The Influence of Blast Furnace Slag on Cement Concrete Road by Microstructure Characterization and Assessment of Physical-Mechanical Resistances at 150/480 Days
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Concrete Mixtures
2.3. Methods
2.3.1. The Drying Shrinkage of Road Concretes with Blast Furnace Slag
- εci—shrinkage of the hardened concrete, in mm/m;
- δ0—initial reading at 7 days old (standard) with deformer, in mm;
- δi—reading at the age of i days, with deformer, in mm;
- l—distance between landmarks, in mm.
2.3.2. Tensile Strengths by Bending, Compression, and Carbonatation
2.3.3. Characterization of the Microstructure of Road Concrete
3. Results
3.1. The Drying Shrinkage of Road Concretes with Blast Furnace Slag
3.2. Tensile Strengths by Bending and Compression
3.3. Corrosion Resistances from Carbonation
3.4. Characterization of the Microstructure of Road Concrete
3.4.1. X-ray Diffraction
3.4.2. SEM-EDX Scanning Electron Microscopy Measurements
4. Discussion
4.1. The Drying Shrinkage of Road Concretes with Blast Furnace Slag
4.2. Tensile Strengths by Bending and Compression
4.3. Corrosion Resistances in Carbonation
4.4. Characterization of the Microstructure of Road Concrete
4.4.1. X-ray Diffraction
4.4.2. Measurements with Electronic Microscopy with SEM-EDX Scanning
- for S54/60, the value of 12.86 indicates the presence of a majority of calcium-based structures.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, R.; Thenmozhi, R.; Raman, S.N. Mechanical characterisation and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate. Int. J. Environ. Sustain. Dev. 2019, 18, 131–148. [Google Scholar] [CrossRef]
- Prakash, R.; Thenmozhi, R.; Raman, S.N.; Subramanian, C. Characterization of eco-friendly steel fiber-reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement. Struct. Concr. 2020, 21, 437–447. [Google Scholar] [CrossRef]
- Ahmad, J.; Kontoleon, K.J.; Majdi, A.; Naqash, M.T.; Deifalla, A.F.; Ben Kahla, N.; Isleem, H.F.; Qaidi, S.M.A. A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production. Sustainability 2022, 14, 8783. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Olivier, J.G.J.; Peters, J.A.H. Trends in Global CO2 and Total Greenhouse Gas Emission Report; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2020; pp. 1–85. [Google Scholar]
- Smirnova, O. Compatibility of shungisite microfillers with polycarboxylate admixtures in cement compositions. ARPN J. Eng. Appl. Sci. 2019, 14, 600–610. [Google Scholar]
- Bakharev, T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005, 35, 1224–1232. [Google Scholar] [CrossRef]
- Mwiti, M.J.; Karanja, T.J.; Muthengia, W.J. Thermal Resistivity of Chemically Activated Calcined Clays-Based Cements. In Calcined Clays for Sustainable Concrete; Martirena, F., Favier, A., Scrivener, K., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 327–333. [Google Scholar]
- Smirnova, O.M.; de Navascués, I.M.P.; Mikhailevskii, V.R.; Kolosov, O.I.; Skolota, N.S. Sound-absorbing composites with rubber crumb from used tires. Appl. Sci. 2021, 11, 7347. [Google Scholar] [CrossRef]
- De Domenico, D.; Faleschini, F.; Pellegrino, C.; Ricciardi, G. Structural behavior of RC beams containing EAF slag as recycled aggregate: Numerical versus experimental results. Constr. Build. Mater. 2018, 171, 321–337. [Google Scholar] [CrossRef]
- Brooks, J.J.; Megat Johari, M.A. Effect of metakaolin on creep and shrinkage of concrete. Cem. Concr. Compos. 2001, 23, 495–502. [Google Scholar] [CrossRef]
- Bheel, N.; Abbasi, S.A.; Awoyera, P.; Olalusi, O.B.; Sohu, S.; Rondon, C.; Mar, A. Fresh and Hardened Properties of Concrete Incorporating Binary Blend of Metakaolin and Ground Granulated Blast Furnace Slag as Supplementary Cementitious Material. Adv. Civ. Eng. 2020, 2020, 8851030. [Google Scholar] [CrossRef]
