Exploring Pyrrolo-Phenanthrolines as Semiconductors for Potential Implementation in Organic Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Organic Compounds Based on Pyrrolo[1,2-i][1,7] Phenanthrolines
2.2. Obtaining and Techniques Used for the Characterization of Compounds and Organic Thin Layers
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mustafa, M.; Kim, H.C.; Yang, H.D.; Choi, K.H. Characterization of the small molecule based organic thin film fabricated by electrospray deposition technique. J. Mater. Sci. Mater. Electron. 2013, 24, 4321–4327. [Google Scholar] [CrossRef]
- Lee, E.K.; Lee, M.Y.; Park, C.H.; Lee, H.R.; Oh, J.H. Toward Environmentally Robust Organic Electronics: Approaches and Applications. Adv. Mater. 2017, 29, 1703638. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yan, D.; Jones, T.S. Molecular Template Growth and Its Applications in Organic Electronics and Optoelectronics. Chem. Rev. 2015, 115, 5570–5603. [Google Scholar] [CrossRef]
- Kim, K.-H.; Park, M.-J.; Kim, J.-H. Crack-Assisted Charge Injection into Solvent-Free Liquid Organic Semiconductors via Local Electric Field Enhancement. Materials 2020, 13, 3349. [Google Scholar] [CrossRef] [PubMed]
- Sahki, F.A.; Bouraiou, A.; Taboukhat, S.; Messaadia, L.; Bouacida, S.; Figa, V.; Bouchouit, K.; Sahraoui, B. Design and synthesis of highly conjugated Electronic Phenanthrolines Derivatives for remarkable NLO properties and DFT analysis. Optik 2021, 241, 166949. [Google Scholar] [CrossRef]
- Danac, R.; Al Matarneh, C.M.; Shova, S.; Daniloaia, T.; Balan, M.; Mangalagiu, I.I. New indolizines with phenanthroline skeleton: Synthesis, structure, antimycobacterial and anticancer evaluation. Bioorganic Med. Chem. 2015, 23, 2318–2327. [Google Scholar] [CrossRef]
- Bencini, A.; Lippolis, V. 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord. Chem. Rev. 2010, 254, 2096–2180. [Google Scholar] [CrossRef]
- Leontie, L.; Danac, R.; Apetroaei, N.; Rusu, G.I. Study of electronic transport properties of some new N-(p-R-phenacyl)-1,7-phenanthrolinium bromides in thin films. Mater. Chem. Phys. 2011, 127, 471–478. [Google Scholar] [CrossRef]
- D’silva, E.D.; Podagatlapalli, G.K.; Rao, S.V.; Rao, D.N.; Dharmaprakash, S.M. New, high efficiency nonlinear optical chalcone co-crystal and structure–property relationship. Cryst. Growth Des. 2011, 11, 5362–5369. [Google Scholar] [CrossRef]
- Craciun, A.-M.; Rotaru, A.; Cojocaru, C.; Mangalagiu, I.I.; Danac, R. New 2,9-disubstituted-1,10-phenanthroline derivatives with anticancer activity by selective targeting of telomeric G-quadruplex DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 249, 119318. [Google Scholar] [CrossRef]
- Airinei, A.; Tigoianu, R.; Danac, R.; Al Matarneh, C.M.; Isac, D.L. Steady state and time resolved fluorescence studies of new indolizine derivatives with phenanthroline skeleton. J. Lumin. 2018, 199, 2–12. [Google Scholar] [CrossRef]
- Al Matarneh, C.M.; Amarandi, R.M.; Craciun, A.M.; Mangalagiu, I.I.; Zbancioc, G.; Danac, R. Design, synthesis, molecular modelling and anticancer activities of new fused phenanthrolines. Molecules 2020, 25, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danac, R.; Daniloaia, T.; Antoci, V.; Vasilache, V.; Mangalagiu, I.I. Design, Synthesis and Antimycobacterial Activity of Some New Azaheterocycles: Phenanthroline with p-halo-benzoyl Skeleton. Part V. Lett. Drug Des. Discov. 2015, 12, 14–19. [Google Scholar] [CrossRef]
