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Abstract: In order to characterize the flow behaviors of SAE 5137H steel, isothermal compression
tests at the temperatures of 1123 K, 1213 K, 1303 K, 1393 K, and 1483 K, and the strain rates of 0.01 s−1,
0.1 s−1, 1 s−1, and 10 s−1 were performed using a Gleeble 3500 thermo-mechanical simulator. The
analysis results of true stress-strain curves show that the flow stress decreases with temperature
increasing and strain rate decreasing. In order to accurately and efficiently characterize the complex
flow behaviors, the intelligent learning method backpropagation–artificial neural network (BP-ANN)
was combined with the particle swarm optimization (PSO), namely, the PSO-BP integrated model.
Detailed comparisons of the semi-physical model with improved Arrhenius-Type, BP-ANN, and
PSO-BP integrated model for the flow behaviors of SAE 5137H steel in terms of generative ability,
predictive ability, and modeling efficiency were presented. The comparison results show that the PSO-
BP integrated model has the best comprehensive ability, BP-ANN is the second, and semi-physical
model with improved Arrhenius-Type is the lowest. It indicates that the PSO-BP integrated model
can accurately describe the flow behaviors of SAE 5137H steel.

Keywords: SAE 5137H steel; flow stress; Arrhenius-type equation; BP-ANN; PSO-BP

1. Introduction

SAE 5137H is a medium carbon alloy steel with high strength that is often used in the
manufacture of industrial gears. It is one of the key materials with high requirements for
the core components to ensure safety such as gear, knuckle, etc. in the fields of automobiles,
railways, ships and construction machinery [1–3]. These core components need to be
formed by hot forging to obtain excellent service performance. In order to enclose a perfect
design for this process, the accurate numerical computation is always pursued to acquire
the physical field distribution and its evolution [4]. Consequently, it is significant for the
finite element modeling of the forming processes to deeply understand and accurately
characterize the complex flow stress behaviors in a wide range of deformation conditions
including temperature, strain rate, and strain. It is commonly considered as a basic work.

A large number of studies have shown that physical models are widely used to describe
the complex flow behaviors of metals, such as Johnson-Cook type [5,6], Arrhenius type [7,8],
Bergstrom type [9], Kolmogorov–Johnson–Mehl–Avrami type [10], etc. The physical model
is based on a set of parameters that can be expressed as a function of forming temperature,
strain, and strain rate. These functions consider the effect of these forming parameters
on the flow behaviors of a metal. The physical models have theoretical foundations, for
example, sufficient understanding of the physical mechanisms and logical relationships
between parameters. Lin et al. [11] developed a physically constitutive model considering
dislocation density, and Voyiadjis et al. [12] developed a microstructure-based physically
constitutive model considering the effect of mobile dislocation density evolution on the
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flow stress. Atef et al. [13] and Mohammed et al. [14] used the dislocation density-based
Bergstrom and the diffusional transformation-based Kolmogorov-Johnson-Mehl-Avrami
models to characterize the hot deformation behavior of the steels. These studies show that
if the complex microscopic deformation mechanisms were ignored, the predicted stress
values would deviate from the actual ones.

Later, semi-physical models that are partially based on phenomenology were gradually
developed. The semi-physical models are a family of models that are built based on the
knowledge of the described phenomena. Semi-physical models do not require in-depth
knowledge of complex microscopic deformation mechanisms. It is only required to calculate
the necessary material constants from limited experimental data to construct multiple
nonlinear regression models. Some of the calculated material constants have no practical
physical significance. Zhao et al. [15] proposed an improved constitutive relationship
to characterize the rheological behaviors at low and medium temperature ranges with
variable strain rates based on the Johnson-Cook model. Lin et al. [16] considered the effect
of different strains on stresses, and then introduced a series of variable coefficients that
change with strain (including activation energy of deformation Q, material constants n
and α, and structure factor A) into Arrhenius equation through polynomial fitting. In this
model, Q and A are the physical parameters, while n and α are the phenomenological
parameters. Semi-physical models have lower prediction accuracy in predicting unknown
deformation conditions.

In recent years, intelligent models with simple and efficient modeling were widely
used in flow behaviors models. The widely used model backpropagation–artificial neural
network (BP-ANN) is an intelligent algorithm for biological neural systems [17–19]. BP-
ANN can achieve high accuracy levels, but a large number of network topologies and
training parameters need to be tried to obtain higher accuracy, which will consume a lot of
time and effort. In addition, neural networks are not always stable. For a certain dataset,
the accuracy obtained with different attempts of the same network topology and neural
network training parameters fluctuates. BP-ANN has a large global range in the process
of optimally exploring the initial values of weights and thresholds, which reduces the
modeling efficiency. In addition, BP-ANN is prone to fall into local extremes and cannot
obtain global optimal solutions.

In order to overcome the shortcomings of a single algorithm, the use of multiple algo-
rithm fusion is the current general trend [20,21]. For example, particle swarm optimization
(PSO) was introduced into BP-ANN to form a PSO-BP integrated model. The principle
of the PSO-BP integrated model is to first search for the particle-optimal solution by PSO,
and then use the particle-optimal solution outputs as the initial thresholds and weights of
BP-ANN for training, and finally the optimal solutions are obtained [22,23]. The PSO-BP
integrated model can overcome the disadvantage that a single BP-ANN can easily fall into
local extremes, and can help the BP-ANN find the optimal solution more quickly. Therefore,
the PSO-BP integrated model greatly improves modeling efficiency, modeling accuracy and
modeling stability.