- Khassaf, S.I.; Jasim, A.T.; Mahdi, F.K. Investigation The Properties Of Concrete Containing Rice Husk Ash To Reduction The Seepage In Canals. Int. J. Sci. Technol. Res. 2014, 3, 348–354. [Google Scholar]
- Burduhos Nergis, D.D.; Vizureanu, P.; Corbu, O. Synthesis and characteristics of local fly ash based geopolymers mixed with natural aggregates. Rev. Chim. 2019, 70, 1262–1267. [Google Scholar] [CrossRef]
- Ganesh, P.; Murthy, A.R. Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material. Constr. Build. Mater. 2019, 197, 667–680. [Google Scholar] [CrossRef]
- Crossin, E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J. Clean. Prod. 2015, 95, 101–108. [Google Scholar] [CrossRef]
- Şanal, İ. Fresh-state performance design of green concrete mixes with reduced carbon dioxide emissions. Greenh. Gases Sci. Technol. 2018, 8, 1134–1145. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. J. Clean. Prod. 2017, 162, 1407–1417. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, W.; Wu, X.; Gao, B. The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. J. Clean. Prod. 2015, 95, 66–74. [Google Scholar] [CrossRef]
- Abbass, M.; Singh, D.; Singh, G. Properties of hybrid geopolymer concrete prepared using rice husk ash, fly ash and GGBS with coconut fiber. Mater. Today Proc. 2021, 45, 4964–4970. [Google Scholar] [CrossRef]
- Prakash, S.; Kumar, S.; Biswas, R.; Rai, B. Influence of silica fume and ground granulated blast furnace slag on the engineering properties of ultra-high-performance concrete. Innov. Infrastruct. Solut. 2021, 7, 117. [Google Scholar] [CrossRef]
- Suda, V.B.R.; Srinivasa Rao, P. Experimental investigation on optimum usage of Micro silica and GGBS for the strength characteristics of concrete. Mater. Today Proc. 2020, 27, 805–811. [Google Scholar] [CrossRef]
- Vediyappan, S.; Chinnaraj, P.K.; Hanumantraya, B.B.; Subramanian, S.K. An Experimental Investigation on Geopolymer Concrete Utilising Micronized Biomass Silica and GGBS. KSCE J. Civ. Eng. 2021, 25, 2134–2142. [Google Scholar] [CrossRef]
- Hamzah, H.K.; Huseien, G.F.; Asaad, M.A.; Georgescu, D.P.; Ghoshal, S.K.; Alrshoudi, F. Effect of waste glass bottles-derived nanopowder as slag replacement on mortars with alkali activation: Durability characteristics. Case Stud. Constr. Mater. 2021, 15, e00775. [Google Scholar] [CrossRef]
- Ahmad, J.; Martínez-García, R.; Szelag, M.; De-Prado-gil, J.; Marzouki, R.; Alqurashi, M.; Hussein, E.E. Effects of steel fibers (Sf) and ground granulated blast furnace slag (ggbs) on recycled aggregate concrete. Materials 2021, 14, 7497. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [Google Scholar] [CrossRef]
- Pal, S.C.; Mukherjee, A.; Pathak, S.R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem. Concr. Res. 2003, 33, 1481–1486. [Google Scholar] [CrossRef]
- Yeau, K.Y.; Kim, E.K. An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cem. Concr. Res. 2005, 35, 1391–1399. [Google Scholar] [CrossRef]
- Teng, S.; Lim, T.Y.D.; Sabet Divsholi, B. Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag. Constr. Build. Mater. 2013, 40, 875–881. [Google Scholar] [CrossRef]
- Lenka, B.P.; Majhi, R.K.; Singh, S.; Nayak, A.N. Eco-friendly and cost-effective concrete utilizing high-volume blast furnace slag and demolition waste with lime. Eur. J. Environ. Civ. Eng. 2022, 26, 5351–5373. [Google Scholar] [CrossRef]
- Constantinescu, H.; Gherman, O.; Negrutiu, C.; Ioan, S.P. Mechanical Properties of Hardened High Strength Concrete. Procedia Technol. 2016, 22, 219–226. [Google Scholar] [CrossRef]
- Jercan, S. Concrete Roads; Corvin Publishing House: Deva, Romania, 2002. [Google Scholar]
- Nicolescu, L. Hydrotechnical Concretes for Land Improvement Works; Publishing house CERES: Bucharest, Romania, 1997. [Google Scholar]
- Neville, A.M. Properties of Concrete; Bucharest Technical Publishing House: Bucharest, Romania, 1979. [Google Scholar]
