Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting
Abstract
:1. Introduction
2. Electrochemistry of Water Splitting in an Alkaline Environment
2.1. Mechanism of HER in Alkaline Media
2.2. Mechanism of OER in Alkaline Media
2.3. Strategies for Catalysts Design in Alkaline Media
2.3.1. Heterostructures
2.3.2. Doping
2.3.3. SACs
3. Multicomponent Oxide/Hydroxide-Based Electrocatalysts
3.1. Transition Metal Oxides/Hydroxides
3.2. Transition Metal Oxide-Based Derivatives
3.2.1. Transition Metal Phosphides
3.2.2. Transition Metal Sulfides and Selenides
3.2.3. Transition Metal Carbides and Nitrides
4. Conclusions and Outlook
- First, oxides exhibit high durability but relatively low activity due to their highly crystalline phase and chemical stability. Hydroxides are a rising candidate with the highest activity owing to their large electrochemically active surface area, but they still suffer from low electrical conductivity. The main purposes of designing multicomponents are to increase the intrinsic activity, expose more active sites, and accelerate the electron and mass charge kinetics, improving conductivity and electrochemical performances. Thus, the innovative design and synthesis of unique nanostructures are still a great challenge in water splitting.
- Second, the functional roles of the active sites in oxides/hydroxides structures are not entirely clear. The nanostructured electrocatalysts undergo composition and structural transformations during the reaction under water splitting. Therefore, a deep understanding of the structural transformation is required to determine the real active phases and sites. Gaining insight into the detailed mechanism and structural transformation is critical for predicting the interaction between structure and active sites for high electrical performance in alkaline media.
- Finally, commercializing and simplifying the water-splitting system on a large scale needs to be further investigated to be optimized. The development of bifunctional electrocatalysis is the key factor that is active for both HER and OER reactions in the same electrolytes. Transition metal oxides/hydroxides have been reported as promising catalysts for the OER process by supporting appropriate bonding strength with adsorbed oxygen intermediates in the water-splitting process, but some catalysts are inactive in HER.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, N.S.; Nocera, D.G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Teets, T.S.; Nocera, D.G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef] [PubMed]
- Vagin, M.; Ivanov, I.G.; Yakimova, R.; Shtepliuk, I. Bidirectional Hydrogen Electrocatalysis on Epitaxial Graphene. ACS Omega 2022, 7, 13221–13227. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, Y.; Wang, Z.; Jing, B.; Zhu, Y.; Qiu, S.; Cui, C.; Deng, F. Improved Alkaline Water Electrolysis System for Green Energy: Sulfonamide Antibiotic-Assisted Anodic Oxidation Integrated with Hydrogen Generation. J. Mater. Chem. A 2023, 11, 6129–6143. [Google Scholar] [CrossRef]
- Zada, A.; Khan, M.; Qureshi, M.N.; Liu, S.Y.; Wang, R. Accelerating Photocatalytic Hydrogen Production and Pollutant Degradation by Functionalizing G-C3N4 With SnO2. Front. Chem. 2020, 7, 941. [Google Scholar] [CrossRef]
- Hoang, A.L.; Balakrishnan, S.; Hodges, A.; Tsekouras, G.; Al-Musawi, A.; Wagner, K.; Lee, C.Y.; Swiegers, G.F.; Wallace, G.G. High-Performing Catalysts for Energy-Efficient Commercial Alkaline Water Electrolysis. Sustain. Energy Fuels 2022, 7, 31–60. [Google Scholar] [CrossRef]
- Muthurasu, A.; Chhetri, K.; Dahal, B.; Kim, H.Y. Ruthenium Nanoparticles Integrated Bimetallic Metal-Organic Framework Electrocatalysts for Multifunctional Electrode Materials and Practical Water Electrolysis in Seawater. Nanoscale 2022, 14, 6557–6569. [Google Scholar] [CrossRef]
- Diao, J.; Li, X.; Wang, S.; Zhao, Z.; Wang, W.; Chen, K.; Chen, X.; Chao, T.; Yang, Y. Promoting Water Splitting on Arrayed Molybdenum Carbide Nanosheets with Electronic Modulation. J. Mater. Chem. A 2021, 9, 21440–21447. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Z.; Cui, M.; Liu, X.; Xiong, J.; Chen, S.; Ma, T. Interface Engineering of Transitional Metal Sulfide-MoS2heterostructure Composites as Effective Electrocatalysts for Water-Splitting. J. Mater. Chem. A 2021, 9, 2070–2092. [Google Scholar] [CrossRef]
- Liang, C.; Zou, P.; Nairan, A.; Zhang, Y.; Liu, J.; Liu, K.; Hu, S.; Kang, F.; Fan, H.J.; Yang, C. Exceptional Performance of Hierarchical Ni-Fe Oxyhydroxide@NiFe Alloy Nanowire Array Electrocatalysts for Large Current Density Water Splitting. Energy Environ. Sci. 2020, 13, 86–95. [Google Scholar] [CrossRef]
- Sun, H.; Lian, Y.; Yang, C.; Xiong, L.; Qi, P.; Mu, Q.; Zhao, X.; Guo, J.; Deng, Z.; Peng, Y. A Hierarchical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting. Energy Environ. Sci. 2018, 11, 2363–2371. [Google Scholar] [CrossRef]
