Extractability of Rice Husk Waste Using Green Gamma Radiation for Dye Elimination in Laboratory-Scale Sorption System: Equilibrium Isotherm and Kinetic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent “Rice Husk” Collection and Preparation
2.2. Adsorbent Characterization
2.3. Adsorption Methodology and Wastewater Analysis
3. Results and Discussion
3.1. Structural and Morphological Characterization of Rice Husk
3.2. Urolene Blue Dye Adsorption
3.2.1. Determination of Equilibrium Time
3.2.2. Effect of Initial Loading of Urolene Blue
3.2.3. Evaluation of RH-Dose Effect on Adsorption Uptake
3.2.4. Evaluation of pH Effect on Adsorption Uptake
3.2.5. Evaluation of Temperature Effect on Adsorption Uptake
3.2.6. Isotherm Modeling
3.2.7. Adsorption Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahad, A.; Radin Mohamed, R.M.S.; Saphira, M.; Radhi, B.; Al-Sahari, M. Wastewater and its Treatment Techniques: An Ample Review. Indian J. Sci. Technol. 2019, 12, 13. [Google Scholar] [CrossRef]
- Farha, A.H.; Tony, M.A.; Mansour, S.A.; El Basaty, A.B. Polyaniline/Multi Walled Carbon Nanotubes—A Promising Photocatalyst Composite for Reactive Blue 4 Oxidation. Polymers 2022, 14, 3922. [Google Scholar] [PubMed]
- Elsayed, M.; Abdel-Raouf, M.E.-S. Wastewater Treatment Methodologies, Review Article. Int. J. Environ. Agri. Sci. 2019, 3, 018. [Google Scholar]
- Gopinathan, R.; Bhowal, A.; Garlapati, C. Adsorption Characteristics of Activated Carbon for the Reclamation of Colored Effluents Containing Orange G and New Solid–Liquid Phase Equilibrium Model. J. Chem. Eng. Data 2017, 62, 558–567. [Google Scholar] [CrossRef]
- Hubbe, M.A. Insisting upon Meaningful Results from Adsorption Experiments. Sep. Purif. Rev. 2022, 51, 212–225. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Wang, X.; Xu, G.; Tu, Y.; Wu, D.; Li, A.; Xie, X. BiOBr/PBCD-B-D dual-function catalyst with oxygen vacancies for Acid Orange 7 removal: Evaluation of adsorption-photocatalysis performance and synergy mechanism. Chem. Eng. J. 2021, 411, 128456. [Google Scholar] [CrossRef]
- Heibati, B.; Rodriguez-Couto, S.; Turan, N.G.; Ozgonenel, O.; Albadarin, A.B.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of noxious dye—Acid Orange 7 from aqueous solution using natural pumice and Fe-coated pumice stone. J. Ind. Eng. Chem. 2015, 31, 124–131. [Google Scholar] [CrossRef]
- Ghosh, R. A Review Study on Precipitated Silica and Activated Carbon from Rice Husk. J. Chem. Eng. Process Technol. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Nawaz, S.; Jamil, F.; Akhter, P.; Hussain, M.; Jang, H.; Park, Y.-K. Valorization of lignocellulosic rice husk producing biosilica and biofuels—A review. J. Phys. Energy 2023, 5, 012003. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. A comparative LCA of rice straw utilization for fuels and fertilizer in Thailand. Bioresour. Technol. 2013, 150, 412–419. [Google Scholar] [CrossRef]
- Prasara-A, J.; Gheewala, S.H. Sustainable utilization of rice husk ash from power plants: A review. J. Clean. Prod. 2017, 167, 1020–1028. [Google Scholar] [CrossRef]
