet, C.; Urvoy, S.; Roubaud, J.; Marini, B.; Roch, F.; Kozeschnik, E.; Gourgues-Lorenzon, A.-F. Carbide Precipitation in 2.25 Cr-1 Mo Bainitic Steel: Effect of Heating and Isothermal Tempering Conditions. Metall. Mater. Trans. A 2017, 48, 2164–2178. [Google Scholar] [CrossRef]
- Avishan, B.; Yazdani, S.; Hossein Nedjad, S. Toughness variations in nanostructured bainitic steels. Mater. Sci. Eng. A 2012, 548, 106–111. [Google Scholar] [CrossRef]
- Amel-Farzad, H.; Faridi, H.R.; Rajabpour, F.; Abolhasani, A.; Kazemi, S.; Khaledzadeh, Y. Developing very hard nanostructured bainitic steel. Mater. Sci. Eng. A 2013, 559, 68–73. [Google Scholar] [CrossRef]
- Lee, S.-J.; Park, K.-S. Prediction of Martensite Start Temperature in Alloy Steels with Different Grain Sizes. Metall. Mater. Trans. A 2013, 44, 3423–3427. [Google Scholar] [CrossRef]
- Yang, H.; Bhadeshia, H. Austenite grain size and the martensite-start temperature. Scr. Mater. 2009, 60, 493–495. [Google Scholar] [CrossRef]
- Quidort, D.; Brechet, Y.J.M. Isothermal growth kinetics of bainite in 0.5% C steels. Acta Mater. 2001, 49, 4161–4170. [Google Scholar] [CrossRef]
- Hasan, S.M.; Ghosh, M.; Chakrabarti, D.; Singh, S.B. Development of continuously cooled low-carbon, low-alloy, high strength carbide-free bainitic rail steels. Mater. Sci. Eng. A 2020, 771, 138590. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, Y.; Chen, L.; Fang, F.; Zhou, X.; Jiang, J. Thermodynamic stability and mechanical properties of (V, M)C (M = W, Mo and Cr) multicomponent carbides: A combined theoretical and experimental study. J. Alloys Compd. 2022, 895, 162649. [Google Scholar] [CrossRef]
- Program MAP_STEEL_AC1TEMP. Available online: http://www.phase-trans.msm.cam.ac.uk/map/steel/programs/ac1new.html (accessed on 10 December 2022).
- Subroutine MAP_STEEL_AC3. Available online: http://www.phase-trans.msm.cam.ac.uk/map/steel/programs/MAP_STEEL_AC3.html (accessed on 10 December 2022).
- Dykas, J.; Samek, L.; Grajcar, A.; Kozłowska, A. Modelling of Phase Diagrams and Continuous Cooling Transformation Diagrams of Medium Manganese Steels. Symmetry 2023, 15, 381. [Google Scholar] [CrossRef]
- Keul, C.; Wirths, V.; Bleck, W. New bainitic steels for forgings. Arch. Civ. Mech. Eng. 2012, 12, 119–125. [Google Scholar] [CrossRef]
- Wang, J.; Van Der Wolk, P.J.; Van Der Zwaag, S. On the influence of alloying elements on the bainite reaction in low alloy steels during continuous cooling. J. Mater. Sci. 2000, 35, 4393–4404. [Google Scholar] [CrossRef]
- Reynolds, W.T.; Liu, S.K.; Li, F.Z.; Hartfield, S.; Aaronson, H.I. An investigation of the generality of incomplete transformation to bainite in Fe-C-X alloys. Metall. Trans. A 1990, 21, 1479–1491. [Google Scholar] [CrossRef]
- Pashangeh, S.; Ghasemi Banadkouki, S.S.; Somani, M.; Kömi, J. Characteristics and Kinetics of Bainite Transformation Behaviour in a High-Silicon Medium-Carbon Steel above and below the Ms Temperature. Materials 2022, 15, 539. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chu, C.; Jiang, F.; Qin, Y.; Long, X.; Wang, S.; Chen, D.; Zhang, F. Accelerating nano-bainite transformation based on a new constructed microstructural predicting model. Mater. Sci. Eng. A 2019, 748, 16–20. [Google Scholar] [CrossRef]
- Young, C.H.; Bhadeshia, H.K.D.H. Strength of mixtures of bainite and martensite. Mater. Sci. Technol. 1994, 10, 209–214. [Google Scholar] [CrossRef]
- Program MAP_STEEL_MUCG83. Available online: https://www.phase-trans.msm.cam.ac.uk/map/steel/programs/mucg83.html (accessed on 10 December 2022).