In this work, the generative abilities, predictive abilities, and modeling efficiencies
among the improved Arrhenius-type constitutive model, BP-ANN, and PSO-BP integrated
model were evaluated using correlation coefficients (R), relative error (δ), standard devia-
tion (w) and so on. The results show that both BP-ANN and PSO-BP integrated model were
able to learn the flow behaviors with sufficient accuracy and provide accurate prediction
results. The PSO algorithm quickly and accurately obtains the weights and thresholds
of the BP-ANN and improves efficiency and accuracy; therefore, the PSO-BP integrated
model has superior comprehensive abilities. Compared to them, the semi-physical model
with improved Arrhenius-Type has higher errors and cannot accurately predict the flow
behaviors of SAE 5137H steel. In finite element software, if the software needs to invoke
stress-strain data, the stress-strain data required but not entered are calculated mainly by
interpolation methods. However, the prediction results of this method have large errors.
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The prediction of stresses outside experimental conditions by the PSO-BP integrated model
can improve related research areas where stress-strain data play an important role.

2. Proposed PSO-BP Integrated Model and Principles
2.1. The Basic Principles of BP-ANN

Artificial neural network (ANN) is an error feedback neural network algorithm based
on the model of a human neuron [24]. The human brain consists of millions of neurons
which sends and processes signals in the form of electrical and chemical signals. These
neurons are connected with a special structure known as synapses. Synapses allow neu-
rons to pass signals from large numbers of simulated neurons in neural networks forms.
Backpropagation–artificial neural network (BP-ANN) is a kind of ANN that can be divided
into two processes, forward propagation and backward propagation, using gradient de-
scent to achieve the adjustment of different neural layer weights to achieve the effect of
input feature vectors and output categories. In terms of structure, BP-ANN is composed of
two modules: a forward propagation network and an error back propagation network. The
basic structure of BP-ANN is shown in Figure 1. BP-ANN consists of three main layers,
including an input layer, a hidden layer and an output layer. Various information from
the outside is transmitted through the input layer of the BP-ANN to its hidden layer. The
hidden layer receives the data and operates according to the user-selected transfer function,
and then transmits the data to the next layer, and so on. The next layer is similarly passed
layer by layer to the output layer, and finally the result of the operation is obtained, which
is the generation of a training. When the error between the output result of the output
layer of the BP-ANN and its preset input value is large, it enters the back-propagation
phase of the BP-ANN and updates the network weights until the error between the output
result and the expected result satisfies certain conditions. BP-ANN is used to establish the
corresponding constitutive model through the mapping relationship between deformation
parameters and stresses, without giving the model in advance. It can find the law directly
from a large amount of data, and automatically adjust the weights and thresholds in the
network through training to match the network model adapted to the experimental data.
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Figure 1. The basic structure of the BP-ANN.

2.2. The Basic Principles of PSO-BP Integrated Model

Particle swarm optimization (PSO) is a kind of evolutionary algorithm developed
by imitating the foraging behavior of flocks of birds and fish [25]. Its concept is simple
and easy to program and implement with high operational efficiency and relatively few
parameters, and it is very widely used. The position of each particle in the PSO represents a
candidate solution to the problem to be solved. The PSO has the ability for each particle to
learn itself and for particles to collectively learn from each other in real time. At the same
time, the particles are constantly sharing information among themselves in real time and
have the ability to communicate with each other and the environment, thus changing their
own and collective behavior. The position information of particles is usually determined by
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two factors, one is the information of particle motion speed and the other is the information
of relative position of particles. Each particle realizes real-time information sharing based
on mutual learning in the whole particle swarm, and then constantly changes the position
information of individual particles.

Since the BP-ANN training uses the gradient-down method for parameter iteration,
it is inevitable that the problem of slow convergence and easy to fall into local optimal
solutions will occur. In this paper, the PSO is introduced into the BP-ANN. The parameters
to be adjusted in the BP-ANN are used as the particle positions in the PSO, and the mean
square error values of the predicted and actual values from the training samples are used
as the fitness functions of the PSO algorithm. After several iterations, the optimal particle
positions are found to obtain the optimal BP-ANN structure, which improves the model
detection accuracy.

Figure 2 shows the principle of combining the BP-ANN and PSO, it can be summa-
rized as follows. First, a global search PSO is used for assistance to accelerate the global
exploration phase, which can solve the problem that the BP-ANN tends to fall into local
optimal solutions. After the PSO processing, the location of the optimal solution with
initial values of weights and thresholds will be in a relatively small search range. Then,
the traditional BP-ANN training phase is performed again to explore the local optimal
solutions in the current range, using the particle optimal solutions output by the PSO as the
initial threshold and weights. After continuously adjusting the parameters, the weights and
thresholds of the neural network model are modified until the end condition is satisfied.
The PSO-BP integrated model training is finished.

Materials 2023, 16, 2982 4 of 24 
 

 

easy to program and implement with high operational efficiency and relatively few pa-
rameters, and it is very widely used. The position of each particle in the PSO represents a 
candidate solution to the problem to be solved. The PSO has the ability for each particle 
to learn itself and for particles to collectively learn from each other in real time. At the 
same time, the particles are constantly sharing information among themselves in real time 
and have the ability to communicate with each other and the environment, thus changing 
their own and collective behavior. The position information of particles is usually deter-
mined by two factors, one is the information of particle motion speed and the other is the 
information of relative position of particles. Each particle realizes real-time information 
sharing based on mutual learning in the whole particle swarm, and then constantly 
changes the position information of individual particles. 

Since the BP-ANN training uses the gradient-down method for parameter iteration, 
it is inevitable that the problem of slow convergence and easy to fall into local optimal 
solutions will occur. In this paper, the PSO is introduced into the BP-ANN. The parame-
ters to be adjusted in the BP-ANN are used as the particle positions in the PSO, and the 
mean square error values of the predicted and actual values from the training samples are 
used as the fitness functions of the PSO algorithm. After several iterations, the optimal 
particle positions are found to obtain the optimal BP-ANN structure, which improves the 
model detection accuracy. 

