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Abstract: Multicomponent ceramics based on transition metals carbides are widely known for their
excellent physicomechanical properties and thermal stability. The variation of the elemental composi-
tion of multicomponent ceramics provides the required properties. The present study examined the
structure and oxidation behavior of (Hf,Zr,Ti,Nb,Mo)C ceramics. Single-phase ceramic solid solution
(Hf,Zr,Ti,Nb,Mo)C with FCC structure was obtained by sintering under pressure. It is shown that
during the mechanical processing of an equimolar powder mixture of TiC–ZrC–NbC–HfC–Mo2C
carbides, the formation of double and triple solid solutions occurs. The hardness of (Hf,Zr,Ti,Nb,Mo)C
ceramic was found at 15 ± 0.8 GPa, compressive ultimate strength—at 1.6 ± 0.1 GPa and fracture
toughness—at 4.4 ± 0.1 MPa·m1/2. The oxidation behavior of the produced ceramics in an oxygen-
containing atmosphere was studied in the range of 25 to 1200 ◦C by means of high-temperature
in situ diffraction. It was demonstrated that (Hf,Zr,Ti,Nb,Mo)C ceramics oxidation is a two-stage
process accompanied by the change of oxide layer phase composition. As a possible mechanism of
oxidation, diffusion of oxygen into the ceramic bulk results in the formation of a complex oxide layer
made of c–(Zr,Hf,Ti,Nb)O2, m–(Zr,Hf)O2, Nb2Zr6O17 and (Ti,Nb)O2 was proposed.

Keywords: multicomponent ceramics; high-entropy carbide; high—temperature in situ X-ray; TG-DSC

1. Introduction

In that class, transition metals carbides may be highlighted, characterized by covalent,
ionic covalent or metallic bonds affecting physicomechanical properties, including high
hardness, strength, thermal conductivity, etc. Carbides are traditionally applied in cutting
tools, friction units, catalysts, thermally-loaded constructional elements, etc. [1]. However,
due to intense oxidation, the carbide systems’ main drawbacks are high embrittlement and
low thermal stability in an oxygen-containing atmosphere.

The entropy approach used in developing the novel multicomponent materials widened
the class of ceramic materials. At the same time, various combinations of initial carbides
provided the complex physicomechanical or thermal characteristics required for different
applications. Multicomponent configurational entropy stabilized ceramics appear as a sub-
stitutional solid solution composed of three or more metals in an equimolar/non-equimolar
ratio [2,3]. Due to the structurization features (mainly, stirring effect and distorted lattice
resulting in delayed diffusion), these materials are characterized by an excellent complex
of physicomechanical properties, including high hardness, fracture toughness and thermal
stability [4–6]. The main factors affecting the formation of single-phase solid solution
ceramics are lattice mismatch of the initial components and metal atomic size difference δ,
which should be less than 6.6% [7–10]. The higher δ, the more obstructed the formation of
a multi-phase solid solution. Therefore, carbides of groups IV-VBB metals are often used as
initial components. They have similar crystal structures (face-centred cubic lattice, FCC),
small differences in atomic radiuses and excellent mutual solubility. However, according
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to an entropy-forming-ability (EFA), descriptor developed for the prediction of the single-
phase state of multicomponent ceramics [11,12], the possibility of single-phase ceramics
production using the carbides of VI group metals with crystal lattices different from FCC
having low solubility in carbides of metals of IV-VBB groups was experimentally confirmed.
Introducing the carbides of metals of the VI group into multicomponent ceramic compo-
sition influences its properties. For example, Mo doping into an entropic solid solution
results in densification due to relatively low melting temperature (2410 ◦C) and decreased
grain size [13]. In addition, papers [8,14,15] showed that the system (TiZrHfTaMo)C was
characterized by a combination of good plasticity and mechanical and tribological proper-
ties, which makes it a potential candidate for operation in tribocouples under high-speed
friction. So, ceramics (Hf,Mo,Nb,Ta,Ti)C have good anti-wear properties at temperatures be-
low 600 ◦C in tribological tests, and their wear resistance sharply deteriorates at 900 ◦C [14].
Since there is a local temperature rise in the tribocontact zone, it is important to know the
behavior of the material during the temperature rise, including its phase stability.

