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Abstract: Carbonate geomaterial samples were tested for uniaxial compressive strength and tensile
strength under air-dried and distilled-water-wet conditions. When tested for uniaxial compression,
samples saturated with distilled water showed 20% lower average strength than that of air-dried
samples. In the indirect tensile (Brazilian) test, samples saturated with distilled water showed 25%
lower average strength than that of dry samples. In comparison with air-dried conditions, when the
geomaterial is saturated with water, the ratio of the tensile strength to the compressive strength is
decreased, mainly due to the decrease in the tensile strength caused by the Rehbinder effect.
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1. Introduction

Depending on the saturating medium and the degree of saturation, the strength of
a geomaterial differs. The uniaxial compressive strength, the uniaxial tensile strength
and the Brazilian tensile strength are lower in wet conditions than in dry ones [1]. There
are several mechanisms that describe rock’s strength reduction with moisture [2]. It was
revealed [3] in tests of Sanjome andesite that its uniaxial compressive strength decreases
as water saturation increases and the loading rate increases. Based on a large number of
experiments using sandstone samples, it was found [4] that the moisture content strongly
affects the strength of the rock under uniaxial compression, which is mostly related to pore
radius distribution, poor matrix mineralogy and the amount of cement. It was proved [5]
that the principal mechanism causing the water weakening of the chalk is related to
the added pressure on the grains caused by the attraction of the water molecules to the
chalk’s surface. It is also known—for example, from [6]—that during drying, rocks (e.g.,
sandstones) saturated with water recover their mechanical properties and strength as in
the dry state, and that when saturated with water, pore pressure plays a limited role in
affecting the mechanical properties of sandstones. It was demonstrated experimentally [1]
that the tensile strengths of Sanjome andesite, Tage tuf and Kimachi sandstone determined
in Brazilian tests decrease with water saturation. A review of experimental works in
terms of rock types [7] showed that the largest portion of researchers’ attention is paid
to sedimentary rocks and sandstones in particular. Modern studies have demonstrated
the ability of the discrete element method to model heterogeneous geomaterials and their
mechanical characteristics [8,9], and the ability of the lattice Boltzmann method to model
free-surface granular flow [10].

Among the studies of carbonate sedimentary rocks, it is worth noting the early
work [11], which shows that the saturation of Solnhofen limestone with water at room
temperature leads to a decrease in its strength. Using Indiana limestone, the authors of [12]
studied the effects of saturation with water, glycerine, ethylene glycol, nitrobenzene, ethyl
alcohol, benzaldehyde and n-butyl alcohol on its strength characteristics and postulated
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that the effect of a fluid saturating the rock is to change the surface free energy of the
rock and hence its strength. The greater the surface tension of the saturating fluid and the
dielectric constant, the lower the adhesion (and hence the strength) between the particles
that make up the geomaterial. In more recent work [13], the authors obtained significant
decreases in the uniaxial compressive strengths and elastic moduli of water-saturated lime-
stone samples compared to dry ones, justifying the theory that thermal radiation depends
on the degree of water saturation of rocks. The results of another study [14] suggested
that water weakens the bonding strength of any rock’s structure. A suction approach
was developed [15] to reduce the strengths of Carboniferous and Magnesian limestones
through an increase in saturation with moisture, associated with the high surface tension
of water. A study on calcareous porous rocks [16] postulated that its long- and short-term
hydrochemomechanical weakening are caused by the formation of two distinct types of
bonding within the rock. At the same time, it was pointed out [6] that there are several
combined factors (mechanisms) that govern the rock deformation, and some factors are
more significant than others for certain rock types and conditions. At the same time, the
major mineral phase in carbonate rocks, and limestones in particular, is calcite, which is a
crystalline material.

An experimental study [17] revealed that the strength of a rock is affected by its
polycrystalline microstructure. It was found [18] that liquids reducing the free surface
energy of rocks can cause a noticeable change in their mechanical properties. Such a change
is known as the Rehbinder effect, which is described in [19,20]. The Rehbinder effect is
useful in the drilling [21] and cutting [22] of rocks. It was found [23] that a decrease in
the surface energy of calcium is caused by the polar interaction between grain surfaces
and water. Later, a molecular dynamic study [24] showed that wetting reduces the surface
energy of calcite and leads to calcite surface rearrangement, which finally affects the
strength of limestone.