Figure 2 shows the principle of combining the BP-ANN and PSO, it can be summa-
rized as follows. First, a global search PSO is used for assistance to accelerate the global 
exploration phase, which can solve the problem that the BP-ANN tends to fall into local 
optimal solutions. After the PSO processing, the location of the optimal solution with ini-
tial values of weights and thresholds will be in a relatively small search range. Then, the 
traditional BP-ANN training phase is performed again to explore the local optimal solu-
tions in the current range, using the particle optimal solutions output by the PSO as the 
initial threshold and weights. After continuously adjusting the parameters, the weights 
and thresholds of the neural network model are modified until the end condition is satis-
fied. The PSO-BP integrated model training is finished. 

 
Figure 2. Principle of the PSO-BP integrated model. 

3. Modeling the Constitutive Model for SAE 5137H steel 
3.1. Acquisition of Experimental Stress-Strain Data 

The specific chemical composition (wt.%) of SAE 5137H steel, as provided through 
the manufacturer, was listed in Table 1. The initial microstructure with an average grain 
size of 64.8 µm was exhibited in Figure 3. The samples were cylinders from rolled billet 
with a diameter of 10 mm and a height of 12 mm. The stress-strain data of this steel was 
acquired from a type of isothermal compression test at a certain temperature and a certain 
strain rate. A computer-controlled servo-hydraulic thermos-mechanical machine, i.e., 

Figure 2. Principle of the PSO-BP integrated model.

3. Modeling the Constitutive Model for SAE 5137H Steel
3.1. Acquisition of Experimental Stress-Strain Data

The specific chemical composition (wt.%) of SAE 5137H steel, as provided through the
manufacturer, was listed in Table 1. The initial microstructure with an average grain size of
64.8 µm was exhibited in Figure 3. The samples were cylinders from rolled billet with a
diameter of 10 mm and a height of 12 mm. The stress-strain data of this steel was acquired
from a type of isothermal compression test at a certain temperature and a certain strain rate.
A computer-controlled servo-hydraulic thermos-mechanical machine, i.e., Gleeble 3500,
with a stable heating system, was adopted for this isothermal compression. The experiment
procedures were roughly shown in Figure 4. First of all, tantalum sheets were padded at
both ends of the specimen before the experiment to minimize the friction between the edges
of the specimen and the dies. Then, a specimen was heated to the proposal temperature
at a rate of 10 K/s and held at a fixed temperature for 3 min. The holding treatment
was to ensure that specimen achieved uniform temperature at the onset of a compression
process, which could reduce the anisotropy of the material in flow deformation behavior.
In addition, two thermocouple wires were welded to two points in the middle of each
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specimen before the test and the two wires will feedback the changes of temperature of
the specimen at any time to the control system of Gleeble 3500, which is convenient for
the system to adjust Itself and accurately control the temperature during text. Referring
to the actual range of forging process parameters used in the factory, the temperatures of
the compression test were selected as 1123 K, 1213 K, 1303 K, 1393 K, and 1483 K, and the
strain rates were selected as 0.01 s−1, 0.1 s−1, 1 s−1, and 10 s−1. According to the material
properties of SAE 5137H, the compression ratio of height should reach 60% during the
test. Finally, the deformed specimens were immediately quenched with water to room
temperature to preserve the elevated temperature microstructures. More details related to
the isothermal compression procedures can be obtained in references [26].

Table 1. Chemical compositions of SAE 5137H steel.

C Mn Si S P Cr Mo Ni Fe

0.38 1.19 0.28 0.025 0.015 1.23 0.042 0.11 balance
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The true stress-strain curves of SAE 5137H steel during the compression processes
under different deformation conditions are shown as Figure 5. Considering adiabatic
heating during the deformation at high strain rates may significantly influence the true
stress–true strain curves, the reliability of the compression experimental results was judged
using the expansion coefficient in Equation (1). When the expansion coefficient B > 0.9
is considered reliable. On the contrary, it is not reliable, and the stress value obtained is
corrected with Equation (2). After the test, expansion coefficient of all specimens after this
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isothermal compression test were greater than 0.9. Therefore, the results obtained from this
experiment were reliable and can be used directly.

B0 =
L0d2

0

L f d2
f

(1)

where B is expansion coefficient, L0 and Lf are the original height of the specimen and the
height after compression deformation, respectively, d0 and df are the original diameter of
the specimen and the diameter after compression deformation, respectively.

σi =
4Fi

πd2
i

(
1 +

µdi
3Li

)
(2)

where σi is corrected true stress, Fi, di, Li, and µ are the pressure on the specimen, the
average diameter, the average height, and the friction coefficient, respectively.
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The variation in flow stress with true strain can be summarized in three stages. In the
first stage, the flow stress increases rapidly to a critical value with the true strain increases,
and work hardening (WH) is the predominant deformation mechanism. At the same
time, the grain boundary storage energy increases rapidly to the dynamic recrystallization
activation energy (DRX). In the second stage, DRX and dynamic recovery (DRV) occur
and increase, and the rate of increase of flow stress decreases until the maximum stress
is reached. At this point, thermal softening begins to exceed WH. In the last stage, two
types of stress change patterns are observed. Flow stress continues to decrease and the
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DRX softens obviously at strain rates of 0.01 and 0.1. Different from the first type, true
stress-strain curves at strain rates of 1 and 10 do not show significant stress peaks. With
the increase of true strain, the true stress basically remains stable due to the dynamic
equilibrium of the softening behaviors of WH and DRV. At higher temperatures and lower
strain rates, the flow stress is relatively lower due to sufficient time for recrystallization
gain for energy accumulation and nucleation. In addition, high temperature accelerates
dislocation movement and grain boundary migration. The flow behaviors are nonlinear
with complex deformation mechanism. Therefore, it is important to establish a constitutive
model to characterize the flow behaviors of SAE 5137H steel.