- Feng, Y.; Guan, Y.; Zhou, E.; Zhang, X.; Wang, Y. Nanoscale Double-Heterojunctional Electrocatalyst for Hydrogen Evolution. Adv. Sci. 2022, 9, 2201339. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis—A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Vincent, I.; Bessarabov, D. Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis: A Review. Renew. Sustain. Energy Rev. 2018, 81, 1690–1704. [Google Scholar] [CrossRef]
- Li, D.; Motz, A.R.; Bae, C.; Fujimoto, C.; Yang, G.; Zhang, F.Y.; Ayers, K.E.; Kim, Y.S. Durability of Anion Exchange Membrane Water Electrolyzers. Energy Environ. Sci. 2021, 14, 3393–3419. [Google Scholar] [CrossRef]
- Anantharaj, S.; Noda, S.; Jothi, V.R.; Yi, S.C.; Driess, M.; Menezes, P.W. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew. Chem. Int. Ed. 2021, 60, 18981–19006. [Google Scholar] [CrossRef]
- Lee, S.A.; Kim, J.; Kwon, K.C.; Park, S.H.; Jang, H.W. Anion Exchange Membrane Water Electrolysis for Sustainable Large-scale Hydrogen Production. Carbon Neutralization 2022, 1, 26–48. [Google Scholar] [CrossRef]
- Gao, J.; Tao, H.; Liu, B. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media. Adv. Mater. 2021, 33, 2003786. [Google Scholar] [CrossRef]
- Park, S.H.; To, D.T.; Myung, N.V. A Review of Nickel-Molybdenum Based Hydrogen Evolution Electrocatalysts from Theory to Experiment. Appl. Catal. A Gen. 2023, 651, 119013. [Google Scholar] [CrossRef]
- Kwon, H.R.; Park, H.; Jun, S.E.; Choi, S.; Jang, H.W. High Performance Transition Metal-Based Electrocatalysts for Green Hydrogen Production. Chem. Commun. 2022, 58, 7874–7889. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.E.; Lee, J.K.; Jang, H.W. Two-Dimensional Materials for Photoelectrochemical Water Splitting. Energy Adv. 2023, 2, 34–53. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, C.; Ni, L.; Yu, J.; Zhang, Y.; Qiu, J. Carbon-hybridized Hydroxides for Energy Conversion and Storage: Interface Chemistry and Manufacturing. Adv. Mater. 2022, 35, 2209652. [Google Scholar] [CrossRef] [PubMed]
- Klingenhof, M.; Hauke, P.; Kroschel, M.; Wang, X.; Merzdorf, T.; Binninger, C.; Ngo Thanh, T.; Paul, B.; Teschner, D.; Schlögl, R.; et al. Anion-Tuned Layered Double Hydroxide Anodes for Anion Exchange Membrane Water Electrolyzers: From Catalyst Screening to Single-Cell Performance. ACS Energy Lett. 2022, 7, 3415–3422. [Google Scholar] [CrossRef]
- Wu, Z.P.; Caracciolo, D.T.; Maswadeh, Y.; Wen, J.; Kong, Z.; Shan, S.; Vargas, J.A.; Yan, S.; Hopkins, E.; Park, K.; et al. Alloying–Realloying Enabled High Durability for Pt–Pd-3d-Transition Metal Nanoparticle Fuel Cell Catalysts. Nat. Commun. 2021, 12, 859. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, X.; Huang, J.; Hu, J.; Chen, Z.; Lai, Y. In-Situ Formation of Unsaturated Defect Sites on Converted CoNi Alloy/Co-Ni LDH to Activate MoS2 Nanosheets for PH-Universal Hydrogen Evolution Reaction. Chem. Eng. J. 2021, 412, 128556. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, H.; Sun, L.; Liu, B. Mesoporous Noble Metal-Metalloid/Nonmetal Alloy Nanomaterials: Designing Highly Efficient Catalysts. ACS Nano 2021, 15, 18661–18670. [Google Scholar] [CrossRef]
- Liu, T.; Ma, X.; Liu, D.; Hao, S.; Du, G.; Ma, Y.; Asiri, A.M.; Sun, X.; Chen, L. Mn Doping of CoP Nanosheets Array: An Efficient Electrocatalyst for Hydrogen Evolution Reaction with Enhanced Activity at All PH Values. ACS Catal. 2017, 7, 98–102. [Google Scholar] [CrossRef]
- Rao, Y.; Chen, S.; Yue, Q.; Kang, Y. Optimizing the Spin States of Mesoporous Co3O4Nanorods through Vanadium Doping for Long-Lasting and Flexible Rechargeable Zn-Air Batteries. ACS Catal. 2021, 11, 8097–8103. [Google Scholar] [CrossRef]
- Lu, B.A.; Shen, L.F.; Liu, J.; Zhang, Q.; Wan, L.Y.; Morris, D.J.; Wang, R.X.; Zhou, Z.Y.; Li, G.; Sheng, T.; et al. Structurally Disordered Phosphorus-Doped Pt as a Highly Active Electrocatalyst for an Oxygen Reduction Reaction. ACS Catal. 2021, 11, 355–363. [Google Scholar] [CrossRef]
- Lau, T.H.M.; Wu, S.; Kato, R.; Wu, T.S.; Kulhavý, J.; Mo, J.; Zheng, J.; Foord, J.S.; Soo, Y.L.; Suenaga, K.; et al. Engineering Monolayer 1T-MoS2 into a Bifunctional Electrocatalyst via Sonochemical Doping of Isolated Transition Metal Atoms. ACS Catal. 2019, 9, 7527–7534. [Google Scholar] [CrossRef]
- Yang, X.; Wang, A.; Qiao, B.; Li, J.U.N. Single-Atom Catalysts: A New Frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef]
- Fu, J.; Dong, J.; Si, R.; Sun, K.; Zhang, J.; Li, M.; Yu, N.; Zhang, B.; Humphrey, M.G.; Fu, Q.; et al. Synergistic Effects for Enhanced Catalysis in a Dual Single-Atom Catalyst. ACS Catal. 2021, 11, 1952–1961. [Google Scholar] [CrossRef]
- Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; et al. Engineering Single-Atomic Ruthenium Catalytic Sites on Defective Nickel-Iron Layered Double Hydroxide for Overall Water Splitting. Nat. Commun. 2021, 12, 4587. [Google Scholar] [CrossRef]