- Virtanen, T.; Svedström, K.; Andersson, S.; Tervala, L.; Torkkeli, M.; Knaapila, M.; Kotelnikova, N.; Maunu, S.L.; Serimaa, R. A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing. Cellulose 2012, 19, 219–235. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Z.; Jia, L.; Chen, J. Physical properties and pyrolysis characteristics of rice husks in different atmosphere. Results Phys. 2016, 6, 866–868. [Google Scholar] [CrossRef]
- Goodman, B.A. Utilization of waste straw and husks from rice production: A review. J. Bioresour. Bioprod. 2020, 5, 143–162. [Google Scholar] [CrossRef]
- Alagarsamy, G. Novel Approaches Towards Sustainable Management of an Agricultural Residue-The Rice Husk. Nat. Environ. Pollut. Technol. 2021, 20, 349–355. [Google Scholar]
- Thiedeitz, M.; Schmidt, W.; Härder, M.; Kränkel, T. Performance of Rice Husk Ash as Supplementary Cementitious Material after Production in the Field and in the Lab. Materials 2020, 13, 4319. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Setyawan, N.; Hoerudin; Wulanawati, A. Simple extraction of silica nanoparticles from rice husk using technical grade solvent: Effect of volume and concentration. IOP Conf. Ser. Earth Environ. Sci. 2019, 309, 012032. [Google Scholar] [CrossRef]
- Su, Y.; Liu, L.; Zhang, S.; Xu, D.; Du, H.; Cheng, Y.; Wang, Z.; Xiong, Y. A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide. Bioresour. Technol. 2020, 295, 122243. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Agarwal, N.K.; Mishra, I.M. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere 2005, 61, 492–501. [Google Scholar] [CrossRef]
- Özer, A.; Dursun, G. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. J. Hazard. Mater. 2007, 146, 262–269. [Google Scholar] [CrossRef]
- Attia, A.A.; Girgis, B.S.; Fathy, N.A. Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dye. Pigment. 2008, 76, 282–289. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye using activated carbon prepared from oil palm shell: Batch and fixed bed studies. Desalination 2008, 225, 13–28. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; López-Saucedo, F.; Bucio, E. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiat. Phys. Chem. 2020, 169, 107962. [Google Scholar] [CrossRef]
- Mostafa, R.A.; El-Sherbiny, I.M.; Selim, N.S.; Sallam, A.M.; Ashry, H.A. Green synthesis of strontium-reduced graphene oxide biocomposite using gamma radiation. Radiat. Phys. Chem. 2022, 197, 110109. [Google Scholar] [CrossRef]
- Panasenko, A.E.; Shichalin, O.O.; Yarusova, S.B.; Ivanets, A.I.; Belov, A.A.; Dran’kov, A.N.; Azon, S.A.; Fedorets, A.N.; Buravlev, I.Y.; Mayorov, V.Y.; et al. A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization. Nucl. Eng. Technol. 2022, 54, 3250–3259. [Google Scholar] [CrossRef]
- Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, L. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour. Technol. 2008, 99, 2938–2946. [Google Scholar] [CrossRef]
- Kumar, U.; Bandyopadhyay, M. Fixed bed column study for Cd(II) removal from wastewater using treated rice husk. J. Hazard. Mater. 2006, 129, 253–259. [Google Scholar] [CrossRef]
- Abdel-Rahman, H.; Younes, M.; Hamed, E. Effect of Nano-Filler Content and Fiber Treatment on the Characteristics of Gamma-irradiated Rice Husk-Epoxy Particleboard Composites. Arab. J. Nucl. Sci. Appl. 2019, 52, 24–34. [Google Scholar] [CrossRef]
- Kortei, N.; Wiafe-Kwagyan, M. Evaluating the effect of gamma radiation on eight different agro-lignocellulose waste materials for the production of oyster mushrooms (Pleurotus eous (Berk.)Sacc.strain P-31). Croat. J. Food Technol. Biotechnol. Nutr. 2014, 9, 3–4. [Google Scholar]