It is known that multicomponent ceramics possess high thermal stability compared to
monocarbides owing to delayed diffusion. On the other hand, the mechanism of multicom-
ponent ceramics oxidation is still poorly studied. It was shown in works [16–21] that the
oxidation of multicomponent carbide systems follows a parabolic law in the temperature
range from 800–1600 ◦C, which is associated with a diffusion-controlled mechanism of
mass transfer in the oxidation process. The most studied ceramics is (TiZrNbTaHf)C. Back-
man et al. [22–24] showed that the preferential oxidation of each metal component in the
(HfZrTaNbTi)C system was associated with the relative thermodynamic stability of their
respective oxides. Group IV elements (Hf,Zr,Ti) showed the most favorable formation of
oxides compared to Group V metals (Ta, Nb) because their oxides have the highest melting
points and are the most thermodynamically preferable among refractory elements. The
oxidation of Hf and Zr was more favorable than Ti, while Ta is preferably oxidized com-
pared to Nb. According to Wang et al., the mechanism of Ti-containing multicomponent
ceramics oxidation is controlled by the outward diffusion of the TiC-TiO active oxidation
product [25]. It was also demonstrated that the inward diffusion of the oxidizing agent
is the controlling stage during the oxidation [18–20,25]. However, there is a lack of data
concerning the thermal stability of systems (Ti/Zr/Hf/Nb/Ta/Mo)C.

The present work investigated the oxidation behavior of (Hf,Zr,Ti,Nb,Mo)C ceramics
in a 25–1200 ◦C air atmosphere temperature range.

2. Materials and Methods

The samples of (Hf,Zr,Ti,Nb,Mo)C solid solutions were studied. The commercially
available TiC, ZrC, NbC, HfC and Mo2C powders (Izhevsk, Russia) were used as starting
materials for producing high-entropy carbide ceramics. The starting metal carbide powders
possessed the following phase composition: TiC, ZrC, NbC, and HfC had cubic lattices,
and Mo2C had orthorhombic lattices. The parameters of the unit cell powders of metal
carbides were: a(HfC) = 4.6259 Å, a(ZrC) = 4.6937 Å, a(TiC) = 4.3248 Å, a(NbC) = 4.4660 Å,
Mo2C: a = 4.7333 Å, b = 6.0238 Å, c = 5.2103 Å.

Equimolar TiC–ZrC–NbC–HfC–Mo2C powder systems were mixed in the planetary
mill (AGO, Novosibirsk, Russia) equipped with steel drums with teflon inlet and alumina
grinding bodies for 20 min in an argon atmosphere. The ceramic materials were produced
by sintering at 1900 ◦C under 35 MPa pressure with isothermal soaking for 30 min with a
125 ◦C/min heating rate.

The samples were prepared according to the standard technique of polished microspec-
imens preparation. X-ray diffraction analysis (XRD) was performed using an XRD-7000S
diffractometer (Shimadzu, Kyoto, Japan) with Cu-Kα source (λ = 1.5405 Å). The oxidation
behavior of the prepared ceramics was studied in an air atmosphere using high-temperature
XRD in the temperature range from 25 to 1200 ◦C with the following parameters: 2θ from
24 to 41◦, step angle of 0.0143◦, time of exposure of 120 s, heating rate of 10 ◦C/min, capture
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step of 20 ◦C/image. The phase composition was identified using Match! Software (Crystal
Impact, Bonn, Germany) and Crystallography Open Database (COD).

Lattice distortion δ was determined by the Formula (1) [8]:

δ =

√
∑n

i=1 ci(1 −
ai

∑n
i=1 ciai

)
2
, (1)

where ci is the atomic percentage, ai is the lattice parameters of the i-th component.
Thermal analysis was performed on STA 449 F1 Jupiter instrument (Netzsch, Germany)

in the temperature range from 50 to 1200 ◦C with a heating rate of 10 ◦C/min in airflow.
The Microstructure of the prepared samples was investigated using scanning electron

microscopy (SEM) on «LEO EVO 50» microscope (Zeiss, Jena, Germany). Next, the dis-
tribution of chemical elements was analyzed using energy-dispersive spectroscopy (EDS)
(Inca x-ACT, Oxford Instruments Analytical, Oxford, UK). Finally, the density (ρ) of the
prepared samples was determined using the hydrostatic weighting method.