- Teoreanu, I. Technology of Binders and Concretes; Didactic and Pedagogical Publishing House: Bucharest, Romania, 1967. [Google Scholar]
- Iureș, L. Research report: Concretes with reduced shrinkage made with special additives. J. Sci. Policy Sci. 2005, 1582–1218. [Google Scholar]
- Medeiros, R.A.; Lima, M.G.; Yazigi, R.; Medeiros, M.H.F. Carbonation depth in 57 years old concrete structure. Steel Compos. Struct. 2015, 19, 953–966. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.-Y.; Kurtis, K.E.; Jacobs, L.J.; Pape, Y.L.; Guimaraes, M. Quantitative evaluation of carbonation in concrete using nonlinear ultrasound. Mater. Struct. 2016, 49, 399–409. [Google Scholar] [CrossRef]
- Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N. Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater. J. 1991, 88, 363–373. [Google Scholar]
- Papadakis, V.G.; Vayenas, C.G. Experimental investigation and mathematica modeling of the concrete carbonation problem. Chem. Eng. Sci. 1991, 46, 1333–1338. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Ding, Y.; Jalali, S. Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles). Constr. Build. Mater. 2012, 30, 714–724. [Google Scholar] [CrossRef]
- José, D.R.; Adelardo, V.; Leiva, C.; la Concha, M.-D.; Antonio, M.; Cifuentes, H. Analysis of the utilization of air-cooled blast furnace slag as industrial waste aggregates in self-compacting concrete. Sustainability 2019, 11, 1702. [Google Scholar] [CrossRef]
- Corbu, O.; Puskas, A.; Sandu, A.V.; Ioani, A.M.; Hussin, K.; Sandu, I.G. New Concrete with Recycled Aggregates from Leftover Concrete. Appl. Mech. Mater. 2015, 754–755, 389–394. [Google Scholar]
- Majhi, R.K.; Nayak, A.N.; Mukharjee, B.B. Characterization of lime activated recycled aggregate concrete with high-volume ground granulated blast furnace slag. Constr. Build. Mater. 2020, 259, 119882. [Google Scholar] [CrossRef]
- Forton, A.; Mangiafico, S.; Sauzéat, C.; Di Benedetto, H.; Marc, P. Behaviour of binder blends: Experimental results and modelling from LVE properties of pure binder, RAP binder and rejuvenator. Road Mater. Pavement Des. 2021, 22, S197–S213. [Google Scholar] [CrossRef]
- Cadar, R.D.; Boitor, R.M.; Dragomir, M.L. An Analysis of Reclaimed Asphalt Pavement from a Single Source—Case Study: A Secondary Road in Romania. Sustainability 2022, 14, 7057. [Google Scholar] [CrossRef]
- Forton, A.; Mangiafico, S.; Sauzéat, C.; Di Benedetto, H.; Marc, P. Properties of blends of fresh and RAP binders with rejuvenator: Experimental and estimated results. Constr. Build. Mater. 2020, 236, 117555. [Google Scholar] [CrossRef]
- Soni, Y.; Gupta, N. Experimental Investigation on Workability of Concrete with Partial Replacement of Cement by Ground Granulated Blast Furnace and Sand by Quarry Dust. IJIRST-Int. J. Innov. Res. Sci. Technol. 2016, 3, 312–316. [Google Scholar]
- Molnar, L.M.; Manea, D.L.; Aciu, C.; Jumate, E. Innovative Plastering Mortars Based on Recycled Waste Glass. Procedia Technol. 2015, 19, 299–306. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Gu, L.; Fallah Pour, A. Normal- and high-strength concretes incorporating air-cooled blast furnace slag coarse aggregates: Effect of slag size and content on the behavior. Constr. Build. Mater. 2016, 126, 138–146. [Google Scholar] [CrossRef]
- Cao, Q.; Nawaz, U.; Jiang, X.; Zhang, L.; Ansari, W.S. Effect of air-cooled blast furnace slag aggregate on mechanical properties of ultra-high-performance concrete. Case Stud. Constr. Mater. 2022, 16, e01027. [Google Scholar] [CrossRef]
- Popescu, D.; Burlacu, A. Considerations on the Benefits of Using Recyclable Materials for Road Construction. Rom. J. Transp. Infrastruct. 2017, 6, 43–53. [Google Scholar] [CrossRef]
- Concrete Ubrary of JSCE. Guidelines for Construction Using Blast-Furnace Slag Aggregate Concrete. Available online: https://www.jsce.or.jp/committee/concrete/e/web/pdf/22-2.pdf (accessed on 16 February 2023).