- Al Matarneh, C.M.; Mangalagiu, I.I.; Shova, S.; Danac, R. Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolophenanthroline derivatives. J. Enzyme Inhib. Med. Chem. 2016, 31, 470–480. [Google Scholar]
- Amiri, M.; Shul, G.; Donzel, N.; Bélanger, D. Aqueous electrochemical energy storage system based on phenanthroline- and anthraquinone-modified carbon electrodes. Electrochim. Acta 2021, 390, 138862. [Google Scholar] [CrossRef]
- Al-Matarneh, C.M.; Rosca, I.; Shova, S.; Danac, R. Synthesis and properties of new fused pyrrolo-1,10-phenanthroline type derivatives. J. Serb. Chem. Soc. 2021, 86, 901–915. [Google Scholar] [CrossRef]
- Zheng, X.J.; Jin, L.P.; Mei, Y.H.; Zhu, L.G. Photochromism and Electrospray Mass Spectrum of the Ternary Europium System with Nicotinic Acid and 1,10-Phenanthroline. J. Solut. Chem. 2001, 30, 985–994. [Google Scholar] [CrossRef]
- Li, L.-L.; Hu, P.; Wang, B.-Q.; Yu, W.-H.; Shimizu, Y.; Zhao, K.-Q. Synthesis and mesomorphism of ether–ester mixed tail C3-symmetrical truxene discotic liquid crystals. Liq. Cryst. 2010, 37, 499–506. [Google Scholar] [CrossRef]
- Dayrit, F.M.; de Dios, A.C. 1H and 13C NMR for the Profiling of Natural Product Extracts: Theory and Applications, Spectroscopic Analyses—Developments and Applications; Sharmin, E., Zafar, F., Eds.; IntechOpen: London, UK, 2017. [Google Scholar]
- Tyona, M.D. A theoretical study on spin coating technique. Adv. Mater. Res. 2013, 2, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Miao, J.; Li, T.; Liu, M.; Murtaza, I.; Meng, H. Reduced interface losses in inverted perovskite solar cells by using a simple dual-functional phenanthroline derivative. Nano Energy 2018, 43, 72–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Song, J.; Chen, Z.; He, J.; Wang, X.; Liu, H.; Chen, S.; Qu, J.; Wong, W.-Y. Achieving High-Performance Solution-Processed Deep-Red/Near-Infrared Organic Light-Emitting Diodes with a Phenanthroline-Based and Wedge-Shaped Fluorophore. Adv. Electron. Mater. 2019, 5, 1800677. [Google Scholar] [CrossRef]
- Spangler, L.L.; Torkelson, J.M.; Royal, J.S. Influence of solvent and molecular weight on thickness and surface topography of spin-coated polymer films. Polym. Eng. Sci. 1990, 30, 644–653. [Google Scholar] [CrossRef]
- Peeters, T.; Remoortere, B.V. Parameters of the spin coating process. J. Appl. Sci. 2008, 46, 685–696. [Google Scholar]
- Larson, R.G.; Rehg, T.J. Spin Coating. Liquid Film Coating; Kistler, S.F., Schweizer, P.M., Eds.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Panigrahi, S.; Waugh, S.; Rout, S.K.; Hassan, A.K.; Ray, A.K. Study of spin coated organic thin film under spectrophotometer. J. Mater. Res. 2008, 28, 858. [Google Scholar]
- Skrobis, K.J.; Denton, D.D.; Skrobis, A.V. Effect of early solvent evaporation on the mechanism of the spin coating of polymeric solutions. Polym. Eng. Sci. 1990, 30, 193–196. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, H.; Zhu, Q.; Luo, P.; Dong, S. Theoretical calculation and analysis of ZrO2 spherical nanometer powders. J. Adv. Ceram. 2013, 2, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 2018, 204, 1–7. [Google Scholar] [CrossRef]