3.2. Semi-Physical Model with Improved Arrhenius-Type for Flow Behavior of SAE 5137H Steel

As for the Arrhenius-type constitutive equation, the effects of the temperatures and
strain rates on the deformation behaviors are represented by Zener-Hollomon parameter,
Z, in an exponent-type expression.

Z =
∣∣ .
ε
∣∣ exp[Q/(RT)] (3)

where
.
ε is strain rate (s−1). Q is the activation energy of hot deformation (kJ·mol−1), A

is material constant, R is the universal gas constant (8.31 J·mol−1·K−1), T is the absolute
temperature (K), F(σ) is the function of stress, it takes three forms, and it is expressed as
Equation (4),

F(σ)


|σ|n α|σ| < 0.8
exp(β|σ|) α|σ| < 0.8
[sinh(α|σ|)] f or all |σ|

(4)

where α, β, and n are the material constants, α = β/n. σ is the flow stress (MPa) for a
given strain.

For the low stress level (α|σ| < 0.8), substituting |σ|n into Equation (3), respectively,
gives (5). Similarly for the high stress level (α|σ| > 1.2), substituting exp(β|σ|) into
Equation (3), gives Equation (6).∣∣ .

ε
∣∣ = A|σ|n exp[−Q/(RT)] (5)

∣∣ .
ε
∣∣ = A exp(β|σ|) exp[−Q/(RT)] (6)

Taking the logarithm on both sides of Equations (5) and (6), we have,

ln|σ| = 1
n

ln
∣∣ .
ε
∣∣+ 1

n

(
Q
RT
− ln A

)
(7)

|σ| = 1
β

ln
∣∣ .
ε
∣∣+ 1

β

(
Q
RT
− ln A

)
(8)

Consequently, the slope of ln|σ| versus ln
∣∣ .
ε
∣∣ and |σ| versus ln

∣∣ .
ε
∣∣ gives the value of

n and β. This means n = d ln
∣∣ .
ε
∣∣/d ln|σ|, β = d ln

∣∣ .
ε
∣∣/|σ|, respectively. Then, substituting

the values of the peak stress and corresponding strain rates into the logarithm Equation (7)
gives the relationships of ln

∣∣ .
ε
∣∣ − ln|σ| as shown in Figure 6a. It is not difficult to find

that the natural logarithms of stresses at every temperature are linear and the slopes are
approximated the same with each other. The average value of all the lines’ slopes can
be regarded as the inverse of n, thus n = 6.0083 MPa−1. Meanwhile, substituting the
values of the peak stress and corresponding strain rates into the logarithm Equation (8)
gives the relationships of ln

∣∣ .
ε
∣∣− |σ| as shown in Figure 6b. For the same, stresses at every

temperature are linear and the average value of all the lines’ slopes can be regarded as the
inverse of β, thus β = 0.0655 MPa−1. Then, α = β/n = 0.0109.
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Figure 6. Relationships between strain rates and peak stresses: (a) ln
∣∣ .
ε
∣∣ and ln|σ|; (b) ln

∣∣ .
ε
∣∣ and |σ|.

Substituting the hyperbolic law of F(σ) into Equation (2) gives,∣∣ .
ε
∣∣ = A[sinh(α|σ|)]n exp[−Q/(RT)] (9)

Taking the natural logarithm of both sides of Equation (7) gives,

ln
∣∣ .
ε
∣∣ = ln A + nsinh(α|σ|)−Q/(RT) (10)

By linear fit, Equation (10) can be rewritten as,

Q = Rn{d[ln sinhα|σ|]/d(1/T)} (11)

As shown in Figure 7a, the distribution of all points is linear. By a linear fitting with an
average error of 0.10, the relationships between ln sinh[α|σ|] and 1/T is linear at different
strain rate, and the slopes are approximated the same with each other. The value of Q can
be obtained from the slope of ln sinhα|σ| versus 1/T. The average value of all the slope
rates is accepted Q/(RT), furthermore, the value of Q is obtained as 359.6095 kJ·mol−1.
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Equation (10) can also be expressed as following:

ln sinh(α|σ|) = 1
n

ln
∣∣ .
ε
∣∣+ 1

n

(
Q
RT
− ln A

)
(12)

By substituting the values of the peak stress at different temperatures and strain
rates into Equation (12), the linear relationships between ln sinh[α|σ|] and ln

.
ε for different
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temperatures can be obtained as shown in Figure 7b. The average value of all the intercepts
of ln sinhα|σ| versus ln

.
ε plot is obtained as the value of A, thus A value is calculated

as 6.9633 × 1013 s−1. Submitting the values of material constants α, n, Q, and A into
Equation (9) gives,∣∣ .

ε
∣∣ = 6.9633× 1013[sinh(0.0109|σ|)]6.0083 exp

[
−
(

359.6095× 1013
)

/RT
]

(13)

Substituting Equation (3) into Equation (4), then the flow stress can be expressed as
Equation (14).

|σ| = 1
α

ln


(

Z
A

) 1
n
+

[(
Z
A

) 2
n
+ 1

] 1
2

 (14)

Substituting Equation (3) and A into Equation (14), the constitutive equation of flow
stress for SAE 5137H steel can be calculated as Equation (15).

|σ| = 91.7431 ln


∣∣ .

ε
∣∣ exp

[
359.6095×103

RT

]
6.9633× 1013


1

6.0083

+


∣∣ .