- SR EN 12620+A1; Aggregates for Concrete. ASRO: Bucharest, Romania, 2008.
- ASA 36pp Guide—(Iron & Steel) Slag Association. A Guide to the Use of Slag in Roads. Revision 2. Available online: https://www.yumpu.com/en/document/view/20477792/asa-36pp-guide-iron-steel-slag-association (accessed on 16 February 2023).
- Burlacu, A.; Racanel, C. Reducing Cost of Infrastructure Works Using New Technologies. Available online: https://www.oecd-ilibrary.org/development/road-and-rail-infrastructure-in-asia_9789264302563-en (accessed on 27 February 2023).
- Dimulescu, C.; Burlacu, A. Industrial Waste Materials as Alternative Fillers in Asphalt Mixtures. Sustainability 2021, 13, 8068. [Google Scholar] [CrossRef]
- Nicula, L.M.; Corbu, O.; Iliescu, M.; Sandu, A.V.; Hegyi, A. Study on the Durability of Road Concrete with Blast Furnace Slag Affected by the Corrosion Initiated by Chloride. Adv. Civ. Eng. 2021, 2021, 8851005. [Google Scholar] [CrossRef]
- Nicula, L.M.; Corbu, O.; Iliescu, M.; Dumitraș, D.G. Using the blast furnace slag as alternative source in mixtures for the road concrete for a more sustainable and a cleaner environment. Rom. J. Mater. 2020, 50, 545–555. [Google Scholar]
- Król, A.; Giergiczny, Z.; Kuterasińska-Warwas, J. Properties of Concrete Made with Low-Emission Cements CEM II/C-M and CEM VI. Materials 2020, 13, 2257. [Google Scholar] [CrossRef]
- Bazaldúa-Medellín, M.E.; Fuentes, A.F.; Gorokhovsky, A.; Escalante-García, J.I. Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum. Mater. Constr. 2015, 65, e043. [Google Scholar] [CrossRef]
- SR EN 197; Cement Part 1: Composition, Specification, and Conformity Criteria Common Cements. ASRO: Bucharest, Romania, 2011.
- Kazberuk, M.K. Surface Scaling Resistance of Concrete with Fly Ash from Co-Combustion of Coal and Biomass. Procedia Eng. 2013, 57, 605–613. [Google Scholar] [CrossRef]
- Papadakis, V.G.; Tsimas, S. Supplementary cementing materials in concrete. Part I: Efficiency and design. Cem. Concr. Res. 2002, 32, 1525–1532. [Google Scholar] [CrossRef]
- Sinsiri, T.; Kroehong, W.; Jaturapitakkul, C.; Chindaprasirt, P. Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Mater. Des. 2012, 42, 424–433. [Google Scholar] [CrossRef]
- SR EN 15167; Ground Granulated Blast Furnace Slag for Use in Concrete, Mortar and Grout Part 1: Definitions, Specifications and Conformity Criteria. ASRO: Bucharest, Romania, 2007.
- NE 014:2002; The Norm for the Execution of Cement Concrete Road Pavements in a Fixed and Sliding Formwork System. Matrix ROM: Bucharest, Romania, 2007; ISBN 978-973-755-185-6.
- SR EN 934-2+A1; Concrete Additives. ASRO: Bucharest, Romania, 2002.
- SR EN 1008; Mixing Water for Concrete. ASRO: Bucharest, Romania, 2003.
- SR 2833; Tests on Concrete. Determination of the Axial Contraction of Hardened Concrete. ASRO: Bucharest, Romania, 2009.
- SR EN 12390; Test on Hardened Concrete. Part 5: Bending Tensile Strength of Specimens. ASRO: Bucharest, Romania, 2019.
- SR EN 12390; Standard for Test-Hardened Concrete—Part 3: Compressive Strength of Test Specimens. ASRO: Bucharest, Romania, 2019.
- SR CR 12793; Determination of the Depth of the Carbonation Layer of Hardened Concrete. ASRO: Bucharest, Romania, 2002.
- Chesner, W.H.; Collins, R.J.; MacKay, M.H.; Emery, J. User Guidelines for Waste and By-Product Materials in Pavement Construction (No. FHWA-RD-97-148, Guideline Manual, Rept No. 480017). Available online: https://rosap.ntl.bts.gov/view/dot/38365 (accessed on 23 February 2023).