- Mohamed, R.M.; Mohamed, M.A.; Shaltout, N.A. Improving the mechanical properties of ethylene propylene diene monomer rubber/low density polyethylene/rice husk biocomposites by using various additives of filler and gamma irradiation. J. Vinyl Addit. Technol. 2019, 25, 296–302. [Google Scholar] [CrossRef]
- Mounir, R.; Raslan, H.A.; Mohamed, M.A. Impact of Gamma Radiation and Rice Husk Nanosilica on the Physico-Mechanical Properties of Styrene Butadiene Rubber/Natural Rubber Blend. Polym. Bull. 2021, 78, 3851–3868. [Google Scholar]
- Ishak, W.; Ahmad, I.; Ramli, S.; Mohd Amin, M.C.I. Gamma Irradiation-Assisted Synthesis of Cellulose Nanocrystal-Reinforced Gelatin Hydrogels. Nanomaterials 2018, 8, 749. [Google Scholar] [CrossRef]
- Eid, M.; Abdel-Ghaffar, M.A.; Dessouki, A.M. Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 91–98. [Google Scholar] [CrossRef]
- Gamboa, V.S.; Benvenutti, E.V.; Kinast, É.J.; Pires, M.; Gasparin, F.P.; Ries, L.A.d.S. Efficient removal of chromium(VI) from dilute aqueous solutions using agro-industrial residue based on parboiled-rice husk ash. Chem. Eng. Commun. 2022, 209, 1096–1110. [Google Scholar] [CrossRef]
- Aouat, T.; Kaci, M.; Lopez-Cuesta, J.-M.; Devaux, E.; Mahlous, M. The effect of gamma-irradiation on morphology and properties of melt-spun poly (lactic acid)/cellulose fibers. Polym. Degrad. Stab. 2019, 160, 14–23. [Google Scholar]
- Tiwari, S.; Bijwe, J.; Panier, S. Gamma radiation treatment of carbon fabric to improve the fiber–matrix adhesion and tribo-performance of composites. Wear 2011, 271, 2184–2192. [Google Scholar] [CrossRef]
- Su, X.-J.; Zhang, C.-Y.; Li, W.-J.; Wang, F.; Wang, K.-Q.; Liu, Y.; Li, Q.-M. Radiation-Induced Structural Changes of Miscanthus Biomass. Appl. Sci. 2020, 10, 1130. [Google Scholar] [CrossRef]
- Butnaru, E.; Zaharescu, T.; Darie-Nita, R.; Vasile, C. Biomass Effect on γ-Irradiation Behavior of Some Polypropylene Biocomposites. Ind. Eng. Chem. Res. 2015, 54, 150211042640000. [Google Scholar]
- Raghu, S.; Archana, K.; Sharanappa, C.; Ganesh, S.; Devendrappa, H. The physical and chemical properties of gamma ray irradiated polymer electrolyte films. J. Non-Cryst. Solids 2015, 426, 55–62. [Google Scholar]
- Aldawood, S.; AlGarawi, M.S.; Shar, M.A.; Ali, S.M. Analysis of gamma dose dependent nanostructure, morphological, optical and electrical properties of CeO2 thin films. J. King Saud Univ. Sci. 2020, 32, 2629–2634. [Google Scholar] [CrossRef]
- Nisar, N.; Ali, O.; Islam, A.; Ahmad, A.; Yameen, M.; Ghaffar, A.; Nazir, A.; Masood, N. A Novel Approach for Modification of Biosorbent by Silane Functionalization and its Industrial Application for Single and Multi-Component Solute System. Z. Für Phys. Chem. 2019, 233, 1603–1623. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Dao, N.T.T.; Nguyen, H.T.T.; Le, A.Q.T. Nanosilica synthesis from rice husk and application for soaking seeds. IOP Conf. Ser. Earth Environ. Sci. 2019, 266, 012007. [Google Scholar] [CrossRef]
- Morcali, M.; Zeytuncu, B.; Yucel, O. Platinum Uptake from Chloride Solutions Using Biosorbents. Mater. Res. 2013, 16, 528–538. [Google Scholar] [CrossRef]