ε
∣∣ exp

[
359.6095×103

RT

]
6.9633× 1013


2

6.0083

+ 1


1
2
 (15)


Q(ε) = B0 + B1ε + B2ε2 + B3ε3 + B4ε4 + B5ε5 + B6ε6 + B7ε7

n(ε) = C0 + C1ε + C2ε2 + C3ε3 + C4ε4 + C5ε5 + C6ε6 + C7ε7

ln A(ε) = D0 + D1ε + D2ε2 + D3ε3 + D4ε4 + D5ε5 + D6ε6 + D7ε7

α(ε) = E0 + E1ε + E2ε2 + E3ε3 + E4ε4 + E5ε5 + E6ε6 + E7ε7

(16)

Substituting the polynomial functions of Q(ε), n(ε), A(ε) and α(ε) into Equation (9),
and gives Equation (17).∣∣ .

ε
∣∣ = A(ε)[sinh(α(ε)|σ|)]n(ε) exp[−Q(ε)/(RT)] (17)

Finally, the Arrhenius type equation of SAE 5137H steel can be developed as following:

|σ| = 1
α(ε)

ln


(∣∣ .

ε
∣∣ exp[Q(ε)/RT]

A(ε)

) 1
n(ε)

+

(∣∣ .
ε
∣∣ exp[Q(ε)/RT]

A(ε)

) 2
n(ε)

+ 1


1
2

 (18)

The above is the calculation process of the Arrhenius-type constitutive equation for
SAE 5137H steel, while this equation ignores the effect of strain on the flow stress, and then
this equation is lack of the ability to predict the stresses at different strains. In order to solve
this issue, the strain compensation is introduced by constructing a series of polynomials as
Equation (16) representing the nonlinear relationships between the variables (including
activation energy of deformation Q, material constants n, and α, and structure factor A) in
Arrhenius-type constitutive equation and strains. In order to find the variation pattern of
the variables, the values of the variables were fitted nonlinearly at 0.1 true strain interval.
Such nonlinear relationships were shown as Figure 8, and the coefficients of the fitted
polynomials were listed in Table 2.
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Figure 8. Relationships between: (a) Q(ε); (b) n(ε); (c) ln A(ε); (d) α(ε) and true strain by polynomial
fitted of SAE 5137H steel.

Table 2. Polynomial fitting results of Q(ε), n(ε), A(ε) and α(ε) of SAE 5137H steel.

Q(ε) n(ε) lnA(ε) α(ε)

B0 206.13 C0 5.69 D0 23.37 E0 0.01
B1 5471.24 C1 25.96 D1 371.64 E1 0.06
B2 −46,988.25 C2 −342.05 D2 −3350.92 E2 −0.65
B3 187,335.81 C3 1628.67 D3 13,856.98 E3 2.49
B4 −409,247.82 C4 −3978.04 D4 −31,239.19 E4 −4.80
B5 505,185.18 C5 5347.26 D5 39,734.49 E5 4.89
B6 −331,121.75 C6 −3764.62 D6 −26,831.79 E6 −2.43
B7 89,654.64 C7 1085.11 D7 7484.26 E7 0.43

3.3. BP-ANN for Flow Behavior of SAE 5137H Steel

In this investigation, the BP-ANN was developed by MATLAB software. The input
variables include deformation temperatures and strains, and the output variables were flow
stresses. The 20 curves were divided into two datasets, i.e., the training dataset and the test
dataset, as shown in Table 3. A total of 308 input-output pairs were selected from the stress-
strain curves to train and test the BP-ANN. The 36 stress points on the test stress-strain
curves in the strain range 0.075~0.875 with a distance of 0.1 were not used for training, but
for testing the BP-ANN generation ability. The BP-ANN was trained using 272 stress points
in the strain range of 0.05~0.85 and distance of 0.5 in the training stress-strain curves. Due
to the different units of measurement from experimental data such as temperatures, strains,
strain rates, and stresses, there were large differences between different types of data, and
such differences would reduce the speed and accuracy of convergence within the network.
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Therefore, the input and output datasets measured in different units need to be normalized
to dimensionless units before the networks are trained to eliminate the arbitrary effect of
similarity between different data. The input and output data were normalized in the range
of 0~1 according to the relationship given in Equation (19).

yn =
y− 0.95ymin

1.25ymax − 0.95ymin
(19)

where yn is the normalized value of y, y is the experimental data, ymax and ymin are the
maximum and minimum value of y respectively.

Table 3. Specimen division of SAE 5137H steel.

Temperature/K
Strain Rate/s−1

0.01 0.1 1 10

1123 Training Training Training Training
1213 Texting Training Training Texting
1303 Training Texting Training Training
1393 Training Training Texting Training
1483 Training Training Training Training

As mentioned above, for a typical BP-ANN structure, one or more hidden layers were
required, and two hidden layers were used here to ensure a high training accuracy. In
addition, the number of nodes in the input layer was 3, the number of nodes in the hidden
layer was 12, and the number of nodes in the output layer was 1. Considering the range
of values, the tansig was used as hidden layers function, and the purelin was used as the
output layer function. Other parameters were shown in Table 4.

Table 4. The parameters of the BP-ANN.