The hardness of the pre-polished samples was measured on AXIOVERT-200MAT
(Zeiss, Jena, Germany) metallographic microscope by indentation with a Wickers pyramid
under 1000 gs load for 10 s. The strength of the produced samples was studied using
Instron—1185 testing machine (Instron, Norwood, MA, USA). A compression test was
performed at a load speed of 0.05 mm/s using INSTRON—1185 testing machine (Instron,
Norwood, MA, USA). The strength of the brick-shaped samples under axial compression
was calculated according to Formula (2):

σ =
P
S

, (2)

where P is the critical load, S is the area under load.
Fracture toughness was measured by the V-type notch method with accordance to the

ISO 23146:2008 standard according to the Formula (3):

KIC = f
(

PmaxL10−6

bW3/2

)(
3[a/W]1/2

2[1 − a/W]3/2

)
, (3)

where f =
1.99−[a/W][1−a/W][2.15−3.93[a/W]+2.7[a/W]2]

1+2[a/W]
, L—distance between the lower support,

mm; b—sample width, mm; W—sample height, mm; a—depth of V-type notch, mm.

3. Results
3.1. (Hf,Zr,Ti,Nb,Mo)C Multicomponent Carbide Ceramic

It is known that the formation of a single-phase solid solution is significantly affected
by the chemical compatibility of the elements, i.e., the details must satisfy the Hume-
Rothery rule (δ) for solid solutions of substitution. The mismatch between the lattice
parameters of the initial components plays an important role in forming a homogeneous
single-phase state [10]. Calculations showed that the lattice mismatch was 3.33%, cor-
responding to the criterion δ ≥ 6.6% for forming a monophase state of highly entropic
materials [7–10]. Generally, the higher the discrepancy in the unit cell sizes, the more
unfavorable the conditions for the formation of solid solutions. Thus, in the system, HfC-
ZrC-TiC-NbC-Mo2C can form a homogeneous solid solution (Hf,Zr,Ti,Nb,Mo)C.

The diffractograms of the initial HfC–ZrC–TiC–NbC–Mo2C powder mixture after
mechanical treatment in the planetary mill are presented in Figure 1. The characteristic
reflexes of HfC, ZrC, TiC, NbC and Mo2C monocarbides were observed on the diffractogram
of the initial powder mixture. On the diffractogram of the powder mixture mechanically
treated for 20 min, the shift and broadening of the reflexes corresponding to initial carbides
and the changes in their intensity were observed. During the milling process accompanied
by mechanical treatment, the reflex’s decreased intensity and broadening may be attributed
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to crystallite size reduction, crystal structure refinement and lattice deformations. On
the diffractogram of the mechanically treated powder mixture, the reflexes specific for
Zr-enriched (Hf,Zr)C solid solution, Mo-enriched (Ti,Mo)C and (Hf,Zr,Ti)C with additional
cation depletion in NbC, Mo2C carbides.
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Figure 1. X-ray diffractograms of the initial powder mixture, powder mixture after 20 min of
mechanical treatment and (Hf,Zr,Ti,Nb,Mo)C sintered ceramic.

The sintering of TiC–ZrC–NbC–HfC–Mo2C powder mixtures mechanically treated
for 20 min at 1900 ◦C under the pressure of 35 MPa resulted in the formation of single-
phase (Hf,Zr,Ti,Nb,Mo)C solid solution with FCC lattice. The cell dimension was found at
4.4524 Å. The size of the coherent diffracting domain calculated using the Scherrer formula
was found at 60 nm, micro distortion <ε>—at 1.4 × 10−3. The content of the oxide phase
calculated as a ratio of the total intensity of the oxide’s reflexes to the total intensity of all
reflexes was found at 8%.

After the mechanical treatment of the powder mixture, diffraction lines corresponding
to oxide phases were observed, which may be due to the condition of the initial powders as
well as partial oxidation during the technological processes. Traditionally, metal carbide
powders are produced by carbonizing corresponding oxides in carbon-containing flow.
For that reason, metal carbides usually contain a small amount of residual oxygen [26,27].
It is known that oxygen impurities (e.g., ZrO2) are always present on the surface of ZrC
particles, and oxygen atoms may substitute carbon atoms in ZrC crystal lattice, forming
oxycarbides solid solutions (ZrCxOy) [28]. The reaction product is the solution of oxygen
in the ZrC phase (lattice oxygen) rather than the separate oxycarbide phase ZrCxOy.

