On the Aging Kinetics of a Flame-Resistant AZ91D-1.5%Ca Magnesium Alloy Processed with Ultrasonic Vibration
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Applying ultrasound treatment during AZ91D-1.5%Ca (wt.%) alloy cooling has significantly changed its microstructure, promoting the refinement of β-Mg17Al12 and Al2Ca intermetallic phases.
- The refined microstructure of the US-treated sample yielded a higher hardness than that of the non-treated one in the as-cast condition.
- US-treated samples showed accelerated aging kinetics since precipitation hardening occurred for a shorter heat treatment duration compared to that of non-treated ones.
- The hardness curve of the non-treated material suggests that peak aging was not achieved under the tested conditions, which indicates that aging for periods longer than 4920 min may be required. Conversely, US-treated samples appeared to reach the peak-aging state after 960 min.
- Ultrasound treatment enhanced the ultimate tensile strength and elongation in all the considered conditions—as-cast, solutioned and aged—compared to the absence of treatment. However, the tensile properties showed a decrease in the peak age, possibly due to the formation of precipitates at the grain boundaries that promote the formation of microcracks and intergranular early fracture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jo, S.; Whitmore, L.; Woo, S.; Aramburu, A.U.; Letzig, D.; Yi, S. Excellent age hardenability with the controllable microstructure of AXW100 magnesium sheet alloy. Sci. Rep. 2020, 10, 22413. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Huang, G.; Li, H.; Wang, L.; Zhang, H.; Pan, F. Strength-ductility balance of AZ31 magnesium alloy via accumulated extrusion bonding combined with two-stage artificial cooling. J. Magnes. Alloys 2021, 26, 2043. [Google Scholar] [CrossRef]
- Shi, R.; Miao, J.; Avey, T.; Luo, A.A. A new magnesium sheet alloy with high tensile properties and room-temperature formability. Sci. Rep. 2020, 10, 10044. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.K.; Mishra, R.S.; Brennan, R.C.; Cho, K. Achieving extraordinary structural efficiency in a wrought magnesium rare earth alloy. Mater. Res. Lett. 2020, 8, 151–157. [Google Scholar] [CrossRef]
- Bu, D.; Li, T.; Han, X.; Du, Z.; Yuan, J.; Zhang, K.; Li, Y.; Peng, Y.; Pang, Z.; Zhao, C. Enhancing strength and ductility in back extruded WE71 magnesium alloy cylindrical parts by introduction of multi-direction forging process. J. Rare Earths 2022, 5, 239. [Google Scholar] [CrossRef]
- Korgiopoulos, K.; Langelier, B.; Pekguleryuz, M. Mg17Al12 phase refinement and the improved mechanical performance of Mg–6Al alloy with trace erbium addition. Mater. Sci. Eng. A 2021, 812, 141075. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Liang, X.; Chen, Z.; Wang, L. Discontinuous and continuous precipitation characteristics and mechanical properties of a AZ80A magnesium alloy at different aging temperatures. Mater. Charact. 2020, 161, 110146. [Google Scholar] [CrossRef]
- Celotto, S. TEM study of continuous precipitation in Mg ±9 wt%Al ±1 wt%Zn alloy. Acta Mater. 2000, 48, 1775–1787. [Google Scholar] [CrossRef]
- Abd El-Rehim, A.F.; Zahran, H.Y.; Al-Masoud, H.M.; Habashy, D.M. Microhardness and microstructure characteristics of AZ91 magnesium alloy under different cooling rate conditions. Mater. Res. Express 2019, 6, 86572. [Google Scholar] [CrossRef]
- Cepeda-Jiménez, C.M.; Pérez-Prado, M.T. Microplasticity-based rationalization of the room temperature yield asymmetry in conventional polycrystalline Mg alloys. Acta Mater. 2016, 108, 304–316. [Google Scholar] [CrossRef]
- Lee, J.U.; Kim, S.-H.; Kim, Y.J.; Park, S.H. Effects of homogenization time on aging behavior and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A 2018, 714, 49–58. [Google Scholar] [CrossRef]
- Guo, Y.; Quan, G.; Celikin, M.; Ren, L.; Zhan, Y.; Fan, L.; Pan, H. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing. J. Magnes. Alloys 2021, 32, 1211. [Google Scholar] [CrossRef]