- Zhu, F.; Sun, L.; Liu, Y.; Shi, W. Dual-Defect Site Regulation on MOF-Derived P-Co3O4@NC@Ov-NiMnLDH Carbon Arrays for High-Performance Supercapacitors. J. Mater. Chem. A 2022, 10, 21021–21030. [Google Scholar] [CrossRef]
- Liang, H.; Lin, J.; Jia, H.; Chen, S.; Qi, J.; Cao, J.; Lin, T.; Fei, W.; Feng, J. Hierarchical NiCo-LDH/NiCoP@NiMn-LDH Hybrid Electrodes on Carbon Cloth for Excellent Supercapacitors. J. Mater. Chem. A 2018, 6, 15040–15046. [Google Scholar] [CrossRef]
- Dennler, G.; Chmielowski, R.; Jacob, S.; Capet, F.; Roussel, P.; Zastrow, S.; Nielsch, K.; Opahle, I.; Madsen, G.K.H. Are Binary Copper Sulfides/Selenides Really New and Promising Thermoelectric Materials? Adv. Energy Mater. 2014, 4, 1301581. [Google Scholar] [CrossRef]
- He, Y.; Day, T.; Zhang, T.; Liu, H.; Shi, X.; Chen, L.; Snyder, G.J. High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide. Adv. Mater. 2014, 26, 3974–3978. [Google Scholar] [CrossRef]
- Chang Kwon, K.; Choi, S.; Lee, J.; Hong, K.; Sohn, W.; Andoshe, D.M.; Choi, K.S.; Kim, Y.; Han, S.; Kim, S.Y.; et al. Drastically Enhanced Hydrogen Evolution Activity by 2D to 3D Structural Transition in Anion-Engineered Molybdenum Disulfide Thin Films for Efficient Si-Based Water Splitting Photocathodes. J. Mater. Chem. A 2017, 5, 15534–15542. [Google Scholar] [CrossRef]
- Kou, Z.; Wang, T.; Gu, Q.; Xiong, M.; Zheng, L.; Li, X.; Pan, Z.; Chen, H.; Verpoort, F.; Cheetham, A.K.; et al. Rational Design of Holey 2D Nonlayered Transition Metal Carbide/Nitride Heterostructure Nanosheets for Highly Efficient Water Oxidation. Adv. Energy Mater. 2019, 9, 1803768. [Google Scholar] [CrossRef]
- Chen, P.; Ye, J.; Wang, H.; Ouyang, L.; Zhu, M. Recent Progress of Transition Metal Carbides/Nitrides for Electrocatalytic Water Splitting. J. Alloys Compd. 2021, 883, 160833. [Google Scholar] [CrossRef]
- Liu, S.; Cao, E.; Chen, Z.; Wu, H.; Liu, B.; Yang, J.; Du, S.; Ren, Z. Promoting Electrocatalytic Oxygen Evolution of Ultrasmall NiFe (Hydr)Oxide Nanoparticles by Graphene-Support Effects. ChemSusChem 2021, 14, 5508–5516. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Jia, X.; Guo, Y.; Geng, Z.; Wang, C.; Liu, L.; Zhang, J.; Guo, W.; Tan, X.; Yu, T.; et al. Surface Unsaturated Sulfur Modulates Pt Sub-Nanoparticles on Tandem Homojunction CdS for Efficient Electron Extraction. Adv. Energy Mater. 2023, 13, 2203827. [Google Scholar] [CrossRef]
- Chen, P.; Xu, K.; Zhou, T.; Tong, Y.; Wu, J.; Cheng, H.; Lu, X.; Ding, H.; Wu, C.; Xie, Y. Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation under Both Alkaline and Neutral Conditions. Angew. Chem. Int. Ed. 2016, 55, 2488–2492. [Google Scholar] [CrossRef]
- Momeni, S.; Ghorbani-Vaghei, R. Synthesis, Properties, and Application of the New Nanocatalyst of Double Layer Hydroxides in the One-Pot Multicomponent Synthesis of 2-Amino-3-Cyanopyridine Derivatives. Sci. Rep. 2023, 13, 1627. [Google Scholar] [CrossRef]
- Kim, B.; Kim, T.; Lee, K.; Li, J. Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral PH Conditions. ChemElectroChem 2020, 7, 3578–3589. [Google Scholar] [CrossRef]
- Jun, S.E.; Kim, Y.H.; Kim, J.; Cheon, W.S.; Choi, S.; Yang, J.; Park, H.; Lee, H.; Park, S.H.; Kwon, K.C.; et al. Atomically Dispersed Iridium Catalysts on Silicon Photoanode for Efficient Photoelectrochemical Water Splitting. Nat. Commun. 2023, 14, 609. [Google Scholar] [CrossRef]
- Zhang, S.; Nguyen, L.; Liang, J.X.; Shan, J.; Liu, J.J.; Frenkel, A.I.; Patlolla, A.; Huang, W.; Li, J.; Tao, F.F. Catalysis on Singly Dispersed Bimetallic Sites. Nat. Commun. 2015, 6, 7938. [Google Scholar] [CrossRef]
- Kyriakou, G.; Boucher, M.B.; Jewell, A.D.; Lewis, E.A.; Lawton, T.J.; Baber, A.E.; Tierney, H.L.; Flytzani-stephanopoulos, M.; Sykes, E.C.H. Isolated Metal Atom Geometries as a Strategy for Selective Heterogeneous Hydrogenations. Science 2012, 335, 1209–1212. [Google Scholar] [CrossRef]
- Yang, S.; Kim, J.; Tak, Y.J.; Soon, A.; Lee, H. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. Angew. Chem. Int. Ed. 2016, 55, 2058–2062. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-Abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting. Nat. Rev. Chem. 2017, 1, 0003. [Google Scholar] [CrossRef]
- Ilyas, T.; Raziq, F.; Ali, S.; Zada, A.; Ilyas, N.; Shaha, R.; Wang, Y.; Qiao, L. Facile Synthesis of MoS2/Cu as Trifunctional Catalyst for Electrochemical Overall Water Splitting and Photocatalytic CO2 Conversion. Mater. Des. 2021, 204, 109674. [Google Scholar] [CrossRef]
- Yu, J.M.; Lee, J.; Kim, Y.S.; Song, J.; Oh, J.; Lee, S.M.; Jeong, M.; Kim, Y.; Kwak, J.H.; Cho, S.; et al. High-Performance and Stable Photoelectrochemical Water Splitting Cell with Organic-Photoactive-Layer-Based Photoanode. Nat. Commun. 2020, 11, 5509. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhong, C.J. Hydrogen Production from Water Electrolysis: Role of Catalysts. Nano Converg. 2021, 8, 4. [Google Scholar] [CrossRef]