Following the Rehbinder theory, it is assumed that for crystalline geomaterials (such as
limestones), the effect of a decrease in the tensile strength should be more noticeable than in
other sedimentary reservoir rocks. Thus, the values of the ratio of the uniaxial compressive
strength to the tensile strength in different saturation conditions for limestones need not be
the same (not sensitive to a degree of saturation), as stated in [25] for Hungarian Miocene
sandstone samples.

Despite a large number of works devoted to the study of the effects of the saturation
of sedimentary rocks with water on their strength under various conditions, the question
of the effect of saturation on the ratio of the tensile strength to the uniaxial compressive
strength of carbonate geomaterials remains not fully answered.

In this regard, the purpose of this work was to study the effect of moisture on the ratio
of the tensile strength to the uniaxial compressive strength of such a carbonate geomaterial
as a limestone.

2. Materials and Methods
2.1. Description of Materials

The initial material for samples was a core that was 100 mm in diameter, sourced
from 2 km deep in a production well located in an oil field in Perm region (Figure 1a). The
geomaterial belongs to Bashkirian layer of Middle Carboniferous sediments.

During manufacture, the samples went through the common stages of preparation of
rock samples for mechanical testing, such as drilling, cutting and grinding. In the first stage,
samples were drilled from the core parallel to the rock. The sample axis was orthogonal
to the well axis. Drilling was carried out with diamond bits with a diameter of 25.4 mm
(Figure 1b). Flushing was carried out at all stages of sample preparation to cool the rock
and remove cuttings. In the second stage, the drilled fragments were cut out on a disk
machine (Figure 1c). The surfaces at the ends of the specimens were ground and polished
so that they were mirror-like (Figure 1d). The dimensions of specimens then were measured
(see Figure 1e), and specimens were either accepted for further study or burnt-out if they
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did to meet requirements of the standards ASTM D4543-19 [26] and ISRM 0020-7624 [27].
Prepared samples also went through the extraction of hydrocarbons with help of a Soxhlet
apparatus.
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Figure 1. Photographs depicting the sample preparation steps: (a) the core from a production well;
(b) drilling out the sample; (c) cutting the sample; (d) grinding the ends of the sample; (e) sample
measurement.

In total, 42 samples of a geomaterial 50.8 mm long and 25.4 mm in diameter and
24 samples 12.7 mm thick and 25.4 mm in diameter were prepared (Figure 2). The limestone
is dense: porosity of 2% and permeability of 0.015 µm2. In accordance with Recommended
Practice 40 of the American Petroleum Institute [28], samples were washed and dried in an
oven; as a result, an air-dried state was achieved.
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Figure 2. Photographs depicting prepared limestone samples: (a) samples 50.8 mm in height and
25.4 mm in diameter; (b) samples 12.7 mm in thickness and 25.4 mm in diameter.

According to the analysis of a thin section, the components of the limestone were
represented by bioclasts composed of micritic calcite and clear-crystalline calcite (see
Figure 3). The chambers of the micritic matrix were filled with quartz. The secondary
calcite cement comprised different crystals with grains ranging from 0.08 to 0.3 mm in size.
The pores were formed between crystals due to the process of recrystallization.
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Figure 3. Microphotographs of thin sections of two samples: (a) fragment sectioned with an analyzer
depicting brachiopod shells; (b) fragment of a bryozoan, the chamber of which is filled with medium-
grained calcite.

2.2. Description of Methods

To study the effects of distilled water saturation on the uniaxial compressive strength
and the tensile strength—knowing that the reservoir properties of the geomaterial under
study are poor, and in order to create full saturation of samples, including their cores—the
process of saturation was performed over 24 h under vacuum conditions using an automatic
saturation unit, AST-600 (Figure 4), which allowed full imbibition of the rock, including its
fine pores.
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Figure 4. Photographs depicting the process of saturation of geomaterial samples: (a) sample
saturation unit AST-600; (b) limestone samples during vacuum saturation.