Name of Parameter Parameter Values

Training times 2000
Minimum performance gradient 10−20

Learning rate of training 0.02
Adjustment parameters 0.005

Training error target 0.001

3.4. PSO-BP Integrated Model for Flow Behavior of SAE 5137H Steel

Figure 9 describes the overall processes of the PSO-BP integrated model. First, the
parameters of the algorithm are determined. Based on the input and output datasets of the
stress-strain curves, the topology of the BP-ANN and the initial values of the PSO algorithm
are determined. The connection weights and closure values between all neurons are
encoded as vectors of real numbers to represent the individual particles in the population.
In the second, the mean square error of the training output of the BP-ANN with respect
to the sample output is calculated according to the fitness function. The optimal value of
each particle is updated. The velocity of each particle is adjusted according to the velocity
update formula, and the position of each particle is adjusted according to the position
update formula. Thirdly, check whether the iteration stopping condition is met. If the global
optimal solution is less than the specified error, or if the maximum number of iterations
is reached, the iteration is stopped. The optimal weight and threshold of the BP-ANN
are output. Finally, this optimal weight and threshold are fed into the BP-ANN, and the
BP-ANN is trained until the prediction error is within the set error range or the maximum
number of trainings is reached.



Materials 2023, 16, 2982 12 of 22Materials 2023, 16, 2982 13 of 24 

Figure 9. Flow of the PSO-BP integrated model algorithm. 

In addition, the hidden layer chosen for the PSO-BP integrated model was one, the
number of nodes in the input layer was three, the number of nodes in the hidden layer 
was seven, and the number of nodes in the output layer was one. The training and testing 
datasets chosen were consistent with the BP-ANN. Other parameters were shown in the 
Table 5. 

Table 5. The parameters of the PSO-BP integrated model. 

Name of Parameter Parameter Values 
Learning Factor 2 

Number of evolutions 100 
Learning rate of training 10 

random number [0,1] 
Speed range [−1,1] 

4. Comparisons of the Semi-Physical Model with Improved Arrhenius-Type, BP-ANN 
and PSO-BP Integrated Model 
4.1. Comparisons of the Generative Ability of the BP-ANN and PSO-BP Integrated Model 

In order to further estimate the study abilities of these prediction models, the corre-
lation coefficient (R) of other evaluation indexes such as Equation (20) was used to esti-
mate the correlation between experimental flow stresses and predict flow stress. A larger 
value of R indicates a good correlation between the two variables, and vice versa.

( )( )
( ) ( ) 


−−

−−
=

==

=

2

1

2

1

1

PPEE

PPEE
R

i
N
ii

N
i

ii
N
i  (20)

where E is the sample of experimental stress-strain data; P is the sample of predicted 
stress-strain data; N is the number of samples of testing dataset. 

Figure 9. Flow of the PSO-BP integrated model algorithm.

In addition, the hidden layer chosen for the PSO-BP integrated model was one, the
number of nodes in the input layer was three, the number of nodes in the hidden layer
was seven, and the number of nodes in the output layer was one. The training and testing
datasets chosen were consistent with the BP-ANN. Other parameters were shown in the
Table 5.

Table 5. The parameters of the PSO-BP integrated model.

Name of Parameter Parameter Values

Learning Factor 2
Number of evolutions 100

Learning rate of training 10
random number [0,1]

Speed range [−1,1]

4. Comparisons of the Semi-Physical Model with Improved Arrhenius-Type, BP-ANN
and PSO-BP Integrated Model
4.1. Comparisons of the Generative Ability of the BP-ANN and PSO-BP Integrated Model

In order to further estimate the study abilities of these prediction models, the correla-
tion coefficient (R) of other evaluation indexes such as Equation (20) was used to estimate
the correlation between experimental flow stresses and predict flow stress. A larger value
of R indicates a good correlation between the two variables, and vice versa.

R =
∑ N

i=1
(
Ei − E

)(
Pi − P

)√
∑ N

i=1

(
Ei − E

)2
∑ N

i=1

(
Pi − P

)2
(20)

where E is the sample of experimental stress-strain data; P is the sample of predicted
stress-strain data; N is the number of samples of testing dataset.

The R-values between the training samples and fitted values of the BP-ANN and
PSO-BP integrated model were listed in Table 6. It can be obtained that the R-values
between the training datasets and fitted values of the BP-ANN and PSO-BP integrated
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model at different strain rates are larger than 0.999. It can indicate that both the BP-ANN
and PSO-BP integrated model can sufficiently and accurately learn the flow behaviors of
SAE 5137H steel.

Table 6. R-values between the training datasets and fitted values of the BP-ANN and PSO-BP
integrated model under different strain rates.

Strain Rate/s−1
R-Value

BP-ANN PSO-BP Integrated Model

0.01 0.99990 0.99977
0.1 0.99999 0.99996
1 0.99999 0.99998
10 0.99999 0.99999

Average 0.99997 0.99993

4.2. Comparisons of the Predictive Ability of the Three Models

Figure 10 shows the comparisons between stress-strain values predicted by the PSO-
BP integrated model and the stress-strain curves obtained by tests at different temperatures
and strain rates. It can be seen that the PSO-BP integrated model can accurately track the
flow behaviors of SAE 5137H steel under a wide range of temperatures and strain rates.
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To further evaluate the research ability of these predictive models, relative error (δ)
was introduced as Equation (21).

δ(%) =
Ei − Pi

Ei
× 100% (21)

where E is the sample of experimental stress-strain values; P is the sample of predicted
stress-strain values.

Another evaluation index average is absolute relative error (AARE) as shown in
Equation (22), which is the average of the absolute values of δ-values. The values of AARE
were used to further evaluate the research ability of these prediction models. Compared
with δ-value, AARE can better reflect the total prediction error.

AARE =
1
N ∑ N

i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣ (22)

where E is the sample of experimental stress-strain values; P is the sample of predicted
stress-strain values; N is equal to the number of samples.