The density of sintered (Hf,Zr,Ti,Nb,Mo)C ceramic, measured using hydrodynamic
weighting, was 7.76 ± 0.03 g/cm3. The theoretical density of the solid solution was
calculated according to the Formula (4):

ρth =
1.6605·4

(
0.1667(M Nb + MTi + MZr + MH f

)
+0.3333MMo)+Mc)

a3 , (4)

where M is the molar mass of the element, g/mol, a—crystal lattice parameter, Å. The
theoretical density of the sintered ceramic was 8.46 g/cm3, while the relative density was
92%. The porosity determined by the Formula,

θ =

(
1 −

ρg

ρth

)
100% (5)
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where ρg-hydrostatic density, ρth—theoretical density, was 8%. It should be noted that the
presence of porosity is a positive factor for the thermal resistance of ceramic materials
because the pore space restrains the incipient microcracks in the process of thermal effect,
formed due to the mismatch of thermal expansion coefficients of carbide and oxidation
products, and inhibits their distribution throughout the material.

Figure 2 shows the SEM image of the (Hf,Zr,Ti,Nb,Mo)C fracture and the correspond-
ing EDS mapping. It can be seen that the microstructure is represented by large grains
with an average size of 4.8 ± 2.1 µm and small grains d = 1 ± 0.4 µm. The average
grain size of the (Hf,Zr,Ti,Nb,Mo)C ceramic measured using the random linear intercept
method from fracture microimages was found at 3.8 ± 2.4 µm. The calculated values of
ceramic (Hf,Zr,Ti,Nb,Mo)C grain sizes are comparable or lower than analogous values for
ceramics (TiZrHfNbTaMo)C [29] synthesized by non-pressure sintering at the temperatures
from 2200 to 2500 ◦C (2.8 ± 1.3 and 15.2 ± 6.5 µm, respectively), (TiZrHfNbTaMo)C [14]
obtained by SPS at temperatures from 1950 to 2050 ◦C in steps of 50 ◦C (1.7 ± 0.6 and
5.2 ± 1.6 µm, respectively) and lower by comparison with the results of microstructure
studies (TiZrNbTaMo)C [13], obtained by two-stage hot pressing (8.8 ± 3.0 µm). According
to the results of EDS analysis of the fracture (Hf,Zr,Ti,Nb,Mo)C solid solution surface, the
atomic concentration of the chemical elements was found as the following: C—56.11 at.%,
O—13.52 at.%, Ti—4.53 at.%, Zr—6.43 at.%, Nb—5.04 at.%, Hf—5.62 at.%, Mo—8.85 at.%.
The concentration of molybdenum was higher than other metal elements due to its excess
in the form of Mo2C in the initial powder mixture. The results confirm the mutual diffusion
of elements by forming a homogeneous solid solution.
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Figure 2. Fracture surface (a) and elemental mapping (b) of ceramics (Hf,Zr,Ti,Nb,Mo)C.

The hardness of (Hf,Zr,Ti,Nb,Mo)C ceramic was found at 15 ± 0.8 GPa, compressive
ultimate strength—at 1.6 ± 0.1 GPa and fracture toughness—at 4.4 ± 0.1 MPa·m1/2. The
obtained hardness values are comparable or lower in comparison with the hardness of
high-entropic carbides of similar composition whose values ranged from 15 GPa for the
system (TiZrHfNbTaMo)C [14] to 25.45 GPa for (TiZrNbTaMo)C0.85 [30]. At the same
time, the fracture toughness value exceeds the known data, which were 3.7 MPa·m1/2

for (TiZrHfNbTaMo)C [29] and 4.2 MPa·m1/2 for (TiZrHfNbTaMo)C [14]. The mechanical
properties of carbide ceramics depend on MexCy stoichiometry, porosity, grain size and
oxygen in the lattice and oxides in the composition. Therefore, the low hardness and
strength values are probably due to porosity and the presence of oxide phases in the
composition of ceramic samples (Hf,Zr,Ti,Nb,Mo)C.