- Danijela, R.; Babic, B.; Kljajević, L.; StaŠIĆ, J.; Kaludjerovic, B. The effect of gamma radiation on the properties of activated carbon cloth. J. Serb. Chem. Soc. 2009, 74, 1125–1132. [Google Scholar]
- Donohue, M.D.; Aranovich, G.L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76–77, 137–152. [Google Scholar] [CrossRef]
- Zhang, W.; Lan, Y.; Ma, M.; Chai, S.; Zuo, Q.; Kim, K.-H.; Gao, Y. A novel chitosan–vanadium-titanium-magnetite composite as a superior adsorbent for organic dyes in wastewater. Environ. Int. 2020, 142, 105798. [Google Scholar] [CrossRef]
- Tony, M.A. An industrial ecology approach: Green cellulose-based bio-adsorbent from sugar industry residue for treating textile industry wastewater effluent. Int. J. Environ. Anal. Chem. 2021, 101, 167–183. [Google Scholar] [CrossRef]
- Nour, M.M.; Tony, M.A.; Nabwey, H.A. Adsorptive Pattern Using Drinking Water Treatment Residual for Organic Effluent Abatement from Aqueous Solutions. Materials 2023, 16, 247. [Google Scholar] [CrossRef]
- Ashour, E.; Tony, M.; Purcell, P. Use of Agriculture-Based Waste for Basic Dye Sorption from Aqueous Solution: Kinetics and Isotherm Studies. Am. J. Chem. Eng. 2015, 2, 92–98. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, J.; Zhou, J.; Lei, J. Study on adsorption of methylene blue by a novel composite material of TiO2 and alum sludge. RSC Adv. 2018, 8, 32799–32807. [Google Scholar] [CrossRef] [PubMed]
- Tahoun, B.A.; Mansour, S.; Tony, M.A.; farag, s. Development and Characterization of Conjugated Polyaniline/Co-doped ZnO Nanocomposites for Enhanced Dye Oxidation from Wastewater. ERJ. Eng. Res. J. 2022, 45, 101–110. [Google Scholar] [CrossRef]
- Mittal, A.; Thakur, V.; Mittal, J.; Vardhan, H. Process development for the removal of hazardous anionic azo dye Congo red from wastewater by using hen feather as potential adsorbent. Desalination Water Treat. 2014, 52, 227–237. [Google Scholar] [CrossRef]
- Yousefi, N.; Fatehizadeh, A.; Azizi, E.; Ahmadian, M.; Ahmadi, A.M.; Rajabizadeh, A.; Toolabi, A. Adsorption of reactive black 5 dye onto modified wheat straw: Isotherm and kinetics study. J. Environ. Res. Dev. 2011, 6, 332–343. [Google Scholar]
- Thabet, R.H.; Fouad, M.K.; Ali, I.A.; El Sherbiny, S.A.; Tony, M.A. Synthesis, characterization and potential application of magnetized nanoparticles for photocatalysis of Levafix CA reactive azo-dye in aqueous effluent. Water Environ. J. 2022, 36, 245–260. [Google Scholar] [CrossRef]
- Tony, M.; Lin, L.-S. Iron Coated-Sand from Acid Mine Drainage Waste for Being a Catalytic Oxidant Towards Municipal Wastewater Remediation. Int. J. Environ. Res. 2021, 15. [Google Scholar] [CrossRef]
- Thabet, R.H.; Tony, M.A.; El Sherbiny, S.A.; Ali, I.A.; Fouad, M.K. Catalytic oxidation over nanostructured heterogeneous process as an effective tool for environmental remediation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 975, 012004. [Google Scholar] [CrossRef]
- Horsfall Jnr, M.; Spiff, A. Effect of Temperature on the Sorption of Pb2+ and Cd2+ from Aqueous Solution by Caladium bicolor (Wild Cocoyam) Biomass. Electron. J. Biotechnol. 2005, 8, 43–50. [Google Scholar] [CrossRef]
- McKay, G.; Blair, H.S.; Gardner, J.R. Adsorption of dyes on chitin. I. Equilibrium studies. J. Appl. Polym. Sci. 1982, 27, 3043–3057. [Google Scholar] [CrossRef]
