Artifact-Free Microstructures in the Interfacial Reaction between Eutectic In-48Sn and Cu Using Ion Milling
Abstract
:1. Introduction
2. Experimental Method
2.1. Sample Preparation
2.2. Cross-Section Observation and Ion Milling
2.3. Top-View Observation and Etching
2.4. Mechanical Property Determination
3. Results and Discussion
3.1. Interfacial Microstructure
3.2. Phase Identification
3.3. Microstructure Evolution
3.4. Room-Temperature Aging
3.5. Mechanical Properties of Cu6(Sn,In)5
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Tu, K.N. Structure nd properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R Rep. 2014, 82, 1–32. [Google Scholar] [CrossRef]
- Kotadia, H.R.; Howes, P.D.; Mannan, S.H. A review: On the development of low melting temperature Pb-free solders. Microelectron. Reliab. 2014, 54, 1253–1273. [Google Scholar] [CrossRef]
- Gain, A.; Zhang, L. Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin–bismuth solder. J. Mater. Sci. Mater. Electron. 2017, 28, 15718–15730. [Google Scholar] [CrossRef]
- Freer, J.; Morris, J. Microstructure and creep of eutectic indium/tin on copper and nickel substrates. J. Electron. Mater. 1992, 21, 647–652. [Google Scholar] [CrossRef]
- Faizov, S.; Sarafanov, A.; Erdakov, I.; Gromov, D.; Svistun, A.; Glebov, L.; Bykov, V.; Bryk, A.; Radionova, L. On the Direct Extrusion of Solder Wire from 52In-48Sn Alloy. Machines 2021, 9, 93. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Z.-Q.; Shang, P.-J.; Guo, J. Phase identification on the intermetallic compound formed between eutectic SnIn solder and single crystalline Cu substrate. J. Alloys Compd. 2014, 591, 351–355. [Google Scholar] [CrossRef]
- Shang, P.; Liu, Z.; Li, D.; Shang, J. Intermetallic compound identification and Kirkendall void formation in eutectic SnIn/Cu solder joint during solid-state aging. Philos. Mag. Lett. 2011, 91, 410–417. [Google Scholar] [CrossRef]
- Tian, F.-f.; Liu, Z.-q. The interfacial microstructure and Kirkendall voids in In-48Sn/Cu solder joint. In Proceedings of the 2013 14th International Conference on Electronic Packaging Technology, Dalian, China, 11–14 August 2013; pp. 907–910. [Google Scholar]
- Susan, D.; Rejent, J.; Hlava, P.; Vianco, P. Very long-term aging of 52In–48Sn (at.%) solder joints on Cu-plated stainless steel substrates. J. Mater. Sci. 2009, 44, 545–555. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Tian, F.-F. The reversible transformation between Cu 2 (In, Sn) and Cu (In, Sn) 2 compounds during solid-state aging. In Proceedings of the 2014 15th International Conference on Electronic Packaging Technology, Chengdu, China, 12–15 August 2014; pp. 425–428. [Google Scholar]
- Tian, F.; Liu, Z.-Q. Growth mechanism of duplex structural Cu2 (In, Sn) compound on single crystalline Cu substrate. J. Alloy. Compd. 2014, 588, 662–667. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Z.-Q.; Guo, J. Phase transformation between Cu (In, Sn) 2 and Cu2 (In, Sn) compounds formed on single crystalline Cu substrate during solid state aging. J. Appl. Phys. 2014, 115, 043520. [Google Scholar] [CrossRef]
- Tian, F.; Shang, P.-J.; Liu, Z.-Q. Precise Cr-marker investigation on the reactive interface in the eutectic SnIn solder joint. Mater. Lett. 2014, 121, 185–187. [Google Scholar] [CrossRef]
- Li, Y.; Lim, A.B.; Luo, K.; Chen, Z.; Wu, F.; Chan, Y. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In–48Sn/Cu solder interconnects under current stressing. J. Alloy. Compd. 2016, 673, 372–382. [Google Scholar] [CrossRef]
- Tian, F.; Li, C.-F.; Zhou, M.; Liu, Z.-Q. The interfacial reaction between In-48Sn solder and polycrystalline Cu substrate during solid state aging. J. Alloy. Compd. 2018, 740, 500–509. [Google Scholar] [CrossRef]
- Han, D.L.; Shen, Y.-A.; He, S.; Nishikawa, H. Effect of Cu addition on the microstructure and mechanical properties of In–Sn-based low-temperature alloy. Mater. Sci. Eng. A 2021, 804, 140785. [Google Scholar] [CrossRef]
- Han, D.L.; Tatsumi, H.; Huo, F.; Nishikawa, H. Effect of isothermal aging on properties of In-48Sn and In-Sn-8Cu alloys. In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31 May–3 June 2022; pp. 2148–2152. [Google Scholar]