Testing of samples was performed on an Instron 5882 universal electromechanical
system (Figure 5). The longitudinal (axial) strain of the samples was recorded using the Vic
3D strain field registration system, which included two video cameras with high resolution
and recording frequency. The rate of movement of the loading plate in the tests was
0.1 mm/min.
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Figure 5. Photographs depicting the uniaxial compression test of the geomaterial: (a) Instron 5882
universal electromechanical system with the installed Vic 3D strain field registration system; (b) the
tested sample of geomaterial between the loading plates at the final stage of loading-brittle fracture
in the shear mode along a single plane.

3. Results and Discussion
3.1. Testing Dry and Saturated Samples for Uniaxial Compressive Strength

In uniaxial compression tests, the strength of air-dried samples and the maximum
load were determined. Before testing, the samples were photographed (see samples 2/3,
2/10 in Figure 6a) and installed between the plates on the test system (see sample 2/5), and
the samples were also endowed with a speckle structure (painted), which with the help of
a Vic 3D strain field registration system, allowed us to track the deformation of samples
under loading (see samples 2/11 and 2/20). For example, the observed displacement
of the regions of the speckle structure applied to sample 2/11 allowed identification of
signs of future shear along one plane, as shown in Figure 6b, which also demonstrates the
conventional failure modes of other samples obtained as a result of testing.

Similarly, samples saturated with distilled water were studied for uniaxial compression
(Figure 7a). Samples 2/18, 2/32 and 2/45 were painted with speckles before testing. During
the loading test, the standard failure modes of the samples were also observed, as shown
in Figure 7b.

The testing machine provided the results in coordinates F− ∆l (load–displacement).
Thus, in order to get loading diagrams in coordinates σ− ε (stress–strain), the data were
recalculated using the formulas: σ = F/S, where S refers to a sample cross-sectional area,
and ε = ∆l/l, in accordance with the standard ASTM D7012-04 [29].
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Figure 6. Photographs depicting air-dried samples during testing for uniaxial compression:
(a) samples before failure; (b) samples after testing demonstrating different failure modes, such
as Y-shaped (samples 2/3, 2/5 and 2/20), double shear (sample 2/10) and shear along a single plane
(sample 2/11).
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Figure 7. Photographs depicting water-wet samples during testing for uniaxial compression:
(a) samples before failure; (b) samples after testing demonstrating different failure modes, such
as double shear (sample 2/9), shear along a single plane (samples 2/12, 2/32, 2/45) and Y-shaped
(sample 2/18).

The result of the recalculation was the building of a loading diagram for each sample
(Figure 8) (Table 1).

As a result of testing the samples for uniaxial compression, it was revealed that samples
saturated with distilled water are characterized by less strength than samples saturated
with air. Diagram 8 shows that the strength values of rock saturated with air ranged from
87.6 to 147.1 MPa. The average as 118.7 MPa. The strength of samples saturated with water
ranged from 62.7 to 130.6 MPa. The average value was 97.0 MPa. This indicates that when
the phase saturating the geomaterial is changed from air to distilled water, the strength of
the rock decreases two-fold.
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Table 1. Results of the uniaxial compression tests of limestone geomaterial samples. Data on air-dried
samples are in the top rows, and data on water-wet samples are in the bottom rows.

Sample Diameter D,
mm

Length l,
mm

Load at Failure Ff,
kN σUCS, MPa σUCS av.,

MPa

2/3 25.4 50.8 53.8 106.2

118.7

2/5 25.4 50.8 58.6 115.7

2/10 25.4 50.8 74.5 147.1

2/11 25.4 50.8 69.3 136.9

2/20 25.4 50.8 44.3 87.6

2/9 25.4 50.8 66.2 130.6

97.0

2/12 25.4 50.8 36.6 72.3

2/18 25.4 50.8 31.7 62.7

2/32 25.4 50.8 46.8 92.4

2/45 25.4 50.8 64.3 126.9

3.2. Testing Dry and Saturated Samples for the Tensile Strength

The testing of disk samples was carried out according to the indirect method (Brazilian
test), in which a rock sample was subjected to diametrical loading along a cylindrical plane
at a speed of 0.1 mm/min. The classic failure mode of samples in the Brazilian test is the
formation of a longitudinal crack (Figure 9).