It is worth noting that a larger fluctuation range of δ-values does not mean a worse
prediction, and the distribution and relative frequency of δ-values need to be further
analyzed using Gaussian distribution. After Gaussian distribution analysis, the mean
value of all relative errors µ expressed in Equation (23) can be obtained. The standard
deviation (w) expressed in Equation (24) is introduced as an evaluation index to measure the
individual dispersion in the dataset. The distribution of relative errors (δ) was measured.
Here, a small w indicates that most of the δ-values are close to the µ-value and vice
versa. The smaller the µ-value, the closer the predicted stress data are to the experimental
stress data.

µ =
1
N ∑ N

i=1δi (23)

w =

√
1

N − 1∑ N
i=1(δi − µ)

2 (24)

where δ is the sample of relative error; µ is the average number of δ-values; N is the number
of samples of the testing dataset.

Figure 11 shows the δ-value scatter diagrams and histograms of the semi-physical
model with improved Arrhenius-Type, BP-ANN, and PSO-BP integrated model, respec-
tively, indicating the relative frequencies of each δ-level. From Figure 10, it can be found
that the δ-values acquired from the semi-physical model with improved Arrhenius-Type,
BP-ANN, and PSO-BP integrated model vary from −22.76%~9.69%, −6.04%~12.61%, and
−3.50%~4.47%, respectively. The µ-value and the w-value of the semi-physical model with
improved Arrhenius-Type, BP-ANN, and PSO-BP integrated model are −3.13 and 7.74,
−0.58 and 4.26, and 0.10 and 1.81, respectively. In conclusion, the generation ability of the
semi-physical model with improved Arrhenius-Type is the worst, while the generation
abilities of the BP-ANN and PSO-BP integrated model are at a higher level.

Figure 12 shows the R-values and AARE-values of the semi-physical model with
improved Arrhenius-Type, BP-ANN, and PSO-BP integrated model test datasets for further
comparisons of the generalization ability of these models. The R-values and AARE-values of
the semi-physical model with improved Arrhenius-Type, BP-ANN and PSO-BP integrated
model are 0.9737 and 7.3042, 0.9986 and 3.4527, and 0.9996 and 1.3913, respectively. It
can be summarized that the PSO-BP integrated model has a larger R-value and lower
AARE-value, which indicates that the PSO-BP integrated model can accurately predict
the highly non-linear flow behaviors of SAE 5137H steel. The generation ability of the
PSO-BP integrated model is the best, BP-ANN is the second, and semi-physical model
with improved Arrhenius-Type is the lowest. The semi-physical model with improved
Arrhenius-Type tracks the flow behaviors under a wide range of temperatures and strain
rates with the largest error. Worse still, the complex computational procedures of the semi-
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physical model with improved Arrhenius-Type needs to be recalculated when it comes to
some new experimental stress-strain data.
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Figure 12. The correlation relationships among the predicted and experimental true stress for
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4.3. Comparisons of the Modeling Efficiency of the Three Models under Limited
Experimental Conditions

Table 7 shows the time in modelling an accurate model of the semi-physical model with
improved Arrhenius-Type, BP-ANN, and PSO-BP integrated model. The semi-physical
model with improved Arrhenius-Type requires the calculation of a large number of ma-
terial constants. A large number of multivariate nonlinear regression models were then
constructed based on limited experimental data. These material constants and regression
models need to be recalculated when new stress data are added. These processes are both
complex and time-consuming. In contrast, intelligent algorithms do not need to build
complex function models.

Table 7. The time in modelling an accurate model of the semi-physical model with improved
Arrhenius-Type, BP-ANN, and PSO-BP integrated model.

Model Equation BP-ANN PSO-BP

The time in modelling
an accurate model More than 180 min More than 60 min About 20 min

The BP-ANN needs to try a large number of network topologies and training parame-
ters to obtain an accurate model, which will consume a lot of time and effort. In addition,
the BP-ANN is not very stable. For a certain dataset, the accuracy obtained from different
attempts of the same network topology and neural network training parameters fluctuates,
which reduces the modeling efficiency. The PSO algorithm has the advantages of few
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parameters, fast convergence, and strong global search ability. Combining the BP-ANN and
PSO algorithms can improve the efficiency and modeling performance of neural network
modeling. Therefore, the PSO-BP integrated model has the highest modeling efficiency,
BP-ANN has the second, and the semi-physical model with improved Arrhenius-Type has
the lowest.

5. Applications of the PSO-BP Integrated Model in Material Computations
5.1. Stress-Strain Data Expansion by the PSO-BP Integrated Model

The flow stress data of SAE 5137H steel were predicted using PSO-BP integrated
model at temperatures of 1168 K, 1258 K, 1348 K, and 1438 K, and at strain rates of 0.01 s−1,
0.1 s−1, 1 s−1, and 10 s−1, and the results were shown in Figure 13. In Figure 13, the solid
curves were experimental data and the fitted curves by points were predicted data.
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5.2. Accuracy Improvement in Finite Element Modeling

If the finite element software needs to invoke stress-strain data that are not initially
entered, the software mainly uses mathematical interpolation to calculate the unknown
stress-strain data. However, the flow behaviors of materials under different conditions (e.g.,
different temperatures and strain rates) are complex. The interpolation method cannot
predict the stress-strain variation law correctly, resulting in inaccurate simulation results.
In this section, the PSO-BP integrated model was used to enrich the stress-strain data, and
imported them into the finite element software to simulate the isothermal compression
process. A comparison was made with an isothermal compression simulation process that
lacks stress-strain data and can only use the FEM’s own interpolation. The experimentally
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measured stress-strain data were used to simulate the isothermal compression process as a
control group.