- Fatmi, M.; Djemli, A.; Ouali, A.; Chihi, T.; Ghebouli, M.A.; Belhouchet, H. Heat treatment and kinetics of precipitation of β-Mg17Al12 phase in AZ91 alloy. Results Phys. 2018, 10, 693–698. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Byeon, J.-W. Quantitative relation of discontinuous and continuous Mg17Al12 precipitates with corrosion rate of AZ91D magnesium alloy. Mater. Charact. 2021, 174, 111015. [Google Scholar] [CrossRef]
- Contreras-Piedras, E.; Esquivel-Gonzalez, R.; López-Hirata, V.M.; Saucedo-Muñoz, M.L.; Paniagua-Mercado, A.M.; Dorantes-Rosales, H.J. Growth kinetics of cellular precipitation in a Mg–8.5Al–0.5Zn–0.2Mn (wt.%) alloy. Mater. Sci. Eng. A 2010, 527, 7775–7778. [Google Scholar] [CrossRef]
- Puga, H.; Carneiro, V.H. Light-Alloy Melt Ultrasonication: Shorter T6 with Higher Precipitation Strengthening. Met. Mater. Int. 2021, 27, 3195–3204. [Google Scholar] [CrossRef]
- Puga, H.; Carneiro, V.; Barbosa, J.; Vieira, V. Effect of Ultrasonic Treatment in the Static and Dynamic Mechanical Behavior of AZ91D Mg Alloy. Metals 2015, 5, 2210–2221. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Fujii, H.; Araki, H.; Sugita, K.; Liu, K. Ultrasonic-induced excess vacancies in friction stir processing and exploration of acoustoplastic effect. Scr. Mater. 2020, 185, 117–121. [Google Scholar] [CrossRef]
- Cong, W.; Ning, F. A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel. Int. J. Mach. Tools Manuf. 2017, 121, 61–69. [Google Scholar] [CrossRef]
- Khorasani, M.; Gibson, I.; Ghasemi, A.H.; Hadavi, E.; Rolfe, B. Laser subtractive and laser powder bed fusion of metals: Review of process and production features. Rapid Prototyp. J. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Ni, J.; Jin, L.; Zeng, J.; Li, J.; Wang, F.; Wang, F.; Dong, S.; Dong, J. Development of high-strength magnesium alloys with excellent ignition-proof performance based on the oxidation and ignition mechanisms: A review. J. Magnes. Alloys 2023, 11, 1–14. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, W.-C.; Wu, G.-H.; Zhang, L.; Liu, B.-L.; Ding, W.-J. Effect of Ca content and rheo-squeeze casting parameters on microstructure and mechanical properties of AZ91−1Ce−xCa alloys. Trans. Nonferrous Met. Soc. China 2021, 31, 1572–1586. [Google Scholar] [CrossRef]
- Gomes, I.V.; D’Errico, F.; Alves, J.L.; Puga, H. Ultrasound-assisted casting of AZ91D-1.5%Ca—Shifting T4 paradigm for downstream processing. Mater. Lett. 2023, 330, 133305. [Google Scholar] [CrossRef]
- Khosro Aghayani, M.; Niroumand, B. Effects of ultrasonic treatment on microstructure and tensile strength of AZ91 magnesium alloy. J. Alloys Compd. 2011, 509, 114–122. [Google Scholar] [CrossRef]
- Zhang, X.; Kotadia, H.R.; Depner, J.; Qian, M.; Das, A. Effect of Ultrasonication on the Solidification Microstructure in Al and Mg-Alloys. In Light Metals; Chesonis, C., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2019; pp. 1589–1595. ISBN 978-3-030-05863-0. [Google Scholar]
- Emadi, P.; Ravindran, C. The Influence of High Temperature Ultrasonic Processing Time on the Microstructure and Mechanical Properties AZ91E Magnesium Alloy. J. Mater. Eng Perform 2021, 30, 1188–1199. [Google Scholar] [CrossRef]
- Amir Esgandari, B.; Mehrjoo, H.; Nami, B.; Miresmaeili, S.M. The effect of Ca and RE elements on the precipitation kinetics of Mg17Al12 phase during artificial aging of magnesium alloy AZ91. Mater. Sci. Eng. A 2011, 528, 5018–5024. [Google Scholar] [CrossRef]
- Jun, J.-H. Damping behaviors of as-cast and solution-treated AZ91–Ca magnesium alloys. J. Alloys Compd. 2014, 610, 169–172. [Google Scholar] [CrossRef]
- Huang, X.; Chino, Y.; Ueda, H.; Inoue, M.; Kido, F.; Matsumoto, T. Improvement of mechanical properties of extruded AZX912 magnesium alloy using high-temperature solution treatment. J. Mater. Res. 2019, 34, 3725–3734. [Google Scholar] [CrossRef]
- Suzuki, A.; Saddock, N.D.; TerBush, J.R.; Powell, B.R.; Jones, J.W.; Pollock, T.M. Precipitation Strengthening of a Mg-Al-Ca–Based AXJ530 Die-cast Alloy. Met. Mat. Trans. A 2008, 39, 696–702. [Google Scholar] [CrossRef]