- McKay, G.; Otterburn, M.S.; Aga, J.A. Fuller’s earth and fired clay as adsorbents for dyestuffs. Water Air Soil Pollut. 1985, 24, 307–322. [Google Scholar] [CrossRef]
- Tony, M. Zeolite-based adsorbent from alum sludge residue for textile wastewater treatment. Int. J. Environ. Sci. Technol. 2020, 17, 2485–2498. [Google Scholar] [CrossRef]
- Parker, H.L.; Budarin, V.L.; Clark, J.H.; Hunt, A.J. Use of Starbon for the Adsorption and Desorption of Phenols. ACS Sustain. Chem. Eng. 2013, 1, 1311–1318. [Google Scholar] [CrossRef]
- Xue, F.; Wang, F.; Chen, S.; Ju, S.; Xing, W. Adsorption Equilibrium, Kinetics, and Thermodynamic Studies of Cefpirome Sulfate by Using Macroporous Resin. J. Chem. Eng. Data 2017, 62, 4266–4272. [Google Scholar] [CrossRef]
- Pathania, D.; Sharma, S.; Singh, P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 2017, 10, S1445–S1451. [Google Scholar] [CrossRef]
- Schwantes, D.; Affonso, C.; Juliana, C.; lson, P.; Ivone, G.; Coelho, G. Removal of Cr (III) from contaminated water using industrial waste of the cassava as natural adsorbents. Afr. J. Agric. Res. 2015, 10, 4241–4251. [Google Scholar]
- Ghasemi, M.; Ghasemi, N.; Zahedi, G.; Alwi, S.R.W.; Goodarzi, M.; Javadian, H. Kinetic and equilibrium study of Ni(II) sorption from aqueous solutions onto Peganum harmala-L. Int. J. Environ. Sci. Technol. 2014, 11, 1835–1844. [Google Scholar] [CrossRef]
- Uddin, M.K.; Nasar, A. Walnut shell powder as a low-cost adsorbent for methylene blue dye: Isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci. Rep. 2020, 10, 7983. [Google Scholar] [CrossRef]
- Mallanna, M.; Krishna, R.H.; Kottam, N.; Raveendra, R.S.; Ananthaswamy, P. Fast adsorptive removal of methylene blue dye from aqueous solution onto a wild carrot flower activated carbon: Isotherms and kinetics studies. Desalination Water Treat. 2017, 71, 399–405. [Google Scholar]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-factionalized biomass material for methylene blue dye removal: A comprehensive adsorption and mechanism study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef]
- Jawad, A.H.; Mohammed, S.; Mastuli, M.S.; Abdullah, M.F. Carbonization of corn (Zea mays) cob agricultural residue by one-step activation with sulfuric acid for methylene blue adsorption. Desalination Water Treat. 2018, 118, 342–351. [Google Scholar] [CrossRef]
- Jawad, A.H.; Mamat, N.; Abdullah, M.F.; Ismail, K. Adsorption of methylene blue onto acid-treated mango peels: Kinetic, equilibrium and thermodynamic study. Desalination Water Treat. 2017, 59, 210–219. [Google Scholar] [CrossRef]
- Jawad, A.H.; Mallah, S.; Mastuli, M.S. Adsorption behavior of methylene blue on acid-treated rubber (Hevea brasiliensis) leaf. Desalin. Water Treat. 2018, 124, 297–307. [Google Scholar] [CrossRef]
- Uddin, M.T.; Rahman, M.A.; Rukanuzzaman, M.; Islam, M.A. A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl. Water Sci. 2017, 7, 2831–2842. [Google Scholar] [CrossRef]
- Uddin, M.T.; Rukanuzzaman, M.; Khan, M.; Islam, M.A. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study. J. Environ. Manag. 2009, 90, 3443–3450. [Google Scholar] [CrossRef]
- Daffalla, S.; Mukhtar, H.; Shaharun, M. Preparation and characterization of rice husk adsorbents for phenol removal from aqueous systems. PLoS ONE 2020, 15, e0243540. [Google Scholar] [CrossRef]