- Mahmood, N.; Yao, Y.; Zhang, J.W.; Pan, L.; Zhang, X.; Zou, J.J. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Adv. Sci. 2018, 5, 1700464. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, M.; Long, A.; Xue, Y.; Liao, H.; Wei, C.; Xu, Z.J. Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Lett. 2018, 10, 75. [Google Scholar] [CrossRef]
- Ďurovič, M.; Hnát, J.; Bouzek, K. Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline and Neutral Media. A Comparative Review. J. Power Sources 2021, 493, 229708. [Google Scholar] [CrossRef]
- Bhalothia, D.; Krishnia, L.; Yang, S.S.; Yan, C.; Hsiung, W.H.; Wang, K.W.; Chen, T.Y. Recent Advancements and Future Prospects of Noble Metal-Based Heterogeneous Nanocatalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Appl. Sci. 2020, 10, 7708. [Google Scholar] [CrossRef]
- Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Adv. Funct. Mater. 2022, 32, 2110036. [Google Scholar] [CrossRef]
- Liang, Y.; Banjac, K.; Martin, K.; Zigon, N.; Lee, S.; Vanthuyne, N.; Garcés-Pineda, F.A.; Galán-Mascarós, J.R.; Hu, X.; Avarvari, N.; et al. Enhancement of Electrocatalytic Oxygen Evolution by Chiral Molecular Functionalization of Hybrid 2D Electrodes. Nat. Commun. 2022, 13, 3356. [Google Scholar] [CrossRef]
- Liang, Q.; Brocks, G.; Bieberle-Hütter, A. Oxygen Evolution Reaction (OER) Mechanism under Alkaline and Acidic Conditions. J. Phys. Energy 2021, 3, 026001. [Google Scholar] [CrossRef]
- Plevová, M.; Hnát, J.; Bouzek, K. Electrocatalysts for the Oxygen Evolution Reaction in Alkaline and Neutral Media. A Comparative Review. J. Power Sources 2021, 507, 230072. [Google Scholar] [CrossRef]
- Yang, R.; Zhou, Y.; Xing, Y.; Li, D.; Jiang, D.; Chen, M.; Shi, W.; Yuan, S. Synergistic Coupling of CoFe-LDH Arrays with NiFe-LDH Nanosheet for Highly Efficient Overall Water Splitting in Alkaline Media. Appl. Catal. B Environ. 2019, 253, 131–139. [Google Scholar] [CrossRef]
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, e1807134. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 32, e1806326. [Google Scholar] [CrossRef]
- Han, L.; Dong, S.; Wang, E. Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction. Adv. Mater. 2016, 28, 9266–9291. [Google Scholar] [CrossRef]
- He, Z.; Zhang, J.; Gong, Z.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W.; Zhao, S.; Chen, Y. Activating Lattice Oxygen in NiFe-Based (Oxy)Hydroxide for Water Electrolysis. Nat. Commun. 2022, 13, 2191. [Google Scholar] [CrossRef]
- Xia, L.; Bo, L.; Shi, W.; Zhang, Y.; Shen, Y.; Ji, X.; Guan, X.; Wang, Y.; Tong, J. Defect and Interface Engineering of Templated Synthesis of Hollow Porous Co3O4/CoMoO4 with Highly Enhanced Electrocatalytic Activity for Oxygen Evolution Reaction. Chem. Eng. J. 2023, 452, 139250. [Google Scholar] [CrossRef]
- Song, F.; Bai, L.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759. [Google Scholar] [CrossRef]
- Zhang, H.; Maijenburg, A.W.; Li, X.; Schweizer, S.L.; Wehrspohn, R.B. Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Adv. Funct. Mater. 2020, 30, 2003261. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Xue, Q.; Xue, Y.Y.; Ding, Y.; Li, F.M.; Jin, P.; Chen, P.; Chen, Y. Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions. ACS Appl. Mater. Interfaces 2020, 12, 14064–14070. [Google Scholar] [CrossRef]
- Han, J.; Zhang, M.; Bai, X.; Duan, Z.; Tang, T.; Guan, J. Mesoporous Mn-Fe Oxyhydroxides for Oxygen Evolution. Inorg. Chem. Front. 2022, 9, 3559–3565. [Google Scholar] [CrossRef]
- You, C.; Ji, Y.; Liu, Z.; Xiong, X.; Sun, X. Ultrathin CoFe-Borate Layer Coated CoFe-Layered Double Hydroxide Nanosheets Array: A Non-Noble-Metal 3D Catalyst Electrode for Efficient and Durable Water Oxidation in Potassium Borate. ACS Sustain. Chem. Eng. 2018, 6, 1527–1531. [Google Scholar] [CrossRef]
- Kwon, K.C.; Suh, J.M.; Varma, R.S.; Shokouhimehr, M.; Jang, H.W. Electrocatalytic Water Splitting and CO2 Reduction: Sustainable Solutions via Single-Atom Catalysts Supported on 2D Materials. Small Methods 2019, 3, 201800492. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Q.; Zhang, H.; Zhang, Q.; Zhang, K.; Mei, H.; Xu, B.; Sun, D. Self-Assembly of Metal-Organic Frameworks on Graphene Oxide Nanosheets and In Situ Conversion into a Nickel Hydroxide/Graphene Oxide Battery-Type Electrode. Inorg. Chem. 2022, 61, 12129–12137. [Google Scholar] [CrossRef]
- Jeon, S.S.; Kang, P.W.; Klingenhof, M.; Lee, H.; Dionigi, F.; Strasser, P. Active Surface Area and Intrinsic Catalytic Oxygen Evolution Reactivity of NiFe LDH at Reactive Electrode Potentials Using Capacitances. ACS Catal. 2023, 13, 1186–1196. [Google Scholar] [CrossRef]
- Dresp, S.; Dionigi, F.; Klingenhof, M.; Merzdorf, T.; Schmies, H.; Drnec, J.; Poulain, A.; Strasser, P. Molecular Understanding of the Impact of Saline Contaminants and Alkaline PH on NiFe Layered Double Hydroxide Oxygen Evolution Catalysts. ACS Catal. 2021, 11, 6800–6809. [Google Scholar] [CrossRef]