As a result of testing in samples in the direction parallel to the application of the load,
cracks appeared between the points at which there was contact between the disk and the
loading plates. In all air-dry and water-wet samples, a similar deformation mode was
observed in the form of a central crack (see Figures 10 and 11). The loading of sample
2/6/2 featured the activation of a stylolite weld (see Figure 11b), as a result of which the
load at failure for the sample was lower than those of other samples (see Figure 12).
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(b) after loading.
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Figure 10. Photographs depicting air‐dried limestone samples during indirect determination of the 
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Figure 10. Photographs depicting air-dried limestone samples during indirect determination of the
tensile strength throughout the Brazilian test: (a) samples before testing; (b) samples after testing.
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Figure 11. Photographs depicting water‐wet limestone samples during indirect determination of the 

tensile strength through the Brazilian test: (a) samples before testing; (b) samples after testing. 
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Figure 11. Photographs depicting water-wet limestone samples during indirect determination of the
tensile strength through the Brazilian test: (a) samples before testing; (b) samples after testing.
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Figure 12. Diagrams of loading the geomaterial disk samples with indirect determination of the
tensile strength: (a) air-dried samples; (b) water-wet samples.

Note that despite the existence of many different failure modes [30], in the present
study, the similar failure modes were most likely due to the absence of bedding layers
in the limestone and the high density and strength of the rock. At the same time, the
loading diagrams (Figure 12) show that the nature of the loading of the samples was not
the same. This was due to the heterogeneity of the geomaterial and the presence in the
rock of inclusions of various types and sizes, which were clearly visible with microscopy
(Figure 3). As a result, samples taken from the one geomaterial core showed some scattering
in tensile-strength values.

Knowing the load valued at the moment of fracture Ff , diameter D and thickness
t of the sample, the tensile strength σBTS can be calculated using the formula σBTS =
0.636× Ff /Dt in accordance with ISRM 0020-7624 (Table 2).

Table 2. Results of the indirect tensile tests of limestone geomaterial samples. Data on air-dried
samples are in the top rows, and data on water-wet samples are in the bottom rows.

Sample Diameter D,
mm

Thickness t,
mm

Load at Failure Ff,
kN σBTS, MPa σBTS av.,

MPa

2/3/1 25.4 12.7 3.9 7.8

7.4

2/4/1 25.4 12.7 4.7 9.3

2/5/1 25.4 12.7 3.9 7.8

2/6/1 25.4 12.7 2.4 4.8

2/7/1 25.4 12.7 4.3 8.5

2/8/1 25.4 12.7 3.2 6.4

2/3/2 25.4 12.7 2.5 4.9

5.5

2/4/2 25.4 12.7 3.8 7.6

2/5/2 25.4 12.7 2.6 5.1

2/6/2 25.4 12.7 1.4 2.9

2/7/2 25.4 12.7 2.9 5.7

2/8/2 25.4 12.7 3.5 7.0

Test results show that when this limestone is saturated with distilled water, the ratio
of the tensile strength to compressive strength increases. This phenomenon can be asso-
ciated with the Rehbinder effect, according to which, in presence of tensile stresses and
having the water as a saturating phase, the strength of the geomaterial σBTS wet. decreases
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more significantly than in tensile tests with air-dried samples:
σBTS dry
σUCS dry

→ σBTS wet
σUCS wet

. When

substituting in the values, we obtain 7.43
118.7 = 0.063→ 5.53

97.0 = 0.057, which corresponds to a
reduction in the ratio of the tensile strength to compressive strength during the transition
from air-dried to water-wet conditions by 9%.

