Comparative Study of the Antibacterial, Biodegradable, and Biocompatibility Properties of Composite and Bi-Layer Films of Chitosan/Gelatin Coated with Silver Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Films and Bi-Layer Films Preparation
2.3. Characterizations
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. Thickness: Scanning Electronic Microscopy
2.3.3. Surface Hydrophobicity Study
2.3.4. Degradation In Vitro Assay
- Wf = final weight
- Wi = initial weight
2.3.5. Antibacterial Activity Assessment
2.3.6. In Vitro Evaluation: Viability and Adhesion Cell
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Composite and Bi-Layer Films: Chemical Composition Study by FT-IR
3.2. Thickness Measurement
3.3. Surface Hydrophilicity by Contact Angle
3.4. Degradation In Vitro Assay
3.5. Antibacterial Properties Study by Inhibition Halo Assay
3.6. Cell Viability Study
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez d’Ayala, G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym. 2020, 233, 115839. [Google Scholar] [CrossRef] [PubMed]
- Pereda, M.; Ponce, A.G.; Marcovich, N.E.; Ruseckaite, R.A.; Martucci, J.F. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll. 2011, 25, 1372–1381. [Google Scholar] [CrossRef]
- Shivakumar, P.; Gupta, M.S.; Jayakumar, R.; Gowda, D.V. Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis (2010–2020). Int. J. Biol. Macromol. 2021, 184, 701–712. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Santos-Vizcaino, E.; Etxabide, A.; Uranga, J.; Bayat, A.; Guerrero, P.; Igartua, M.; de la Caba, K.; Hernández, R.M. Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics 2019, 11, 314. [Google Scholar] [CrossRef] [Green Version]
- Valencia-Gómez, L.-E.; Muzquiz-Ramos, E.-M.; Fausto-Reyes, A.-D.; Rodríguez-Arrellano, P.-L.; Rodríguez-González, C.-A.; Hernández-Paz, J.-F.; Reyes-Blas, H.; Olivas-Armendáriz, I. O-carboxymethyl chitosan/gelatin/silver-copper hydroxyapatite composite films with enhanced antibacterial and wound healing properties. J. Biomater. Appl. 2022, 37, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Noruzi, E.B.; Sheykhsaran, E.; Ebadi, B.; Kariminezhad, Z.; Molaparast, M.; Mehrabani, M.G.; Mehramouz, B.; Yousefi, M.; Ahmadi, R.; et al. Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydr. Polym. 2020, 231, 115696. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, H. A Review on Antimicrobial Silver Absorbent Wound Dressings Applied to Exuding Wounds. J. Microb. Biochem. Technol. 2015, 7, 228–233. [Google Scholar]
- Rebelo, R.; Manninen, N.K.; Fialho, L.; Henriques, M.; Carvalho, S. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films. Appl. Surf. Sci. 2016, 371, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Fabrication and Testing of PVA/Chitosan Bilayer Films for Strawberry Packaging. Coatings 2017, 7, 109. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, Y.; Jin, Y.; Wang, D.; Wang, G.; Zhang, X.; Li, Y.; Lee, S. Ag@MOF-loaded p-coumaric acid modified chitosan/chitosan nanoparticle and polyvinyl alcohol/starch bilayer films for food packing applications. Int. J. Biol. Macromol. 2022, 202, 80–90. [Google Scholar] [CrossRef]
- Gomes Neto, R.J.; Genevro, G.M.; Paulo, L.D.A.; Lopes, P.S.; de Moraes, M.A.; Beppu, M.M. Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydr. Polym. 2019, 212, 56–66. [Google Scholar] [CrossRef]
- Fernandes Queiroz, M.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Das, M.P.; Suguna, R.; Prasad, K.; Jv, V.; Renuka, M. Extraction and characterization of gelatin: A functional biopolymer. Int. J. Pharm. Pharm. Sci. 2017, 9, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Samimi Gharaie, S.; Habibi, S.; Nazockdast, H. Fabrication and characterization of chitosan/gelatin/thermoplastic polyurethane blend nanofibers. J. Text. Fibrous Mater. 2018, 1, 2515221118769324. [Google Scholar] [CrossRef]
- Han, F.; Dong, Y.; Song, A.; Yin, R.; Li, S. Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride. Appl. Surf. Sci. 2014, 311, 626–634. [Google Scholar] [CrossRef]
- Rivero, S.; García, M.A.; Pinotti, A. Composite and bi-layer films based on gelatin and chitosan. J. Food Eng. 2009, 90, 531–539. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y.; Zhang, P.; Ye, L.; Wu, L.; He, S. Physical Characterization and Pork Packaging Application of Chitosan Films Incorporated with Combined Essential Oils of Cinnamon and Ginger. Food Bioprocess Technol. 2017, 10, 503–511. [Google Scholar] [CrossRef]
- Patricia Miranda, S.; Garnica, O.; Lara-Sagahon, V.; Cárdenas, G. Water Vapor Permeability and Mechanical Properties of Chitosan Composite Films. J. Chil. Chem. Soc. 2004, 49, 173–178. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Rodrigues, P.F.; Lopes, A.; Silva, R.J.; Caldeira, J.; Duarte, M.P.; Fernandes, F.B.; Coelhoso, I.M.; et al. Physical and Morphological Characterization of Chitosan/Montmorillonite Films Incorporated with Ginger Essential Oil. Coatings 2019, 9, 700. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Chang, H.; Tu, Y.; Young, T. Efficient transfer of human adipose-derived stem cells by chitosan/gelatin blend films. J. Biomed. Mater. Res. B Appl. 2012, 100, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Valerini, D.; Tammaro, L.; Vigliotta, G.; Picariello, E.; Banfi, F.; Cavaliere, E.; Ciambriello, L.; Gavioli, L. Ag Functionalization of Al-Doped ZnO Nanostructured Coatings on PLA Substrate for Antibacterial Applications. Coatings 2020, 10, 1238. [Google Scholar] [CrossRef]
- Falcón, A.; Díaz, D.; Ramírez, M.A. hidrólisis enzimática de quitosana. Actividad biológica del polímero y sus hidrolizados. Cultiv. Trop. 2004, 25, 81–86. [Google Scholar]
- Sofi, H.S.; Akram, T.; Shabir, N.; Vasita, R.; Jadhav, A.H.; Sheikh, F.A. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater. Sci. Eng. C 2021, 118, 111547. [Google Scholar] [CrossRef]
- Valencia-Gómez, L.-E.; Martel-Estrada, S.-A.; Vargas-Requena, C.-L.; Acevedo-Fernández, J.-J.; Rodríguez-González, C.-L.; Hernandez-Paz, J.-F.; Santos-Rodríguez, E.; Olivas-Armendariz, I. Characterization and evaluation of a novel O-carboxymethyl chitosan films with Mimosa tenuiflora extract for skin regeneration and wound healing. J. Bioact. Compat. Polym. 2020, 35, 39–56. [Google Scholar] [CrossRef]
- Veeraraghavan, V.P.; Periadurai, N.D.; Karunakaran, T.; Hussain, S.; Surapaneni, K.M.; Jiao, X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J. Biol. Sci. 2021, 28, 3633–3640. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-1:2018; Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process. ISO: Geneva, Switzerland, 2018.