- Klung, H.; Alexander, L. X-ray Diffraction Procedures; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Leontie, L.; Doroftei, C. Nanostructured spinel ferrites for catalytic combustion of gasoline vapors. Catal. Lett. 2017, 147, 2542–2548. [Google Scholar] [CrossRef]
- Doroftei, C.; Leontie, L. Nanocrystalline SrMnO3 perovskite prepared by sol–gel self-combustion method for sensor applications. J. Sol-Gel Sci. Technol. 2021, 97, 146–154. [Google Scholar] [CrossRef]
- Doroftei, C. Formaldehyde sensitive Zn-doped LPFO thin films obtained by rf sputtering. Sens. Actuators B Chem. 2016, 231, 793–799. [Google Scholar] [CrossRef]
- Brenner, T.M.; Egger, D.A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic—Inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007. [Google Scholar] [CrossRef]
- Schweicher, G.; Olivier, Y.; Lemaur, V.; Geerts, Y.H. What Currently Limits Charge Carrier Mobility in Crystals of Molecular Semiconductors? Isr. J. Chem. 2013, 53, 1–27. [Google Scholar] [CrossRef]
- Rusu, G.I.; Airinei, A.; Rusu, M.; Prepeliţă, P.; Marin, L.; Cozan, V.; Rusu, I.I. On the electronic transport mechanism in thin films of some new poly(azomethine sulfone)s. Acta Mater. 2007, 55, 433–442. [Google Scholar] [CrossRef]
- Doroftei, C.; Leontie, L. Porous Nanostructured Gadolinium Aluminate for High-Sensitivity Humidity Sensors. Materials 2021, 14, 7102. [Google Scholar] [CrossRef]
- Rusu, G.I.; Căplănuş, I.; Leontie, L.; Airinei, A.; Butuc, E.; Mardare, D.; Rusu, I.I. Studies on the electronic transport properties of some aromatic polysulfones in thin films. Acta Mater. 2001, 49, 553–559. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics; Technical Publishing House: Bucharest, Romania, 1971. [Google Scholar]
- Neugebauer, C.A.; Newkirk, J.B.; Vermilyea, D.A. Structure and Properties of Thin Films, 1st ed.; John Wiley: New York, NY, USA, 1959. [Google Scholar]
- Sta, I.; Jlassi, M.; Hajji, M.; Boujmil, M.F.; Jerbi, R.; Kandyla, M.; Kompitsas, M.; Ezzaouia, H. Structural and optical properties of TiO2 thin films prepared by spin coating. J. Sol. Gel Sci. Technol. 2014, 72, 421–427. [Google Scholar] [CrossRef]
- Kaiser, C.; Sandberg, O.J.; Zarrabi, N.; Li, W.; Meredith, P.; Armin, A. A universal Urbach rule for disordered organic semiconductors. Nat. Commun. 2021, 12, 3988. [Google Scholar] [CrossRef]
- Pancove, J. Optical Processes in Semiconductors; Prentice-Hall: Hoboken, NJ, USA, 1979. [Google Scholar]
- Yakuphanoglu, F. Electrical conductivity, optical and metal–semiconductor contact properties of organic semiconductor based on MEH-PPV/fullerene blend. J. Phys. Chem. Solids 2008, 69, 949–954. [Google Scholar] [CrossRef]
- Jagtap, S.; Rane, S.; Gosavi, S.; Amalnerkar, D. Low temperature synthesis and characterization of NTC powder and its ‘lead free’ thick film thermistors. Microelectron. Eng. 2010, 87, 104–107. [Google Scholar] [CrossRef]
- Leontie, L.; Danac, R.; Druta, I.; Carlescu, A.; Rusu, G.I. Newly synthesized fused heterocyclic compounds in thin films with semiconductor properties. Synth. Met. 2010, 160, 1273–1279. [Google Scholar] [CrossRef]
- Nagai, T.; Yamamoto, K.; Kobayashi, I. SiC thin-film thermistor. J. Phys. E 1982, 15, 520. [Google Scholar] [CrossRef]
- TME Electronic Components, NTC Thermistors. Available online: https://www.tme.eu/it/katalog/termistori_112323/ (accessed on 20 March 2023).