- Jun, S.E.; Hong, S.P.; Choi, S.; Kim, C.; Ji, S.G.; Park, I.J.; Lee, S.A.; Yang, J.W.; Lee, T.H.; Sohn, W.; et al. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge-Rich MoS2 Nanoplates. Small 2021, 17, 202103457. [Google Scholar] [CrossRef]
- Du, X.; Su, H.; Zhang, X. Metal-Organic Framework-Derived Cu-Doped Co9S8 Nanorod Array with Less Low-Valence Co Sites as Highly Efficient Bifunctional Electrodes for Overall Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 16917–16926. [Google Scholar] [CrossRef]
- Tran, Y.B.N.; Nguyen, P.T.K.; Luong, Q.T.; Nguyen, K.D. Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal-Organic Frameworks for Catalysis Cycloaddition of CO2. Inorg. Chem. 2020, 59, 16747–16759. [Google Scholar] [CrossRef]
- Jia, L.; Du, G.; Han, D.; Hao, Y.; Zhao, W.; Fan, Y.; Su, Q.; Ding, S.; Xu, B. Ni3S2/Cu-NiCo LDH Heterostructure Nanosheet Arrays on Ni Foam for Electrocatalytic Overall Water Splitting. J. Mater. Chem. A 2021, 9, 27639–27650. [Google Scholar] [CrossRef]
- Han, M.; Wang, C.; Zhong, J.; Han, J.; Wang, N.; Seifitokaldani, A.; Yu, Y.; Liu, Y.; Sun, X.; Vomiero, A.; et al. Promoted Self-Construction of β-NiOOH in Amorphous High Entropy Electrocatalysts for the Oxygen Evolution Reaction. Appl. Catal. B Environ. 2022, 301, 120764. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Y.; Dai, K.; Wang, J.; Zhang, B.; Shen, X. NiCoP Nanowire@NiCo-Layered Double Hydroxides Nanosheet Heterostructure for Flexible Asymmetric Supercapacitors. Chem. Eng. J. 2020, 384, 123373. [Google Scholar] [CrossRef]
- Xiong, P.; Zhang, F.; Zhang, X.; Wang, S.; Liu, H.; Sun, B.; Zhang, J.; Sun, Y.; Ma, R.; Bando, Y.; et al. Strain Engineering of Two-Dimensional Multilayered Heterostructures for beyond-Lithium-Based Rechargeable Batteries. Nat. Commun. 2020, 11, 3297. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Guo, X.; Wang, G. 2D Material-Based Heterostructures for Rechargeable Batteries. Adv. Energy Mater. 2022, 12, 202100864. [Google Scholar] [CrossRef]
- Ilyas, T.; Raziq, F.; Ilyas, N.; Yang, L.; Ali, S.; Zada, A.; Bakhtiar, S.H.; Wang, Y.; Shen, H.; Qiao, L. FeNi@CNS Nanocomposite as an Efficient Electrochemical Catalyst for N2-to-NH3 Conversion under Ambient Conditions. J. Mater. Sci. Technol. 2022, 103, 59–66. [Google Scholar] [CrossRef]
- Zheng, X.; Cui, P.; Qian, Y.; Zhao, G.; Zheng, X.; Xu, X.; Cheng, Z.; Liu, Y.; Dou, S.X.; Sun, W. Multifunctional Active-Center-Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angew. Chem. Int. Ed. 2020, 59, 14533–14540. [Google Scholar] [CrossRef]
- Gong, M.; Zhou, W.; Tsai, M.C.; Zhou, J.; Guan, M.; Lin, M.C.; Zhang, B.; Hu, Y.; Wang, D.Y.; Yang, J.; et al. Nanoscale Nickel Oxide/Nickel Heterostructures for Active Hydrogen Evolution Electrocatalysis. Nat. Commun. 2014, 5, 4695. [Google Scholar] [CrossRef]
- Hu, W.; Shi, Q.; Chen, Z.; Yin, H.; Zhong, H.; Wang, P. Co2N/Co2Mo3O8 Heterostructure as a Highly Active Electrocatalyst for an Alkaline Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2021, 13, 8337–8343. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, J.; Zhang, H.; Zhang, L.; Chen, L.; Hu, Y.; Jiang, H.; Li, C. Atomic Heterointerface Engineering Overcomes the Activity Limitation of Electrocatalysts and Promises Highly-Efficient Alkaline Water Splitting. Energy Environ. Sci. 2021, 14, 5228–5259. [Google Scholar] [CrossRef]
- Zada, A.; Khan, M.; Hussain, Z.; Shah, M.I.A.; Ateeq, M.; Ullah, M.; Ali, N.; Shaheen, S.; Yasmeen, H.; Ali Shah, S.N.; et al. Extended Visible Light Driven Photocatalytic Hydrogen Generation by Electron Induction from G-C3N4nanosheets to ZnO through the Proper Heterojunction. Z. Fur Phys. Chem. 2022, 236, 53–66. [Google Scholar] [CrossRef]
- Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.; Zeng, J. Doping Regulation in Transition Metal Compounds for Electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844. [Google Scholar] [CrossRef]
- Wang, J.; Liao, T.; Wei, Z.; Sun, J.; Guo, J.; Sun, Z. Heteroatom-Doping of Non-Noble Metal-Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy. Small Methods 2021, 5, 2000988. [Google Scholar] [CrossRef]
- Lee, W.J.; Lim, J.; Kim, S.O. Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity? Small Methods 2017, 1, 201600014. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, J.; Qi, D.C.; Chen, L.; Zhang, K.H.L. Recent Progress on the Electronic Structure, Defect, and Doping Properties of Ga2O3. APL Mater. 2020, 8, 020906. [Google Scholar] [CrossRef]
- Shin, H.; Xiao, H.; Goddard, W.A. In Silico Discovery of New Dopants for Fe-Doped Ni Oxyhydroxide (Ni1- XFexOOH) Catalysts for Oxygen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 6745–6748. [Google Scholar] [CrossRef]
- Xu, H.; Liu, T.; Bai, S.; Li, L.; Zhu, Y.; Wang, J.; Yang, S.; Li, Y.; Shao, Q.; Huang, X. Cation Exchange Strategy to Single-Atom Noble-Metal Doped CuO Nanowire Arrays with Ultralow Overpotential for H2O Splitting. Nano Lett. 2020, 20, 5482–5489. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J.; Jiang, Z.; Zhao, J.; Li, J.; Yan, W.; et al. Atomic-Level Insight into Super-Efficient Electrocatalytic Oxygen Evolution on Iron and Vanadium Co-Doped Nickel (Oxy)Hydroxide. Nat. Commun. 2018, 9, 2885. [Google Scholar] [CrossRef]