- Ulker Turan, C.; Guvenilir, Y. Electrospun poly (ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections. Eur. J. Pharm. Sci. 2022, 170, 106113. [Google Scholar] [CrossRef]
- Augustine, R.; Rehman, S.R.U.; Ahmed, R.; Zahid, A.A.; Sharifi, M.; Falahati, M.; Hasan, A. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int. J. Biol. Macromol. 2020, 156, 153–170. [Google Scholar] [CrossRef]
- Akhmetova, A.; Heinz, A. Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics 2021, 13, 4. [Google Scholar] [CrossRef]
- Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int. J. Biol. Macromol. 2018, 107 Pt B, 1888–1897. [Google Scholar] [CrossRef]
Film | % Chitosan | % Gelatin | Configuration | Coated Time with Ag |
---|---|---|---|---|
2% C | 2% | 2% | Composite | 15 min |
2.5% C | 2% | 2.5% | Composite | 15 min |
3% C | 2% | 3% | Composite | 15 min |
2% B | 2% | 2% | Bi-layer | 15 min * |
2.5% B | 2% | 2.5% | Bi-layer | 15 min * |
3% B | 2% | 3% | Bi-layer | 15 min * |
Film | Composite | Bi-Layer | ||||
---|---|---|---|---|---|---|
2% C | 2.5% C | 3% C | 2% B | 2.5% B | 3% B | |
Thickness (µm) | 276 ± 2.25 | 243.8 ± 4.5 | 239 ± 4.1 | 236 ± 3.2 | 233 ± 2.4 | 219 ± 4.5 |
Sample | Contact Angle (°) | |
---|---|---|
Polymer Layer | Ag Coated Layer | |
2% C | 49.2 a | 47.5 a |
2.5% C | 45.8 b | 44.1 b |
3% C | 42.5 c | 41.2 c |
2% B | 40.4 d | 58 e |
2.5% B | 33.7 f | 52.4 g |
3% B | 31.3 h | 47.8 i |
E. coli | S. aureus | ||
---|---|---|---|
Composite films (inhibition halo mm) | |||
C2% | 7.6 a | 7.9 a | |
C2.5% | 6.8 b | 7.8 a | |
C3% | 6.5 b | 7.0 b | |
Bilayer films (inhibition halo mm) | |||
B2% | 9.4 a | 7.7 a | |
B2.5% | 12.1 b | 7.6 a | |
B3% | 9.2 a | 7.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Gómez, L.-E.; Reyes-Blas, H.; Hernández-Paz, J.-F.; Rodríguez-González, C.-A.; Olivas-Armendáriz, I. Comparative Study of the Antibacterial, Biodegradable, and Biocompatibility Properties of Composite and Bi-Layer Films of Chitosan/Gelatin Coated with Silver Particles. Materials 2023, 16, 3000. https://doi.org/10.3390/ma16083000
Valencia-Gómez L-E, Reyes-Blas H, Hernández-Paz J-F, Rodríguez-González C-A, Olivas-Armendáriz I. Comparative Study of the Antibacterial, Biodegradable, and Biocompatibility Properties of Composite and Bi-Layer Films of Chitosan/Gelatin Coated with Silver Particles. Materials. 2023; 16(8):3000. https://doi.org/10.3390/ma16083000
Chicago/Turabian StyleValencia-Gómez, Laura-Elizabeth, Hortensia Reyes-Blas, Juan-Francisco Hernández-Paz, Claudia-Alejandra Rodríguez-González, and Imelda Olivas-Armendáriz. 2023. "Comparative Study of the Antibacterial, Biodegradable, and Biocompatibility Properties of Composite and Bi-Layer Films of Chitosan/Gelatin Coated with Silver Particles" Materials 16, no. 8: 3000. https://doi.org/10.3390/ma16083000
APA StyleValencia-Gómez, L. -E., Reyes-Blas, H., Hernández-Paz, J. -F., Rodríguez-González, C. -A., & Olivas-Armendáriz, I. (2023). Comparative Study of the Antibacterial, Biodegradable, and Biocompatibility Properties of Composite and Bi-Layer Films of Chitosan/Gelatin Coated with Silver Particles. Materials, 16(8), 3000. https://doi.org/10.3390/ma16083000