3.2. The Study of Structural and Phase Condition of Multicomponent Ceramics under
High-Temperature Conditions

According to the results of high-temperature in situ X-ray diffraction analysis in
the range from 25 to 1200 ◦C, the reflexes corresponding to (111) and (200) lattices of
(Hf,Zr,Ti,Nb,Mo)C solid solution were observed (Figure 3). At a temperature higher than
700 ◦C, the decrease of solid solutions reflexes intensity, and the appearance of wide
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oxide reflexes were observed. Due to the diffraction lines overlapping and possible ion
replacement of metal cations in the oxide lattices, qualitative analysis was complicated.
On the diffractograms of the ceramics heated up to 700 ◦C, the reflexes of solid solutions
based on ZrTiO4, Nb2Zr6O17, m-ZrO2, titanium and niobium oxides. Further decrease of
temperature up to 900 ◦C resulted in the changes in phase composition. The most intensive
reflexes were attributed to cubic ZrO2-based solid solution. In addition, the appearance
of Nb2Zr6O17 reflexes was observed, which confirms the increase in the content of that
phase. (Ti,Nb)O2 solid solution reflexes were also detected. According to the results of
papers [31,32], the carbon formed by the oxidation of ZrC carbide stabilizes c-ZrO2 at
sufficiently low temperatures.
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Figure 3. Diffractograms of (Hf,Zr,Ti,Nb,Mo)C sintered ceramics during the heating from 25 to
1200 ◦C.

In the range from 25 to 600 ◦C the diffractograms of (Hf,Zr,Ti,Nb,Mo)C solid solution
were nearly identical. However, with the increase in temperature, the reflexes became more
asymmetric, and the shift of (Hf,Zr,Ti,Nb,Mo)C reflexes to lower angles was observed,
which demonstrates the growth of the crystal lattice parameter. Cell dimensions were
calculated from the (111) and (200) reflexes according to the Formula

1
d2 =

h2 + k2 + l2

a2 (6)

due to the limited angle range of the high-temperature X-ray diffraction. It was revealed that
with the increase of temperature from 25 to 700 ◦C the cell dimension was increased from
4.5058 to 4.5279 Å (Figure 4), which may be a result of several factors, including insignificant
lattice distortion due to the thermal atomic rearrangement and thermal expansion of the
studied ceramic. Thermal expansion coefficient (CTE) calculated according to the Formula,

α =
∆a

a0·∆T
(7)

where a0 is the value of the lattice parameter at room temperature, ∆a is the variation
of the lattice parameter at a temperature variation ∆T from 25 to 700 ◦C, was found
at 7.3 × 10−6 ◦C−1. The calculated value insignificantly exceeds CTE predicted using
the rule of mixtures and the values for the components: HfC (6.58 × 10−6 ◦C−1), ZrC
(6.25 × 10−6 ◦C−1), TiC (7.23–7.31 × 10−6 ◦C−1), NbC (6.45–6.76 × 10−6 ◦C−1), Mo2C (αa =
4.8 × 10−6 ◦C−1, αc = 8.7 × 10−6 ◦C−1) [33,34], which was found at 6.26–7.12 × 10−6 ◦C−1

with Mo2O anisotropy taken into account. According to the previous calculations, the CTE
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of (TiZrHfTaMo)C is comparable to one of HfC (7.86 × 10−6 ◦C−1) and (TiZrHfTaNb)C
(7.74 × 10−6 ◦C−1) [8].
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Figure 4. Lattice parameter of the sintered (Hf,Zr,Ti,Nb,Mo)C ceramic at versus temperature.

The reflexes of (Hf,Zr,Ti,Nb,Mo)C solid solution were not observed at temperatures
higher than 745 ◦C. In the temperature range from 25 to 600 ◦C, the size of (Hf,Zr,Ti,Nb,Mo)C
solid solution coherent diffracting domain was around 63 nm, while at 700 and 725 ◦C–50
and 30 nm, respectively.