- Bamberger, M.; Levi, G.; Vander Sande, J.B. Precipitation hardening in Mg-Ca-Zn alloys. Metall. Mater. Trans. A 2006, 37A, 481–487. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Fan, Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Mater. 2006, 54, 689–699. [Google Scholar] [CrossRef]
- Xu, W.; Yu, J.; Jia, L.; Gao, C.; Miao, Z.; Wu, G.; Li, G.; Zhang, Z. Grain refinement impact on the mechanical properties and wear behavior of Mg-9Gd-3Y-2Zn-0.5Zr alloy after decreasing temperature reciprocating upsetting-extrusion. J. Magnes. Alloys 2021, 7, 672. [Google Scholar] [CrossRef]
- Lee, G.M.; Lee, J.U.; Park, S.H. Effects of post-heat treatment on microstructure, tensile properties, and bending properties of extruded AZ80 alloy. J. Mater. Res. Technol. 2021, 12, 1039–1050. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Zhang, R.; Yin, D.; Zhao, Z.; Bai, P.; Liu, B.; Wang, F. Effect of solution annealing on microstructures and corrosion behavior of wire and arc additive manufactured AZ91 magnesium alloy in sodium chloride solution. J. Mater. Res. Technol. 2022, 18, 416–427. [Google Scholar] [CrossRef]
- Swetha Chowdary, V.; Dumpala, R.; Anand Kumar, S.; Kondaiah, V.V.; Ratna Sunil, B. Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy. J. Magnes. Alloys 2018, 6, 52–58. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, J.U.; Kim, Y.J.; Bae, J.H.; You, B.S.; Park, S.H. Accelerated precipitation behavior of cast Mg-Al-Zn alloy by grain refinement. J. Mater. Sci. Technol. 2018, 34, 265–276. [Google Scholar] [CrossRef]
- Du, X.; Zhang, E. Microstructure and mechanical behaviour of semi-solid die-casting AZ91D magnesium alloy. Mater. Lett. 2007, 61, 2333–2337. [Google Scholar] [CrossRef]
- Li, F.; Peh, W.Y.; Nagarajan, V.; Ho, M.K.; Danno, A.; Chua, B.W.; Tan, M.J. Development of non-flammable high strength AZ91 + Ca alloys via liquid forging and extrusion. Mater. Des. 2016, 99, 37–43. [Google Scholar] [CrossRef]
- Di, T.; Jiang, Y.; Guan, R.; Chen, M.; Jiang, J.; Gao, F.; Lu, X.; Zhao, Z. The Evolution of Microstructure, Mechanical Properties and Fracture Behavior with Increasing Lanthanum Content in AZ91 Alloy. Metals 2020, 10, 1256. [Google Scholar] [CrossRef]
- Teschke, M.; Koch, A.; Walther, F. Comparison of High-Temperature Compression and Compression-Comp ressionFatigue Behavior of Magnesium Alloys DieMag422 and AE42. Materials 2020, 13, 497. [Google Scholar] [CrossRef]
- Cáceres, C.H.; Davidson, C.J.; Griffiths, J.R.; Newton, C.L. Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A 2002, 325, 344–355. [Google Scholar] [CrossRef]
- Lai, W.-J.; Li, Y.-Y.; Hsu, Y.-F.; Trong, S.; Wang, W.-H. Aging behaviour and precipitate morphologies in Mg–7.7Al–0.5Zn–0.3Mn (wt.%) alloy. J. Alloys Compd. 2009, 476, 118–124. [Google Scholar] [CrossRef]
Alloy | Mg | Al | Zn | Mn | Ca |
---|---|---|---|---|---|
AZ91D-1.5%Ca | Bal. | 9.7 | 0.5 | 0.2 | 1.5 |
Test | Condition | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|
Non-treated | As-cast | 89 ± 5 | 110 ± 7 | 1.75 ± 0.34 |
T4 | 137 ± 7 | 146 ± 8 | 2.04 ± 0.93 | |
T6–Peak-age condition (1440 min) | 100 ± 4 | 115 ± 4 | 1.73 ± 0.71 | |
US-treated | As-cast | 125 ± 8 | 164 ± 6 | 3.02 ± 0.25 |
T4 | 158 ± 6 | 204 ± 8 | 4.31 ± 1.34 | |
T6–Peak-age condition (960 min) | 142 ± 6 | 169 ± 8 | 2.69 ± 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, I.V.; D’Errico, F.; Alves, J.L.; Puga, H. On the Aging Kinetics of a Flame-Resistant AZ91D-1.5%Ca Magnesium Alloy Processed with Ultrasonic Vibration. Materials 2023, 16, 3152. https://doi.org/10.3390/ma16083152
Gomes IV, D’Errico F, Alves JL, Puga H. On the Aging Kinetics of a Flame-Resistant AZ91D-1.5%Ca Magnesium Alloy Processed with Ultrasonic Vibration. Materials. 2023; 16(8):3152. https://doi.org/10.3390/ma16083152
Chicago/Turabian StyleGomes, Inês V., Fabrizio D’Errico, José L. Alves, and Hélder Puga. 2023. "On the Aging Kinetics of a Flame-Resistant AZ91D-1.5%Ca Magnesium Alloy Processed with Ultrasonic Vibration" Materials 16, no. 8: 3152. https://doi.org/10.3390/ma16083152
APA StyleGomes, I. V., D’Errico, F., Alves, J. L., & Puga, H. (2023). On the Aging Kinetics of a Flame-Resistant AZ91D-1.5%Ca Magnesium Alloy Processed with Ultrasonic Vibration. Materials, 16(8), 3152. https://doi.org/10.3390/ma16083152