- Smith, K.D.; Morian, D.A.; Van Dam, T.J. Use of Air-Cooled Blast Furnace Slag as Coarse Aggregate in Concrete Pavements—A Guide to Best Practice; Report No. FHWA-HIF-12-009; Federal Highway Administration: Philadelphia, PA, USA, 2012. [Google Scholar]
- Taylor, G.P.; Van Dam, T.; Sutter, L.; Fick, G. Integrated Materials and Construction Practices for Concrete Pavement. Available online: https://issuu.com/ich_mkt/docs/2019_cptech_-_integrated_materials_and_constructio (accessed on 17 February 2023).
- Badr, A.; Ashour, A.F.; Platten, A.K. Statistical variations in impact resistance of polypropylene fibre-reinforced concrete. Int. J. Impact Eng. 2006, 32, 1907–1920. [Google Scholar] [CrossRef]
- Alexanderson, J. Relations between structure and mechanical properties of autoclaved aerated concrete. Cem. Concr. Res. 1979, 9, 507–514. [Google Scholar] [CrossRef]
- Ahmad, J.; Martínez-García, R.; De-Prado-gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [Google Scholar] [CrossRef]
- Ahmad, J.; Aslam, F.; Martinez-Garcia, R.; de-Prado-Gil, J.; Qaidi, S.M.A.; Brahmia, A. Effects of waste glass and waste marble on mechanical and durability performance of concrete. Sci. Rep. 2021, 11, 21525. [Google Scholar] [CrossRef]
- Ahmad, J.; Tufail, R.F.; Aslam, F.; Mosavi, A.; Alyousef, R.; Javed, M.F.; Zaid, O.; Khan Niazi, M.S. A step towards sustainable self-compacting concrete by using partial substitution of wheat straw ash and bentonite clay instead of cement. Sustainability 2021, 13, 824. [Google Scholar] [CrossRef]
- Pimienta, P.; Albert, B.; Huetb, B.; Dierkens, M.; Francisco, P.; Rougeaud, P. Durability performance assessment of non-standard cementitious materials for buildings: A general method applied to the French context, Fact sheet 1—Risk of steel corrosion induced by carbonation. RILEM Tech. Lett. 2016, 1, 102–108. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; La Plante, E.C.; Anoop Krishnan, N.M.; Le Pape, Y.; Neithalath, N.; Bauchy, M.; Sant, G. Effects of Irradiation on Albite’s Chemical Durability. J. Phys. Chem. A 2017, 121, 7835–7845. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Martínez, P.; González-Cortina, M.; Fernández-Martínez, F. Characterization and influence of fine recycled aggregates on masonry mortars properties. Mater. Construc. 2015, 65, e058. [Google Scholar] [CrossRef]
- Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; Sato, T. Cement and concrete nanoscience and nanotechnology. Materials 2010, 3, 918–942. [Google Scholar] [CrossRef]
- Kosmatka, S.H.; Panarese, W.C.; Kerkhoff, B. Design and Control of Concrete Mixtures Fourteenth Edition; Portland Cement Association: Washington, DC, USA, 2011; ISBN 0893122173. [Google Scholar]
- Silva, A.S.; Soares, D.; Matos, L.; Salta, M.; Divet, L.; Pavoine, A.; Candeias, A.; Mirão, J. Influence of Mineral Additions in the Inhibition of Delayed Ettringite Formation in Cement based Materials—A Microstructural Characterization. Mater. Sci. Forum Vols. 2010, 636–637, 1272–1279. [Google Scholar]
- Alam, S.; Kumar Das, S.; Hanumantha Rao, B. Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Constr. Build. Mater. 2019, 211, 932–942. [Google Scholar] [CrossRef]
- Huang, J.; Li, W.; Huang, D.; Wang, L.; Chen, E.; Wu, C.; Wang, B.; Deng, H.; Tang, S.; Shi, Y.; et al. Fractal Analysis on Pore Structure and Hydration of Magnesium Oxysulfate Cements by First Principle, Thermodynamic and Microstructure-Based Methods. Fractal Fract. 2021, 5, 164. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, S.; Huang, J.; Tang, C.; Wang, L.; Liu, Y. Fractal Analysis on Pore Structure and Modeling of Hydration of Magnesium Phosphate Cement Paste. Fractal Fract. 2022, 6, 337. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, K.; Fen-chong, T.; Dangla, P. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cem. Concr. Res. 2012, 42, 194–204. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, J.; Bian, Z.; Dai, G. Pore Structure Characterization of Hardened Cement Paste by Multiple Methods. Adv. Mater. Sci. Eng. 2019, 2019, 3726953. [Google Scholar] [CrossRef]
- Portlandite—Basis for a Very Important Building Material. Available online: https://crystalsymmetry.wordpress.com/ (accessed on 28 February 2023).