TG-DSC results demonstrated that (Hf,Zr,Ti,Nb,Mo)C solid solution was stable in air
at a temperature up to 673 ◦C with subsequent surface oxidation of the ceramic (Figure 5).
Several exothermic peaks (704, 717, 734, 746 and 759 ◦C) corresponding to the oxides
formed on the ceramic surface appeared with further temperature increase. Mass gain at
900 ◦C was found to be 10.3%. The thermal effect at 934 ◦C was attributed to 6.45% mass
loss. Atypical behavior of the TG line higher than 934 ◦C (particularly, the appearance of
several peaks) may be explained by the release of volatile compounds with the formation
of new surfaces, their further oxidation and, as a result, insignificant uneven changes in the
sample mass.
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The oxide layer formed on the surface of (Hf,Zr,Ti,Nb,Mo)C ceramic after the high-
temperature diffraction was presented by grains of various morphologies, including small
oxide phase nuclei with a spherical shape, individual crystals with elongated and irregular
shape (Figure 6a). EDS analysis demonstrated the following content of metal elements: Nb
(8.01 at.%), Ti (4.98 at.%), Zr (4.98 at %), Hf (3.19 at.%), Mo (1.01 at.%) (Table 1). Detailed
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analysis showed that the elongated crystals contained O, Ti, Nb and Hf atoms. Moreover,
niobium content was two-fold higher than the other elements (Figure 6b). Irregular-shaped
crystals had Zr, Hf and O, corresponding to (Zr,Hf)xOy solid solution. The area of small
nuclei contained O, Ti, Zr, Nb and Hf with that, hafnium depletion was observed compared
to other metals. Compared to EDS and XRD, results suggest that the formed solid solution
had a composition of (Zr,Hf,Ti,Nb)O2. Atomic concentrations of the chemical elements are
presented in Table 1.
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Figure 6. Microstructure of the oxide layer formed on the surface of (Hf,Zr,Ti,Nb,Mo)C ceramic after
high-temperature treatment at 1200 ◦C at various magnifications: (a) ×2000; (b) ×10,000.

Table 1. The atomic concentration of the chemical elements on (Hf,Zr,Ti,Nb,Mo)C oxidized surface.

Spectrum
Element Content, at %

O Hf Zr Ti Nb Mo

Integral 76.1 3.2 5.0 6.7 8.0 1.0
1 84.4 1.5 5.0 4.3 4.8 –
2 86.5 2.5 11.0 – – –
3 77.2 4.0 – 6.0 12.8 –

A cross-section of (Hf,Zr,Ti,Nb,Mo)C ceramic after high-temperature treatment at
1200 ◦C is presented in Figure 7a. It was observed that after the high-temperature treatment,
an oxide layer with lamellar structure, various microstructures and porosity was formed:
a higher dense layer (~60 µm thickness) with large individual pores, porous layer with
dendrite-like microstructure (~200 µm thickness) and lower dense layer (~70 µm) with
residual porosity. The total thickness of the oxide layer was 330 ± 2 µm. Elemental analysis
with a 30 µm scanning step from the outer layer of the oxidized surface to the unoxidized
matrix revealed that Mo content in the oxide layer did not exceed 1 at.%, while the content
of other metal elements was nearly equal and was found around 4 at.% (Figure 7b). The
“Ceramic matrix-oxide layer” interface was well-defined, but the crack formation was not
observed. From the EDS data, a thin O- and C-rich layer was formed on the “ceramic
matrix-oxide layer” interface, Figure 7c. Single-point EDS analysis revealed that the white
grains near the interface contained C, O, Ti, Zr and Hf with significant Ti depletion. Grey
highly-dispersive grains contained all metal components in nearly equal proportion.
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4. Discussion

Combined interpretation of high-temperature diffraction and thermal analysis sug-
gests high stability of (Hf,Zr,Ti,Nb,Mo)C ceramic system in the range from 25 to 673 ◦C.
Thermal effects in 700–760 ◦C interval correspond to the ceramic oxidation followed by
the formation of complex oxides based on ZrTiO4, Nb2Zr6O17, m-ZrO2, TixOy and NbxOy,
which is confirmed by XRD results. In work [21], it is shown that an oxide layer contain-
ing a mixture of complex oxides, including 4-metal oxides, was formed on the surface of
the studied ceramics during the oxidation process in the air. As expected, the oxidation
process was accompanied by mass gain of the ceramic sample. The thermal effect with a
maximum of 934 ◦C is attributed to forming (Zr,Hf,Ti,Nb)O2 solid solution and the original
phases. Energy dispersive spectroscopy of the cross-section of the oxide layer formed on
the surface of (Hf,Zr,Ti,Nb,Mo)C ceramic revealed the formation of C- and O-rich interlayer
and molybdenum depletion. It is known that carbide oxidation proceeds via the formation
of oxycarbides (MeC1−xOx) [35]. With the temperature increase, oxygen solubility in the
lattice increases resulting in oxycarbide lattice rearrangement with the formation of an
oxide lattice. When the oxygen content in the MeC1−xOx system is close to x∼0.4, the oxy-
carbide degrades to oxide and carbon. On that step, metal is oxidized with the formation
of the oxide layer, which acts as a barrier for oxygen diffusion. Released carbon does not
oxidize due to the low local activity of oxygen and remains on the interface. Thermal stress,
which results from different CTE of the matrix and formed oxides, leads to the formation of
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cracks followed by oxygen permeation and oxidation of carbon with the release of CxOy(g)
gaseous products resulting in porosity of the oxide layer.