- Wu, J.; Han, N.; Ning, S.; Chen, T.; Zhu, C.; Pan, C.; Wu, H.; Pennycook, S.J.; Guan, C. Single-Atom Tungsten-Doped CoP Nanoarrays as a High-Efficiency PH-Universal Catalyst for Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2020, 8, 14825–14832. [Google Scholar] [CrossRef]
- Shan, H.; Qin, J.; Wang, J.; Sari, H.M.K.; Lei, L.; Xiao, W.; Li, W.; Xie, C.; Yang, H.; Luo, Y.; et al. Doping-Induced Electronic/Ionic Engineering to Optimize the Redox Kinetics for Potassium Storage: A Case Study of Ni-Doped CoSe2. Adv. Sci. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Qian, G.; Chen, J.; Yu, T.; Luo, L.; Yin, S. N-Doped Graphene-Decorated NiCo Alloy Coupled with Mesoporous NiCoMoO Nano-Sheet Heterojunction for Enhanced Water Electrolysis Activity at High Current Density. Nano-Micro Lett. 2021, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Wang, B.; Tao, L.; Cunning, B.V.; Zhang, Z.; Wang, S.; Ruoff, R.S.; Qu, L. Efficient Metal-Free Electrocatalysts from N-Doped Carbon Nanomaterials: Mono-Doping and Co-Doping. Adv. Mater. 2019, 31, e1805121. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ye, C.; Zhao, S.N.; Wu, Y.; Liu, C.; Huang, J.; Xue, L.; Sun, J.; Zhang, W.; Wang, X.; et al. A Dual-Site Doping Strategy for Developing Efficient Perovskite Oxide Electrocatalysts towards Oxygen Evolution Reaction. Nano Energy 2022, 99, 107344. [Google Scholar] [CrossRef]
- Dang Van, C.; Kim, S.; Kim, M.; Lee, M.H. Effect of Rare-Earth Element Doping on NiFe-Layered Double Hydroxides for Water Oxidation at Ultrahigh Current Densities. ACS Sustain. Chem. Eng. 2023, 11, 1333–1343. [Google Scholar] [CrossRef]
- Ling, T.; Jaroniec, M.; Qiao, S.Z. Recent Progress in Engineering the Atomic and Electronic Structure of Electrocatalysts via Cation Exchange Reactions. Adv. Mater. 2020, 32, 202001866. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; Goddard, W.A.; Chen, S.; Ren, Z. High-Performance Bifunctional Porous Non-Noble Metal Phosphide Catalyst for Overall Water Splitting. Nat. Commun. 2018, 9, 2551. [Google Scholar] [CrossRef]
- Habibi, R.; Mehrpooya, M.; Ganjali, M. Synthesis of Ternary CoZnAl Layered Double Hydroxide and Co-Embedded N-Doped Carbon Nanotube Hollow Polyhedron Nanocomposite as a Bifunctional Material for ORR Electrocatalyst and Supercapacitor Electrode. J. Energy Storage 2022, 54, 105377. [Google Scholar] [CrossRef]
- Fan, B.; Wang, H.; Han, X.; Deng, Y.; Hu, W. Single Atoms (Pt, Ir and Rh) Anchored on Activated NiCo LDH for Alkaline Hydrogen Evolution Reaction. Chem. Commun. 2022, 58, 8254–8257. [Google Scholar] [CrossRef]
- Stephanopoulos, F.; Commu, N. Single Atom Catalysts Push the Boundaries of Heterogeneous Catalysis. Nat. Commun. 2021, 12, 5884. [Google Scholar] [CrossRef]
- Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020, 120, 11900–11955. [Google Scholar] [CrossRef]
- Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; et al. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem. Rev. 2020, 120, 12217–12314. [Google Scholar] [CrossRef]
- Wu, L.; Guo, T.; Li, T. Rational Design of Transition Metal Single-Atom Electrocatalysts: A Simulation-Based, Machine Learning-Accelerated Study. J. Mater. Chem. A 2020, 8, 19290–19299. [Google Scholar] [CrossRef]
- Zheng, J.; Lebedev, K.; Wu, S.; Huang, C.; Ayvall, T.; Wu, T.S.; Li, Y.; Ho, P.L.; Soo, Y.L.; Kirkland, A.; et al. High Loading of Transition Metal Single Atoms on Chalcogenide Catalysts. J. Am. Chem. Soc. 2021, 143, 7979–7990. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, Y.; He, G.; Chen, H. Race on Engineering Noble Metal Single-Atom Electrocatalysts for Water Splitting. Int. J. Hydrogen Energy 2022, 47, 14257–14279. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing Single-Atom Catalysts toward Improved Alkaline Hydrogen Evolution Reaction. Mater. Reports Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Fang, S.; Zhu, X.; Liu, X.; Gu, J.; Liu, W.; Wang, D.; Zhang, W.; Lin, Y.; Lu, J.; Wei, S.; et al. Uncovering Near-Free Platinum Single-Atom Dynamics during Electrochemical Hydrogen Evolution Reaction. Nat. Commun. 2020, 11, 3232. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D.A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F.Y.; et al. Electrochemical Ammonia Synthesis via Nitrate Reduction on Fe Single Atom Catalyst. Nat. Commun. 2021, 12, 2870. [Google Scholar] [CrossRef]
- Lei, Z.; Cai, W.; Rao, Y.; Wang, K.; Jiang, Y.; Liu, Y.; Jin, X.; Li, J.; Lv, Z.; Jiao, S.; et al. Coordination Modulation of Iridium Single-Atom Catalyst Maximizing Water Oxidation Activity. Nat. Commun. 2022, 13, 24. [Google Scholar] [CrossRef]