- Galan, I.; Glasser, F.P.; Baza, D.; Andrade, C. Assessment of the protective effect of carbonation on portlandite crystals. Cem. Concr. Res. 2015, 74, 68–77. [Google Scholar] [CrossRef]
- Richardson, I.G. The nature of C-S-H in hardened cements. Cem. Concr. Res. 1999, 29, 1131–1147. [Google Scholar] [CrossRef]
- Chu, D.C.; Kleib, J.; Amar, M.; Benzerzour, M.; Abriak, N.-E. Determination of the degree of hydration of Portland cement using three different approaches: Scanning electron microscopy (SEM-BSE) and Thermogravimetric analysis (TGA). Case Stud. Constr. Mater. 2021, 15, e00754. [Google Scholar] [CrossRef]
GGBS | SiO2 | Al2O3 | MnO | MgO | CaO | Fe2O3 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
(%) | 36.70 | 9.50 | 0.23 | 8.70 | 42.00 | 0.55 | 0.28 | 0.53 |
Aggregate Mixture | Mf | WA24 (SS) | WA24 (SSD) |
---|---|---|---|
100% (NA) | 2.72 | 20% (water saturated) | 2% (after 4 days air cooled) |
100% (ACBFS) | 3.15 | 30% (water saturated) | 2% (after 8 days air cooled) |
Mixtures (kg/m3) | S360 | S414 | S54/20 | S54/40 | S54/60 |
---|---|---|---|---|---|
Cement | 360 | 414 | 360 | 360 | 360 |
(GGBS) | - | - | 54 | 54 | 54 |
Total binder (l) | 360 | 414 | 414 | 414 | 414 |
Water (w) | 166.47 | 174.39 | 172.91 | 181.23 | 167.64 |
w/l | 0.46 | 0.42 | 0.42 | 0.44 | 0.41 |
(NA_0/4 mm) | 607 | 594 | 478 | 355 | 240 |
(ACBFS_0/4 mm) | - | - | 119 | 237 | 359 |
(CA_4/25 mm) | 1290 | 1261 | 1269 | 1256 | 1275 |
(SP MG-SKY 527) | 3.60 | 4.14 | 4.39 | 4.55 | 4.97 |
(MA 9060), | 1.80 | 2.07 | 2.07 | 2.07 | 2.07 |
Cement Dosage | (w/l) | Consistency | Occluded Air Content | fcm 28 Days | fcfm 28 Days |
---|---|---|---|---|---|
min. 360 kg/m3 | max. 0.45 | (30 ± 10) mm | (3.5 ± 0.5)% | min. 50 MPa | min. 5.5 MPa |
Curing Shrinkage | S 360 | S 414 | S 54/20 | S 54/40 | S 54/60 |
---|---|---|---|---|---|
ε (mm/m)—14 days | 0.039 | 0.057 | 0.040 | 0.057 | 0.051 |
ε (mm/m)—28 days | 0.065 | 0.112 | 0.064 | 0.104 | 0.076 |
ε (mm/m)—42 days | 0.083 | 0.134 | 0.083 | 0.125 | 0.092 |
ε (mm/m)—56 days | 0.097 | 0.150 | 0.098 | 0.141 | 0.105 |
ε (mm/m)—90 days | 0.104 | 0.161 | 0.106 | 0.154 | 0.114 |
ε (mm/m)—120 days | 0.110 | 0.172 | 0.113 | 0.165 | 0.122 |
ε (mm/m)—150 days | 0.116 | 0.178 | 0.121 | 0.174 | 0.129 |
Mixture | S 360 | S 414 | S 54/20 | S 54/40 | S 54/60 |
---|---|---|---|---|---|
fcfm 150 days (MPa) | 6.06 | 5.77 | 6.57 | 5.78 | 6.31 |
SD-fcfm (MPa) | 0.33 | 0.35 | 0.19 | 0.28 | 0.29 |
CoV-fcfm (%) | 0.05 | 0.06 | 0.03 | 0.05 | 0.05 |
fcm 480 days (MPa) | 72.5 | 80.97 | 83.44 | 81.56 | 87.00 |
SD-fcm (MPa) | 2.94 | 4.65 | 4.27 | 1.10 | 4.48 |
CoV-fcm (%) | 0.04 | 0.06 | 0.05 | 0.01 | 0.05 |