- Scaglioni, P.T.; Badiale-Furlong, E. Rice husk as an adsorbent: A new analytical approach to determine aflatoxins in milk. Talanta 2016, 152, 423–431. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) | Eo (kJ mol−1) | Total Pore Volume (cc/g) |
---|---|---|---|
RH-0 | 0.10224 | 0.7488 | 7.056 × 10−3 |
RH-15 | 0.01862 | 0.4526 | 16.216 × 10−3 |
Kinetic Model | Isotherm Parameter | RH-0 | RH-5 | RH-10 | RH-15 | RH-25 |
---|---|---|---|---|---|---|
Langmuir | aL (L/mg) | 0.24 | 0.15 | 0.159 | 0.01 | 0.08 |
KL | 0.79 | 0.69 | 0.86 | 0.25 | 0.45 | |
Qo (mg/g) | 3.26 | 4.67 | 5.40 | 15.69 | 5.58 | |
R2 | 0.98 | 0.96 | 0.96 | 0.94 | 0.98 | |
Freundlich | KF | 6.11 | 3.29 | 3.05 | 2.78 | 3.87 |
n | 1.91 | 1.15 | 1.33 | 1.43 | 1.21 | |
R2 | 0.73 | 0.94 | 0.93 | 0.94 | 0.91 |
Kinetic Model | Parameter | RH-0 | RH-5 | RH-10 | RH-15 | RH-25 |
---|---|---|---|---|---|---|
Lagergren’s first-order | qe, mg/g | 0.13 | 0.12 | 0.04 | 0.07 | 0.06 |
, | k1, min−1 | 0.37 | 0.34 | 0.39 | 0.43 | 0.43 |
R2 | 0.96 | 0.94 | 0.9 | 0.92 | 0.92 | |
Pseudo-second-order | qe, mg/g | 1.72 | 1.72 | 1.69 | 1.72 | 1.68 |
() | k2, g·mg/min | 1.185 | 1.10 | 2.23 | 1.63 | 2.57 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Low-Cost Adsorbent Name | pH | Temperature | Adsorbent Dose | Initial Dye Concentration | Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|---|---|---|
Radiated rice husk | pH 6.6 | Room temperature | 0.05 g/L | 50 mg/L | 14.7 | Current study |
Walnut shell | pH 8 | Room temperature | 0.1 g/L | 200 mg/L | 18 | [68] |
Wild carrot | pH 6 | Room temperature | 0.05 g/100 mL | NA | 298 | [69] |
Coconut shell | pH 8 | 30 °C | 0.1 g/100 mL | NA | 51 | [70] |
Bare palm branches | NA | 60 °C | 5 g/L | 400 mg/L | 14 | [51] |
Corn cob | pH 5.6 | 30 °C | 0.12 g/100 mL | NA | 217 | [71] |
Mango peels | pH 5.6 | 30 °C | 0.14 g/L | NA | 278 | [72] |
Rubber leaf | pH 5.6 | 30 °C | 0.1 g/100 mL | NA | 263 | [73] |
Mango leaf | pH 5.6 | Room temperature | NA | 100 mg/L | 156 | [74] |
Jackfruit leaf | PH 10 | Room temperature | NA | 200 mg/L | 267 | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhashem, Z.; Farha, A.H.; Mansour, S.A.; Tony, M.A. Extractability of Rice Husk Waste Using Green Gamma Radiation for Dye Elimination in Laboratory-Scale Sorption System: Equilibrium Isotherm and Kinetic Analysis. Materials 2023, 16, 3328. https://doi.org/10.3390/ma16093328
Alhashem Z, Farha AH, Mansour SA, Tony MA. Extractability of Rice Husk Waste Using Green Gamma Radiation for Dye Elimination in Laboratory-Scale Sorption System: Equilibrium Isotherm and Kinetic Analysis. Materials. 2023; 16(9):3328. https://doi.org/10.3390/ma16093328
Chicago/Turabian StyleAlhashem, Zakia, Ashraf H. Farha, Shehab A. Mansour, and Maha A. Tony. 2023. "Extractability of Rice Husk Waste Using Green Gamma Radiation for Dye Elimination in Laboratory-Scale Sorption System: Equilibrium Isotherm and Kinetic Analysis" Materials 16, no. 9: 3328. https://doi.org/10.3390/ma16093328
APA StyleAlhashem, Z., Farha, A. H., Mansour, S. A., & Tony, M. A. (2023). Extractability of Rice Husk Waste Using Green Gamma Radiation for Dye Elimination in Laboratory-Scale Sorption System: Equilibrium Isotherm and Kinetic Analysis. Materials, 16(9), 3328. https://doi.org/10.3390/ma16093328