- Qi, K.; Cui, X.; Gu, L.; Yu, S.; Fan, X.; Luo, M.; Xu, S.; Li, N.; Zheng, L.; Zhang, Q.; et al. Single-Atom Cobalt Array Bound to Distorted 1T MoS2 with Ensemble Effect for Hydrogen Evolution Catalysis. Nat. Commun. 2019, 10, 5231. [Google Scholar] [CrossRef]
- Shang, H.; Zhou, X.; Dong, J.; Li, A.; Zhao, X.; Liu, Q.; Lin, Y.; Pei, J.; Li, Z.; Jiang, Z.; et al. Engineering Unsymmetrically Coordinated Cu-S1N3 Single Atom Sites with Enhanced Oxygen Reduction Activity. Nat. Commun. 2020, 11, 3049. [Google Scholar] [CrossRef]
- Liu, K.; Fu, J.; Lin, Y.; Luo, T.; Ni, G.; Li, H.; Lin, Z.; Liu, M. Insights into the Activity of Single-Atom Fe-N-C Catalysts for Oxygen Reduction Reaction. Nat. Commun. 2022, 13, 2075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jiao, L.; Yang, W.; Wan, G.; Jiang, H.L. Single-Atom Catalysts Templated by Metal-Organic Frameworks for Electrochemical Nitrogen Reduction. J. Mater. Chem. A 2019, 7, 26371–26377. [Google Scholar] [CrossRef]
- Zang, W.; Yang, T.; Zou, H.; Xi, S.; Zhang, H.; Liu, X.; Kou, Z.; Du, Y.; Feng, Y.P.; Shen, L.; et al. Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient PH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catal. 2019, 9, 10166–10173. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Song, S.; Liu, M.; Yao, S.; Liang, Z.; Cheng, H.; Ren, Z.; Liu, W.; Lin, R.; Qi, G.; et al. Stable and Efficient Single-Atom Zn Catalyst for CO2Reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Cai, C.; Wang, M.; Zhao, Z.L.; Li, M.; Huang, X.; Han, S.; Zhou, H.; Feng, Z.; et al. Single Iridium Atom Doped Ni2P Catalyst for Optimal Oxygen Evolution. J. Am. Chem. Soc. 2021, 143, 13605–13615. [Google Scholar] [CrossRef]
- Intikhab, S.; Rebollar, L.; Li, Y.; Pai, R.; Kalra, V.; Tang, M.H.; Snyder, J.D. Caffeinated Interfaces Enhance Alkaline Hydrogen Electrocatalysis. ACS Catal. 2020, 10, 6798–6802. [Google Scholar] [CrossRef]
- Vij, V.; Sultan, S.; Harzandi, A.M.; Meena, A.; Tiwari, J.N.; Lee, W.G.; Yoon, T.; Kim, K.S. Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catal. 2017, 7, 7196–7225. [Google Scholar] [CrossRef]
- Nasim, F.; Ali, H.; Nadeem, M.A.; Nadeem, M.A. High-Performance FeOx@CoOx/NC Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media. Sustain. Energy Fuels 2022, 7, 190–200. [Google Scholar] [CrossRef]
- Gopi, S.; Panda, A.; Ramu, A.G.; Theerthagiri, J.; Kim, H.; Yun, K. Bifunctional Electrocatalysts for Water Splitting from a Bimetallic (V Doped-NixFey) Metal–Organic Framework MOF@Graphene Oxide Composite. Int. J. Hydrogen Energy 2022, 47, 42122–42135. [Google Scholar] [CrossRef]
- Oh, N.K.; Seo, J.; Lee, S.; Kim, H.J.; Kim, U.; Lee, J.; Han, Y.K.; Park, H. Highly Efficient and Robust Noble-Metal Free Bifunctional Water Electrolysis Catalyst Achieved via Complementary Charge Transfer. Nat. Commun. 2021, 12, 4606. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, B.Y.; Zhao, B.; Wang, X. A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water Splitting. J. Mater. Chem. A 2016, 4, 17587–17603. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, J.; Zheng, L.R.; Tong, Y.; Zhang, M.; Xu, G.; Li, C.; Ma, J.; Shi, G. Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum? ACS Energy Lett. 2018, 3, 237–244. [Google Scholar] [CrossRef]
- Asnavandi, M.; Yin, Y.; Li, Y.; Sun, C.; Zhao, C. Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe-OOH Catalysts. ACS Energy Lett. 2018, 3, 1515–1520. [Google Scholar] [CrossRef]
- Zhou, K.L.; Wang, Z.; Han, C.B.; Ke, X.; Wang, C.; Jin, Y.; Zhang, Q.; Liu, J.; Wang, H.; Yan, H. Platinum Single-Atom Catalyst Coupled with Transition Metal/Metal Oxide Heterostructure for Accelerating Alkaline Hydrogen Evolution Reaction. Nat. Commun. 2021, 12, 3783. [Google Scholar] [CrossRef]
- Zhang, J.; Lian, J.; Jiang, Q.; Wang, G. Boosting the OER/ORR/HER Activity of Ru-Doped Ni/Co Oxides Heterostructure. Chem. Eng. J. 2022, 439, 135634. [Google Scholar] [CrossRef]
- Liu, M.; Min, K.A.; Han, B.; Lee, L.Y.S. Interfacing or Doping? Role of Ce in Highly Promoted Water Oxidation of NiFe-Layered Double Hydroxide. Adv. Energy Mater. 2021, 11, 202101281. [Google Scholar] [CrossRef]
- Zeng, K.; Tian, M.; Chen, X.; Zhang, J.; Rummeli, M.H.; Strasser, P.; Sun, J.; Yang, R. Strong Electronic Coupling between Single Ru Atoms and Cobalt-Vanadium Layered Double Hydroxide Harness Efficient Water Splitting. Chem. Eng. J. 2023, 452, 139151. [Google Scholar] [CrossRef]
- Jun, S.E.; Choi, S.; Choi, S.; Lee, T.H.; Kim, C.; Yang, J.W.; Choe, W.O.; Im, I.H.; Kim, C.J.; Jang, H.W. Direct Synthesis of Molybdenum Phosphide Nanorods on Silicon Using Graphene at the Heterointerface for Efficient Photoelectrochemical Water Reduction. Nano-Micro Lett. 2021, 13, 81. [Google Scholar] [CrossRef]