Sample | S 360 | S 414 | S 54/20 | S 54/40 | S 54/60 |
---|---|---|---|---|---|
Degree of crystallinity (%) | 77 | 75 | 69 | 74 | 71 |
Amorphous phase (%) | 23 | 25 | 31 | 26 | 29 |
Albite (Ab) | ++ | ++ | +++ | +++ | +++ |
Quartz | +++ | +++ | +++ | ++ | +++ |
Tobermorites (C-S-H) | ++ | ++ | +++ | + | +++ |
Portlandite (CH) | + | + | + | + | + |
Ettringite (C-A-S-H) | + | + | + | + | + |
Sample | Pore Identification Code | Pore Radius (μm) | Pore Diameter (μm) | Distance Identification Code Qi (Ci-Ci+n) | Distance (μm) |
---|---|---|---|---|---|
S360 | C1 | 2.61 | 5.22 | Q1 (C1–C2) | 7.95 |
C2 | 1.75 | 3.51 | |||
S414 | C1 | 13.69 | 23.79 | ||
C2 | 11.05 | 22.10 | Q1 (C1–C3) | 288.16 | |
C3 | 22.76 | 45.51 | Q2 (C2–C4) | 44.47 | |
C4 | 6.58 | 13.17 | Q3 (C1–C2) | 77.69 | |
C5 | 10.11 | 20.21 | Q4 (C5–C6) | 203.85 | |
C6 | 6.74 | 13.48 | |||
S54/20 | C1 | 8.09 | 16.19 | Q1 (C1–C2) | 380.79 |
C2 | 6.44 | 12.89 | |||
S54/40 | C1 | 31.41 | 62.83 | - | - |
S54/60 | C1 | 6.60 | 13.20 | Q1 (C1–C2) | 76.22 |
C2 | 4.67 | 9.34 | Q2 (C1–C3) | 28.77 | |
C3 | 6.52 | 13.05 |
Mixture | O | Ca | Si | Al | Ca/Si |
---|---|---|---|---|---|
S360 | 53.30 | 22.37 | 21.92 | 2.41 | 0.42 |
S414 | 50.83 | 4.45 | 30.44 | 9.07 | 0.15 |
S54/20 | 54.18 | 28.54 | 14.54 | 2.74 | 1.96 |
S54/40 | 55.57 | 21.68 | 19.31 | 3.44 | 1.12 |
S54/60 | 68.79 | 27.02 | 2.10 | 2.10 | 12.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicula, L.M.; Manea, D.L.; Simedru, D.; Cadar, O.; Becze, A.; Dragomir, M.L. The Influence of Blast Furnace Slag on Cement Concrete Road by Microstructure Characterization and Assessment of Physical-Mechanical Resistances at 150/480 Days. Materials 2023, 16, 3332. https://doi.org/10.3390/ma16093332
Nicula LM, Manea DL, Simedru D, Cadar O, Becze A, Dragomir ML. The Influence of Blast Furnace Slag on Cement Concrete Road by Microstructure Characterization and Assessment of Physical-Mechanical Resistances at 150/480 Days. Materials. 2023; 16(9):3332. https://doi.org/10.3390/ma16093332
Chicago/Turabian StyleNicula, Liliana Maria, Daniela Lucia Manea, Dorina Simedru, Oana Cadar, Anca Becze, and Mihai Liviu Dragomir. 2023. "The Influence of Blast Furnace Slag on Cement Concrete Road by Microstructure Characterization and Assessment of Physical-Mechanical Resistances at 150/480 Days" Materials 16, no. 9: 3332. https://doi.org/10.3390/ma16093332
APA StyleNicula, L. M., Manea, D. L., Simedru, D., Cadar, O., Becze, A., & Dragomir, M. L. (2023). The Influence of Blast Furnace Slag on Cement Concrete Road by Microstructure Characterization and Assessment of Physical-Mechanical Resistances at 150/480 Days. Materials, 16(9), 3332. https://doi.org/10.3390/ma16093332