Charpentier et al. [31,36] demonstrated that such an interlayer reduces the oxidation
process as the diffusion coefficient of oxycarbides is much less than oxides. Molybdenum
deficiency in the oxide layer results from releasing volatile non-stoichiometric molybdenum
oxides [37]. The family of molybdenum suboxides is well known. Among them, MoO2
and MoO3 are the most stable. With that, MoO3 is the most volatile compound. The
process of MoO3 sublimation takes place at 800 ◦C, and with every 50 ◦C of temperature
increase sublimation rate rises by an order, which explains high Mo losses [38]. Mass loss
of (Hf,Zr,Ti,Nb,Mo)C ceramic observed around 934 ◦C is most likely due to the release of
MoxOy(g) and CxOy(g) oxidation products.

The enhanced oxidation resistance of multicomponent ceramics is mainly explained
by the formation of oxide systems on their surface during oxidation and further reduced
diffusion of metal cations. The diffusion rate of the entropy solid solution is limited by the
lowest diffusion rate of the metal element in its composition. For the (Hf,Zr,Ti,Nb,Mo)C
ceramic, metal elements in TiC and Mo2C demonstrate the lowest diffusion rate. However,
the developed porous structure of the oxide layer, formed during the release of gaseous
products, intensifies the material oxidation due to the enhanced oxygen diffusion to the
unoxidized ceramic matrix.

It was previously demonstrated [25] that the oxidation of Ti-containing multicompo-
nent ceramics is controlled by the outward diffusion of TiC–TiO active oxidation product,
which is being additionally oxidized to TiO2, reacts with the other oxides with the formation
of complex oxide systems hindering oxygen migration in the carbide matrix. According to
the results of layer-by-layer EDS, titanium depletion/enrichment was not observed, and
the atomic ratio of metal elements was found to be equal (except for molybdenum). The
obtained results demonstrate that, most probably, in (Hf,Zr,Ti,Nb,Mo)C ceramic system,
the oxidation process is controlled by the oxygen diffusion to the “ceramic matrix-oxide
layer” interface than metal cations diffusion to the outer oxide layer.

5. Conclusions

Single-phase ceramic solid solution (Hf,Zr,Ti,Nb,Mo)C with HCC structure was ob-
tained by sintering under pressure. In addition, the structure, and the oxide behavior in the
heating process from 25 to 1200 ◦C in the air were studied. Based on the obtained data, the
following conclusions can be made:

(1) It is shown that during the mechanical processing of equimolar powder mixture of
TiC–ZrC–NbC–HfC–Mo2C carbides, the formation of double and triple solid solutions
occurs, which facilitates the formation of single-phase state (Hf,Zr,Ti,Nb,Mo)C in the
sintering process.

(2) The average ceramic (Hf,Zr,Ti,Nb,Mo)C grain size was equal at 3.8 ± 2.4 µm. The
CTE was 7.3 × 10−6 ◦C−1 (25–700 ◦C), the hardness was found at 15 ± 0.8 GPa, the
compressive strength was equal at 1.6 ± 0.1 GPa, the fracture toughness was seen at
4.4 ± 0.1 MPa·m1/2.

(3) A study of the oxide behavior of ceramic (Hf,Zr,Ti,Nb,Mo)C in the temperature range
25–1200 ◦C showed that the ceramic system (Hf,Zr,Ti,Nb,Mo)C remains stable when
the temperature rises from 25 to 673 ◦C followed by two-stage oxidation accompanied
by changes in oxidation products and mass of ceramic samples.

(4) The microstructure of the oxidized surface of ceramic (Hf,Zr,Ti,Nb,Mo)C was studied.
The temperature exposure on the sample’s surface was determined to form a layered
structure with different microstructures and porosity. Furthermore, the oxygen dif-
fusion into the ceramic material volume leads to the formation of an oxide layer of
complex composition c–(Zr,Hf,Ti,Nb)O2, m–(Zr,Hf)O2, Nb2Zr6O17 and (Ti,Nb)O2 was
suggested as a possible oxidation mechanism.
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