- Xin, Y.; Kan, X.; Gan, L.Y.; Zhang, Z. Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting. ACS Nano 2017, 11, 10303–10312. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.C.; Kim, C.; Van Le, Q.; Gim, S.; Jeon, J.M.; Ham, J.Y.; Lee, J.L.; Jang, H.W.; Kim, S.Y. Synthesis of Atomically Thin Transition Metal Disulfides for Charge Transport Layers in Optoelectronic Devices. ACS Nano 2015, 9, 4146–4155. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Wang, Z.; Long, X.; An, Y.; Lin, H.; Xing, Z.; Ma, M.; Yang, S. One-Pot Synthesis of Manganese Oxides and Cobalt Phosphides Nanohybrids with Abundant Heterointerfaces in an Amorphous Matrix for Efficient Hydrogen Evolution in Alkaline Solution. J. Mater. Chem. A 2019, 7, 22530–22538. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Li, Z.; Yang, B.; Ling, M.; Gao, X.; Lu, J.; Shi, Q.; Lei, L.; Wu, G.; et al. Designing 3d Dual Transition Metal Electrocatalysts for Oxygen Evolution Reaction in Alkaline Electrolyte: Beyond Oxides. Nano Energy 2020, 77, 105162. [Google Scholar] [CrossRef]
- Peng, L.; Shah, S.S.A.; Wei, Z. Recent Developments in Metal Phosphide and Sulfide Electrocatalysts for Oxygen Evolution Reaction. Cuihua Xuebao/Chin. J. Catal. 2018, 39, 1575–1593. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.; Jiao, L. Ni2P/NiMoP Heterostructure as a Bifunctional Electrocatalyst for Energy-Saving Hydrogen Production. eScience 2021, 1, 69–74. [Google Scholar] [CrossRef]
- Ji, X.; Lin, Y.; Zeng, J.; Ren, Z.; Lin, Z.; Mu, Y.; Qiu, Y.; Yu, J. Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx Multilayer-Stacked Vertical Nanosheets on Carbon Fibers for Highly Efficient Overall Water Splitting. Nat. Commun. 2021, 12, 1380. [Google Scholar] [CrossRef]
- Song, Y.; Cheng, J.; Liu, J.; Ye, Q.; Gao, X.; Lu, J.; Cheng, Y. Modulating Electronic Structure of Cobalt Phosphide Porous Nanofiber by Ruthenium and Nickel Dual Doping for Highly-Efficiency Overall Water Splitting at High Current Density. Appl. Catal. B Environ. 2021, 298, 120488. [Google Scholar] [CrossRef]
- Wang, D.; Luo, D.; Zhang, Y.; Zhao, Y.; Zhou, G.; Shui, L.; Chen, Z.; Wang, X. Deciphering Interpenetrated Interface of Transition Metal Oxides/Phosphates from Atomic Level for Reliable Li/S Electrocatalytic Behavior. Nano Energy 2021, 81, 105602. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, L.; Hensen, E.J.M.; Hofmann, J.P. Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes. ACS Energy Lett. 2018, 3, 1360–1365. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, J.; Johnsson, M. Interfacial Engineering of Nickel Hydroxide on Cobalt Phosphide for Alkaline Water Electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578. [Google Scholar] [CrossRef]
- Jin, S. Are Metal Chalcogenides, Nitrides, and Phosphides Oxygen Evolution Catalysts or Bifunctional Catalysts? ACS Energy Lett. 2017, 2, 1937–1938. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.J. Recent Advances in Transition Metal-Based Electrocatalysts for Alkaline Hydrogen Evolution. J. Mater. Chem. A 2019, 7, 14971–15005. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Q.; Chou, S.L.; Dou, S.X. Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1700606. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Wang, F.; Liu, X.; Zhang, Y.; Li, W.; Guo, Y.; Yin, H.; Wang, D. Electrochemical Hydroxidation of Sulfide for Preparing Sulfur-Doped NiFe (Oxy) Hydroxide towards Efficient Oxygen Evolution Reaction. Chem. Eng. J. 2023, 454, 140030. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Y.; Wang, J.; Geng, Y.; Zhang, B.; He, J.; Xue, J.; Frauenheim, T.; Li, M. Ni/Mo Bimetallic-Oxide-Derived Heterointerface-Rich Sulfide Nanosheets with Co-Doping for Efficient Alkaline Hydrogen Evolution by Boosting Volmer Reaction. Small 2021, 17, 2006730. [Google Scholar] [CrossRef]
- Yao, N.; Li, P.; Zhou, Z.; Zhao, Y.; Cheng, G.; Chen, S.; Luo, W. Synergistically Tuning Water and Hydrogen Binding Abilities Over Co4N by Cr Doping for Exceptional Alkaline Hydrogen Evolution Electrocatalysis. Adv. Energy Mater. 2019, 9, 1902449. [Google Scholar] [CrossRef]
- Diao, J.; Qiu, Y.; Liu, S.; Wang, W.; Chen, K.; Li, H.; Yuan, W.; Qu, Y.; Guo, X. Interfacial Engineering of W2N/WC Heterostructures Derived from Solid-State Synthesis: A Highly Efficient Trifunctional Electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.; Jun, S.E.; Kim, Y.; Park, I.-H.; Jang, H.W.; Park, S.H.; Kwon, K.C. Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting. Materials 2023, 16, 3280. https://doi.org/10.3390/ma16083280
Lee G, Jun SE, Kim Y, Park I-H, Jang HW, Park SH, Kwon KC. Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting. Materials. 2023; 16(8):3280. https://doi.org/10.3390/ma16083280
Chicago/Turabian StyleLee, Goeun, Sang Eon Jun, Yujin Kim, In-Hyeok Park, Ho Won Jang, Sun Hwa Park, and Ki Chang Kwon. 2023. "Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting" Materials 16, no. 8: 3280. https://doi.org/10.3390/ma16083280
APA StyleLee, G., Jun, S. E., Kim, Y., Park, I. -H., Jang, H. W., Park, S. H., & Kwon, K. C. (2023). Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting. Materials, 16(8), 3280. https://doi.org/10.3390/ma16083280