Compound | PP/CHN-1 | PP/CHN-2 | PP/CHN-3 |
---|---|---|---|
Chemical formula | C26H20N2O3 | C25H17BrN2O3 | C25H17ClN2O3 |
Molecular weight (M(g/mol)) | 408.45 | 473.72 | 428.87 |
Color | orange | yellow | yellow |
Melting point (°C) | 219–221 | 250–251 | 253–255 |
Compound | Aliphatic H | Aromatic H | Aliphatic C | Aromatic C | Ester C | Ketone C |
---|---|---|---|---|---|---|
Chemical shift (CDCl3, δ (ppm)) | ||||||
PP/CHN-1 | 1.31 (CH3) 2.43 (CH3) 4.33 (CH2) | 7.31, 7.48, 7.68, 7.81, 7.97, 8.04, 8,18, 8.50, 8.99, 9.16 | 14.5 (CH3) 21.7 (CH3) 60.3 (CH2) | 107.6, 118.6, 121.0, 121.8, 124.4, 125.4, 127.6, 127.9, 129.3, 130.3, 133.9, 135.5, 137.7, 140.7, 143.9, 149.4 | 164.0 | 184.4 |
PP/CHN-2 | 1.43 (CH3) 4.41 (CH2) | 7.58, 7.73, 7.76, 7.94, 8,00, 8.14, 8.27, 8.60, 9.09, 9.30 | 14.6 (CH3) 60.3 (CH2) | 107.6, 118.1, 120.3, 122.0, 122.8, 125.4, 125.3, 127.2, 127.9, 128.0, 131.5, 131.9, 130.7, 133.6, 136.1, 137.2, 141.4, 145.2, 150.5 | 163.9 | 83.1 |
PP/CHN-3 | 1.42 (CH3) 4.42 (CH2) | 7.58, 7.78, 7.94, 8.10, 8.14, 8.33, 8.62, 9.12, 9.33 | 14.5 (CH3) 60.4 (CH2) | 107.8, 118.3, 122.1, 122.0, 125.1, 125.4, 127.2, 127.8, 128.9, 131.4, 130.7, 133.8, 136.7, 139.4, 141.2, 144.2, 149.8 | 163.8 | 183.0 |
Compound | Calculated Exact Mass (m/z) | Experimental Exact Mass (m/z) |
---|---|---|
PP/CHN-1 (C26H20N2O3 + H)+ | 409.16 | 409.14 |
PP/CHN-2 (C25H17BrN2O3 + H)+ | 473.05 | 473.01 |
PP/CHN-3 (C25H17ClN2O3 + H)+ | 429.10 | 429.09 |
PP/CHN-1 | PP/CHN-2 | PP/CHN-3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ (μm) | I/I0 (%) | 2θ (deg.) | d (nm) | D (nm) | δ (μm) | I/I0 (%) | 2θ (deg.) | d (nm) | D (nm) | δ (μm) | I/I0 (%) | 2θ (deg.) | d (nm) | D (nm) |
51.19 | 14.93 | 0.593 | 29.91 | 86.80 | 10.56 | 0.837 | 21.94 | 96.96 | 11.05 | 0.800 | 30.89 | |||
51.81 | 15.74 | 0.563 | 26.19 | 86.37 | 10.76 | 0.822 | 55.60 | 100.00 | 12.32 | 0.718 | 14.91 | |||
100.00 | 17.66 | 0.502 | 30.01 | 86.80 | 11.43 | 0.774 | 37.93 | 96.96 | 13.28 | 0.666 | 96.96 | |||
51.81 | 19.94 | 0.445 | 21.61 | 87.53 | 13.15 | 0.673 | 26.96 | 96.20 | 13.87 | 0.638 | 96.20 | |||
51.50 | 23.97 | 0.371 | 31.44 | 85.53 | 14.12 | 0.627 | 30.98 | 99.24 | 15.24 | 0.581 | 15.23 | |||
54.20 | 25.01 | 0.356 | 25.01 | 88.38 | 14.92 | 0.593 | 27.91 | 96.20 | 17.17 | 0.516 | 15.26 | |||
12 | 57.29 | 26.52 | 0.336 | 31.59 | 89.65 | 16.36 | 0.541 | 29.96 | 95.54 | 18.57 | 0.477 | 15.29 | ||
51.50 | 27.27 | 0.327 | 31.64 | 89.65 | 16.97 | 0.522 | 23.32 | 11 | 96.20 | 19.60 | 0.452 | 31.21 | ||