- He, T.; Wang, L.; Hu, F.; Zhou, W.; Zhang, Z.; Wu, K. Stability of retained austenite and work hardening behavior in ultra-fine medium carbon bainitic steel. J. Mater. Res. Technol. 2023, 22, 2690–2703. [Google Scholar] [CrossRef]
- Kafadar, G.; Kalkanli, A.; Özdemır, A.T.; Ögel, B. Effect of Isothermal Transformation Treatment and Tempering on the Microstructure and Hardness of a Medium C and High Si Steels. ISIJ Int. 2021, 61, 1679–1687. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, F.C.; Yang, X.W.; Lv, B.; Wu, K.M. Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel. Mater. Sci. Eng. A 2017, 686, 150–159. [Google Scholar] [CrossRef]
- Hu, F.; Wu, K.; Hou, T.; Shirzadi, A.A. Effect of Tempering Temperature on the Microstructure and Hardness of a Super-bainitic Steel Containing Co and Al. ISIJ Int. 2014, 54, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.M.; Yang, J.R.; Yen, H.W.; Hsu, C.H.; Huang, C.Y.; Mohrbacher, H. Secondary hardened bainite. Mater. Sci. Technol. 2014, 30, 1014–1023. [Google Scholar] [CrossRef]
C | Mn | Si | Cr | Mo | V | |
---|---|---|---|---|---|---|
Designed | 0.50 | 0.50 | 2.00 | 1.50 | 0.50 | 0.20 |
Experimental | 0.49 | 0.51 | 1.99 | 1.54 | 0.51 | 0.22 |
Ms (°C) | Ac3 (°C) | Ac1 (°C) | |
---|---|---|---|
Predicted | 268 ± 15 | 905 ± 35 | 788 ± 22 |
Dilatometry | 263 ± 2 | 897 ± 2 | 812 ± 2 |
Cooling Rate (°C/s) | Structure (Graphical Editing of Images) | Hardness HV10 |
---|---|---|
from ~480 to 2 | mainly martensite | form 762 to 722 ± 11 |
1 | martensite (96%) + bainite (4%) | 709 ± 11 |
0.5 | martensite (89%) + bainite (8%) + pearlite (3%) | 692 ± 11 |
0.25 | martensite and bainite (35%), pearlite (65%) | 405 ± 3 |
0.1 | mainly pearlite | 299 ± 5 |
0.05 | mainly pearlite | 282 ± 4 |
Transformation Temperature (°C) | Time to Start (tBs) | Time to Finish (tBf) |
---|---|---|
450 | 80,000 s|22 h | longer than 68 h |
425 | 300 s|5 min | longer than 68 h |
400 | 150 s|2.5 min | longer than 68 h |
375 | 90 s|1.5 min | 3455 s|57 min |
350 | 80 s|1.3 min | 3091 s|51 min |
325 | 90 s|1.5 min | 3308 s|55 min |
300 | 140 s|2.3 min | 7443 s|126 min |
275 | 180 s|3 min | 261,666 s|7 h 15 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Królicka, A.; Caballero, F.G.; Zalecki, W.; Kuziak, R.; Rozmus, R. Controlling the Thermal Stability of a Bainitic Structure by Alloy Design and Isothermal Heat Treatment. Materials 2023, 16, 2963. https://doi.org/10.3390/ma16082963
Królicka A, Caballero FG, Zalecki W, Kuziak R, Rozmus R. Controlling the Thermal Stability of a Bainitic Structure by Alloy Design and Isothermal Heat Treatment. Materials. 2023; 16(8):2963. https://doi.org/10.3390/ma16082963
Chicago/Turabian StyleKrólicka, Aleksandra, Francisca Garcia Caballero, Władysław Zalecki, Roman Kuziak, and Radosław Rozmus. 2023. "Controlling the Thermal Stability of a Bainitic Structure by Alloy Design and Isothermal Heat Treatment" Materials 16, no. 8: 2963. https://doi.org/10.3390/ma16082963
APA StyleKrólicka, A., Caballero, F. G., Zalecki, W., Kuziak, R., & Rozmus, R. (2023). Controlling the Thermal Stability of a Bainitic Structure by Alloy Design and Isothermal Heat Treatment. Materials, 16(8), 2963. https://doi.org/10.3390/ma16082963