- Hotchkiss, J.; Vuorinen, V.; Dong, H.; Ross, G.; Kaaos, J.; Paulasto-Krockel, M.; Wernicke, T.; Ponninger, A. Study of Cu-Sn-In system for low temperature, wafer level solid liquid inter-diffusion bonding. In Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Tonsberg, Norway, 15–18 September 2020; pp. 1–5. [Google Scholar]
- Song, R.-W.; Fleshman, C.J.; Chen, H.; Tsai, S.-Y.; Duh, J.-G. Suppressing interfacial voids in Cu/In/Cu microbump with Sn and Cu addition. Mater. Lett. 2020, 259, 126855. [Google Scholar] [CrossRef]
- Vuorinen, V.; Ross, G.; Klami, A.; Dong, H.; Paulasto-Krockel, M.; Wernicke, T.; Ponninger, A. Demonstrating 170°C Low Temperature Cu-In-Sn wafer level Solid Liquid Interdiffusion Bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 12, 446–453. [Google Scholar] [CrossRef]
- Han, D.L.; Shen, Y.-A.; Huo, F.; Nishikawa, H. Microstructure Evolution and Shear Strength of Tin-Indium-xCu/Cu Joints. Metals 2022, 12, 33. [Google Scholar] [CrossRef]
- Kang, D.G.; Min, K.D.; Jung, H.S.; Ha, E.; Kim, K.Y.; Jung, S.B. Mechanical properties and microstructures of Cu/In-48Sn alloy/Cu with low temperature TLP bonding. In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31 May–3 June 2022; pp. 2206–2210. [Google Scholar]
- Vianco, P.T.; Hlava, P.F.; Kilgo, A.C. Intermetallic compound layer formation between copper and hot-dipped 100In, 50In-50Sn, 100Sn, and 63Sn-37Pb coatings. J. Electron. Mater. 1994, 23, 583–594. [Google Scholar] [CrossRef]
- Hung, H.; Lee, P.; Tsai, C.; Kao, C. Artifact-free microstructures of the Cu–In reaction by using cryogenic broad argon beam ion polishing. J. Mater. Res. Technol. 2020, 9, 12946–12954. [Google Scholar] [CrossRef]
- Shu, Y.; Ando, T.; Yin, Q.; Zhou, G.; Gu, Z. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: From a non-equilibrium state to an equilibrium state. Nanoscale 2017, 9, 12398–12408. [Google Scholar] [CrossRef]
- Zeng, G.; McDonald, S.D.; Gu, Q.; Nogita, K. Effect of Zn, Au, and In on the polymorphic phase transformation in Cu6Sn5 intermetallics. J. Mater. Res. 2012, 27, 2609–2614. [Google Scholar] [CrossRef]
- Feng, G.; Ngan, A. Creep and strain burst in indium and aluminium during nanoindentation. Scr. Mater. 2001, 45, 971–976. [Google Scholar] [CrossRef]
- Lucas, B.; Oliver, W. Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 1999, 30, 601–610. [Google Scholar] [CrossRef]
- Gossla, M.; Metzner, H.; Mahnke, H.E. Coevaporated Cu–In films as precursors for solar cells. J. Appl. Phys. 1999, 86, 3624–3632. [Google Scholar] [CrossRef]
- Yang, P.-F.; Lai, Y.-S.; Jian, S.-R.; Chen, J.; Chen, R.-S. Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater. Sci. Eng. A 2008, 485, 305–310. [Google Scholar] [CrossRef]
Phase | Cu (at.%) | In (at.%) | Sn (at.%) |
---|---|---|---|
β | 0.8 | 71.9 | 27.3 |
γ | 2.2 | 26.1 | 71.7 |
Rod-type Cu6(Sn,In)5 | 55.7 | 18.9 | 25.4 |
Cu6(Sn,In)5 in the mixture layer | 56.2 | 17.7 | 26.1 |
Phase | Cu (at.%) | In (at.%) | Sn (at.%) |
---|---|---|---|
Cu(In,Sn)2 | 33.4 | 51.6 | 15.0 |
Cu6(Sn,In)5 | 57.3 | 17.3 | 25.4 |
IMC Type | Young’s Modulus (GPa) | Hardness (GPa) |
---|---|---|
Cu6Sn5 [21] | 118.97 ± 1.93 | 6.45 ± 0.14 |
Cu6(Sn,In)5 | 119.04 ± 3.94 | 6.28 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, F.-L.; Lin, Y.-H.; Hung, H.-T.; Kao, C.-W.; Kao, C.R. Artifact-Free Microstructures in the Interfacial Reaction between Eutectic In-48Sn and Cu Using Ion Milling. Materials 2023, 16, 3290. https://doi.org/10.3390/ma16093290
Chang F-L, Lin Y-H, Hung H-T, Kao C-W, Kao CR. Artifact-Free Microstructures in the Interfacial Reaction between Eutectic In-48Sn and Cu Using Ion Milling. Materials. 2023; 16(9):3290. https://doi.org/10.3390/ma16093290
Chicago/Turabian StyleChang, Fu-Ling, Yu-Hsin Lin, Han-Tang Hung, Chen-Wei Kao, and C. R. Kao. 2023. "Artifact-Free Microstructures in the Interfacial Reaction between Eutectic In-48Sn and Cu Using Ion Milling" Materials 16, no. 9: 3290. https://doi.org/10.3390/ma16093290
APA StyleChang, F. -L., Lin, Y. -H., Hung, H. -T., Kao, C. -W., & Kao, C. R. (2023). Artifact-Free Microstructures in the Interfacial Reaction between Eutectic In-48Sn and Cu Using Ion Milling. Materials, 16(9), 3290. https://doi.org/10.3390/ma16093290