According to the Rehbinder effect, as a result of adsorption of water in rock pores
and the fracture surface, changes in the mechanical properties of a geomaterial occurs
due to physicochemical processes that cause a decrease in the surface (interfacial) energy
of the rock. Developing the theory of the Rehbinder effect, it can be assumed that due
to the complex polycrystalline structure of minerals comprising the limestones in the
presence of water, cracks between crystals (grains) can propagate throughout the fiber of
the geomaterial. Considering that the structure of the limestone consists of sets of cracks
developed at different scales (from microscale to mesoscale), their propagation lowers the
strength of a rock material in the presence of acting forces. Microphotographs obtained by
electron microscopy indicate the presence of cracks and crystalline systems in limestones at
different levels (Figure 13) and the areas of recrystallization.
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Figure 13. Electron microphotographs showing the structure of carbonate geomaterial: (a) various
calcite crystal shapes, such as rhombohedral, scalenohedral (the large crystal at top center) and
crystals of other types; (b) a system of microcracks.

Therefore, when a carbonate geomaterial is fully saturated with water, an additional
contribution associated with the formation of new disconnections is made to the decrease
in rock strength caused by a decrease in surface energy. This is also supported by the results
of some studies [31], according to which, the level of saturation of the limestone sample
determines the character of the distribution of macrocracks on the inside of the sample.

Among the typical characteristics for the Rehbinder effect, strength reduction, em-
brittlement and enhancement of solid plasticity can be highlighted, as they facilitate rock
disintegration and grinding [32]. Typical requirements for the Rehbinder effect to be mani-
fested are the material being of a crystalline nature, the presence of a wetting phase (e.g.,
water) coating the rock and the presence of tensile stresses acting inside the rock (due to
e.g., applied force) [20]. As was argued by the Rehbinder himself and by Shchukin [33],
and by the authors in further studies [34], drops of water coat rock grains and crystals and
reduce their surface energy. If rock is subjected to stress, such a reduction in surface energy
(strength of bonds among grains, crystal and cementing matter) will make a significant
contribution to the decrease in strength and make the rock more pliable.

Another reason why the rock’s strength weakens in the presence of a wetting phase is
due to chemomechanical effects (e.g., dissolution) [35]. However, chemomechanical effects
are usually observed between reactive materials. In our study, the rock extracted from the
subsoil was initially saturated with water. Thus, it was not expected that the rock would
exert, in laboratory conditions, any behavior that is atypical for reservoir conditions. Even
if chemomechanical effects manifest, they would not likely contribute to the decrease in the
rock’s strength more than the Rehbinder effect.

The fact that the ratio of the tensile strength
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UCS dry of the air-dried samples,
crystals of various shapes (comprising the limestone’s structure) and microcracks are the
criteria which support the Rehbinder theory.

Taking into account that a small amount of moisture is sufficient for the manifestation
of the Rehbinder effect, in previous studies, in experiments on the dynamic loading of
limestone [36], in which geomaterial samples were completely saturated, we were able to
assume that the values of the Young’s modulus shrank as frequency increased, and were
low compared with the situation of similar dynamic loading of dry samples (a decrease in
the Young’s modulus as the water saturation increased was also reported). Such an effect
was also observed in other similar studies [37–39].

4. Conclusions

In this work, an experimental study of the effects of the saturation of a carbonate rock
with distilled water and air on the strength of samples under uniaxial compression and
indirect tension was carried out. We used a dense limestone extracted from a production
well. The microstructure of the carbonate geomaterial was studied before the mechanical
tests. Based on the results of testing, the following conclusions can be drawn:

(1) The uniaxial compressive strength and the indirect tensile strength of Bashkir lime-
stone are significantly reduced when the sample is fully saturated with distilled water.
In comparison with dry samples, when saturated with water, the uniaxial compressive
strength decreased from 118.7 to 97.0 MPa, and the tensile strength decreased from
7.43 to 5.53 MPa.

(2) The ratio of the indirect tensile strength to the uniaxial compressive strength decreased
by 9% at full saturation of samples with distilled water compared to air-dried sam-
ples, which is associated with the Rehbinder effect, which is especially strong in a
polycrystalline rock with microcracks such as limestone, and in the presence of tensile
stresses.

(3) The research results confirmed the results of previous studies, according to which the
strength of carbonate rocks can significantly decrease when they are saturated with
water, and also expanded them in terms of explaining the reason for this decrease.
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