52.12 | 29.91 | 0.298 | 28.64 | 85.53 | 17.64 | 0.502 | 32.31 | 95.16 | 20.99 | 0.423 | 95.16 | |||
50.88 | 35.55 | 0.252 | 31.14 | 11 | 85.95 | 18.21 | 0.487 | 15.29 | 97.34 | 22.43 | 0.396 | 30.23 | ||
49.96 | 39.19 | 0.229 | 31.47 | 100.00 | 19.80 | 0.448 | 30.10 | 99.62 | 23.87 | 0.372 | 27.37 | |||
50.57 | 43.45 | 0.208 | 18.24 | 87.96 | 22.43 | 0.396 | 23.51 | 97.34 | 24.90 | 0.357 | 31.48 | |||
50.27 | 45.52 | 0.195 | 33.47 | 88.80 | 24.51 | 0.363 | 44.72 | 96.20 | 25.90 | 0.344 | 15.49 | |||
90.91 | 24.95 | 0.356 | 31.49 | 100.00 | 27.29 | 0.326 | 15.53 | |||||||
99.15 | 25.54 | 0.348 | 31.53 | 91.09 | 44.21 | 0.204 | 91.09 | |||||||
90.49 | 27.29 | 0.326 | 17.80 | 90.33 | 48.72 | 0.186 | 16.57 | |||||||
89.65 | 28.12 | 0.317 | 19.02 | |||||||||||
86.37 | 33.07 | 0.270 | 26.24 | |||||||||||
85.11 | 45.62 | 0.198 | 33.36 | |||||||||||
82.57 | 48.70 | 0.186 | 39.62 | |||||||||||
82.15 | 51.31 | 0.178 | 32.89 |
Sample | σc (Ω−1·cm−1) | ΔT (K) | σT (Ω−1·cm−1) | Tc (K) | Ea (eV) | Eg (eV) |
---|---|---|---|---|---|---|
PP/CHN-1 | 1.99 × 10−4 | 293–483 | 3.93 × 10−3 | 307 | 0.758 | 1.516 |
PP/CHN-2 | 1.27 × 10−4 | 293–513 | 6.20 × 10−3 | 311 | 0.785 | 1.570 |
PP/CHN-3 | 1.45 × 10−4 | 293–513 | 7.93 × 10−3 | 321 | 0.782 | 1.564 |
Sample | B (K) | −αT (K−1) |
---|---|---|
PP/CHN-1 | 3928 | 0.0265 |
PP/CHN-2 | 3879 | 0.0262 |
PP/CHN-3 | 3867 | 0.0261 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroftei, C.; Leontie, L.; Danac, R.; Matarneh, C.-M.A.; Carlescu, A. Exploring Pyrrolo-Phenanthrolines as Semiconductors for Potential Implementation in Organic Electronics. Materials 2023, 16, 3366. https://doi.org/10.3390/ma16093366
Doroftei C, Leontie L, Danac R, Matarneh C-MA, Carlescu A. Exploring Pyrrolo-Phenanthrolines as Semiconductors for Potential Implementation in Organic Electronics. Materials. 2023; 16(9):3366. https://doi.org/10.3390/ma16093366
Chicago/Turabian StyleDoroftei, Corneliu, Liviu Leontie, Ramona Danac, Cristina-Maria Al Matarneh, and Aurelian Carlescu. 2023. "Exploring Pyrrolo-Phenanthrolines as Semiconductors for Potential Implementation in Organic Electronics" Materials 16, no. 9: 3366. https://doi.org/10.3390/ma16093366
APA StyleDoroftei, C., Leontie, L., Danac, R., Matarneh, C. -M. A., & Carlescu, A. (2023). Exploring Pyrrolo-Phenanthrolines as Semiconductors for Potential Implementation in Organic Electronics. Materials, 16(9), 3366. https://doi.org/10.3390/ma16093366