In this section, the effect of the input stress-strain curves on the simulation results
of isothermal compression experiments were analyzed using the finite element software,
DEFORM. The simulation parameters were set according to the actual experiments. Con-
sidering the geometric symmetry of the specimens, half of the specimens were simulated to
reduce the computational time. In the actual experiment, the top and bottom surfaces of the
specimen were coated with graphite lubricant to reduce the friction between the specimen
and the anvil, so the friction type of the contact surface between the specimen and the mold
was set to shear type in DEFORM. In addition, the shear friction coefficient is set to 0.3 to
simulate the actual graphite lubrication state between the specimen and the anvil. In the
finite element simulation, the heat conduction and heat radiation between the compressed
specimen, the mold, and the environment were neglected to simulate the experimental
isothermal compression test. The finite element model for isothermal compression test is
shown in Figure 14. If the finite element software needs to invoke stress-strain data that
are not initially entered, the software mainly uses interpolation to calculate the unknown
stress-strain data. However, the flow behaviors of materials under different conditions
(e.g., different temperatures and strain rates) is complex. The interpolation method does
not accurately predict the stress-strain data, resulting in inaccurate simulation results as
well. Therefore, the extended stress-strain curves predicted by PSO-BP integrated model
were applied to enrich the stress data of SAE 5137H steel.
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Three simulation schemes were given in Table 8 for analyzing the effect of the input
stress-strain curves on the final simulation results. The initial conditions were identical
throughout except for the different input stress-strain curves. Simulated compression tests
were performed at a temperature of 1303 K and a strain rate of 0.1 s−1. The stress-strain
curve at a temperature of 1303 K and a strain rate of 0.1 s−1 was entered into the finite
element software for scheme-A. Scheme-A has no interpolation interval. Scheme-B used the
stress-strain curves predicted by the PSO-BP integrated model. The true stress-strain curves
for a strain rate of 0.1 and strain temperatures of 1123 K and 1483 K were input into the PSO-
BP model to predict the stress-strain curve for a temperature of 1303 K and a strain rate of
0.1. The data were imported into the finite element software in table format for isothermal
compression simulation. Scheme-C used test stress-strain curves with temperatures of a
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strain rate of 0.1 s−1 and 1123 K and 1483 K, so the stress-strain curves with temperatures
of 1303 K and strain rates of 0.1 s−1 need to be interpolated with an interval of 180 K.

Table 8. The three finite element simulation schemes at the strain rate of 0.1 s−1 and temperature of
1303 K.

Temperature/K
Finite Element Simulation Schemes

A B C

1123 Experimental curve Null Experimental curve
1303 Experimental curve Predicted curve by the PSO-BP Interpolation of FEM software
1483 Experimental curve Null Experimental curve

Figure 15 shows the effective strain distribution of scheme-A, scheme-B, and scheme-C.
The effective strain distribution of scheme-B can be roughly divided into five regions. The
effective strain distribution of scheme-B is similar to that of scheme-A. The largest strain of
scheme-B is 1.75, which is close to that of scheme-A. Figure 13c shows the effective strain
distribution of scheme-C, which can also be divided into five regions, but the fifth region
is not obvious, and there is a big difference with the effective strain distribution and the
maximum effective strain of scheme-A.

In addition, as shown in Figure 16, the load curves corresponding to the upper die
stroke for each scenario show that the upper die load curve for scheme-B is very close to
that of scheme-A. However, the difference in top die load between scheme-C and scheme-
A is large. The relative error of top die load between scheme-A and scheme-B ranged
from −0.7090%~3.3506%, and the relative error of top die load between scheme-A and
scheme-C ranged from −8.1880%~−4.1680%. Both Scheme-A and scheme-B are closer
to the experimentally measured force versus die displacement curves, while scheme-C
has a larger gap. It also can be seen from Figure 16 that too large an interpolation span
or insufficient stress-strain data can lead to inaccurate simulation results. It shows that
PSO-BP integrated model can enrich the flow stress data, reduce the interpolation interval,
and improve the simulation accuracy.
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6. Conclusions

The flow behaviors of SAE 5137H steel were characterized based on the isother-
mal compression tests at the temperature range of 1123~1483 K and strain rate range of
0.01~10 s−1. To accurately and efficiently characterize the complex flow behaviors of this
steel, three models including the semi-physical model with improved Arrhenius-Type, BP-
ANN, and PSO-BP integrated model were developed according to the obtained stress-strain
data. The following main conclusions were acquired from the current study.

(1) Based on experimental stress-strain data, a semi-physical model with improved
Arrhenius-Type was developed for the flow behaviors of SAE 5137H steel. A BP-ANN
was constructed with temperatures, strains, and strain rates as inputs and stresses as
outputs. And a PSO algorithm combined with BP-ANN, namely PSO-BP integrated
model also established using the same datasets as BP-ANN.

(2) The comparison results of generative ability between BP-ANN and PSO-BP integrated
model show that the correlation coefficient R-values were calculated as 0.99997 and
0.99993, respectively. It suggests that the BP-ANN and PSO-BP integrated model has
the same excellent generative ability.

(3) The statistical indexes of relative error (δ), mean value (µ), and standard deviation (w)
were employed to contrast the predictive ability among the semi-physical model with
improved Arrhenius-Type, BP-ANN, and PSO-BP integrated model. The µ-value and
w-value for the three models were evaluated as −3.13 and 7.74, −0.58 and 4.26, and
0.10 and 1.81, respectively. It indicates that the predictive ability of PSO-BP integrated
model is the best.

(4) The true stress data within the temperature range of 1168~1438 K and strain rate
range of 0.01~10 s−1 were predicted using PSO-BP integrated model. According to
these abundant data, isothermal compression simulation was performed. The results
show that the enrichment of stress-strain curves by PSO-BP integrated model is much
closer to the reality than the interpolation by FEM software, indicating that PSO-BP
integrated model is of great significance for practical applications.
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