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Abstract: This paper provides a review of models commonly used over the years in the study
of microscopic models of material corrosion mechanisms, data mining methods and the corrosion-
resistant performance control of structural steels. The virtual process of material corrosion is combined
with experimental data to reflect the microscopic mechanism of material corrosion from a nano-scale
to macro-scale, respectively. Data mining methods focus on predicting and modeling the corrosion
rate and corrosion life of materials. Data-driven control of the corrosion resistance of structural
steels is achieved through micro-alloying and organization structure control technology. Corrosion
modeling has been used to assess the effects of alloying elements, grain size and organization purity
on corrosion resistance, and to determine the contents of alloying elements.

Keywords: data-driven; corrosion mechanism; material life; corrosion resistance modulation; modeling
and simulation

1. Introduction

The material systems under study are becoming more and more complex with the
development of the materials discipline, and accordingly it is more and more difficult
to find regulars in complex material systems and to develop new materials. The main
means of research and development of new materials are still based on the researcher’s
scientific intuition and a large number of repeated trial-and-error experiments [1], such
as outdoor exposure methods [2], electrochemical testing methods [3], indoor accelerated
simulation methods [3], etc. These methods can directly or indirectly study the influence
and the mechanism of a single variable on the corrosion failure process of structural steels.
However, the structural steels corrosion failure process and time-varying regulars are
complex, and the response signal is weak. It is difficult for traditional methods to accurately
investigate the corrosion initiation mechanism of structural steels, and the amount of
data obtained by these experimental methods is small and cannot accurately reflect the
structural steels regular change over time [4]. Therefore, there is an urgent need to shorten
the experimental period, but also to consider a variety of factors impacting the corrosion of
structural steels data flow collection and processing methods to assist the development of
corrosion-resistant structural steels.

In recent years, corrosion big data technology [5] has achieved rapid development,
and has become an advanced means of efficient collection and analysis of corrosion process
data under complex systems. Not only can corrosion data and various environmental
factors data be collected continuously, but so can the multi-dimensional data stream for
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modeling and processing [6]. Therefore, the process of environmental corrosion and the
main factors affecting of corrosion have only been recently understood. Because corrosion
data can instantly reflect the influence of multi-dimensional variables on the output results,
the amount of effective information obtained in a week is equivalent to that of a year or
even a decade of data from the traditional method. As a result, the test cycle is greatly
reduced and can be applied to control corrosion-resistant structural steels. Secondly,
computational materials science [7] and integrated computational materials engineering [8]
also propose the use of computational tools or the development of new computational
tools to assist in the development of corrosion-resistant structural steels. The establishment
of a digital corrosion database will provide a database for material corrosion research in
order to achieve the storage of corrosion big data and the sharing of information. The
integration of material corrosion mechanisms, corrosion big data, information science and
computer technology to establish material corrosion models is the main research method
for developing new corrosion-resistant structural steels.

In the paper, the research work on structural steels corrosion modeling is divided
into three parts: the study of microscopic models of material corrosion mechanisms, the
study of data mining models and the study of the performance control of corrosion-
resistant structural steels. The main means of microscopic modeling of material corrosion
mechanisms is to establish nano- to macroscopic two- and three-dimensional structural
models, using first-principles, molecular dynamics, Monte Carlo simulations, cellular
automata, finite elements and boundary elements to reproduce the material corrosion
process in an order from small to large scales. Data mining model research involves
the use of data mining tools for existing data sets to establish an abstract or figurative
corrosion prediction mathematical model for the characteristics of the data set using the
corresponding mathematical model. The main methods for the study of corrosion-resistant
structural steels performance control are micro-alloying technology [9] and organization
control technology [10]. Micro-alloying technology is the addition of corrosion-resistant
alloying elements in structural steels to change the matrix corrosion resistance or the
physical and chemical structure of the rust layer, thus improving the corrosion resistance
of structural steels. Organization control technology involves heat treatment and other
processes to refine the grain and make the organization structure pure. This paper provides
an overview of the trends in the development of corrosion-resistant structural steels at
home and abroad in recent years, and obtains corrosion mechanisms and regulars that
cannot be obtained from traditional fragmentation data, which will become an important
basis for the development of high-quality corrosion-resistant structural steels.

2. Microscopic Model of Corrosion Mechanism of Materials

The research on the corrosion mechanism of materials mainly reflects the corrosion
process of materials by combining the virtual process of material corrosion with exper-
imental data through computer software, so as to clarify the corrosion mechanism of
materials. Density functional theory (DFT), molecular dynamics (MD), cellular automata,
finite element simulation, boundary element simulation, gray correlation analysis and
other methods were used to simulate the corrosion process of materials from nanoscale
to macroscale, among which the Monte Carlo method can combine various theories to
conduct multi-scale researches, as shown in Figure 1.
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terials. In the past decade or so, first-principles calculations based on DFT have demon-
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ing and other behaviors presented in the corrosion processes on a nanoscale [17–21]. 

2.1.1. Material Surface Model 
Since the electrochemical corrosion processes are mainly related to the oxidation of 

O2 molecules and the formation of an electrical double layer by H2O molecules, most stud-
ies have been discussed with O2 and H2O molecules as the adsorption objects. In 2000, 
Graedel and Leygraf [22] found that it would take about 1 μs to form an oxide layer on 
the metal surfaces when they were exposed to the atmosphere, so the formation mecha-
nism of the oxide layer cannot be investigated by conventional experimental methods. 
The decomposition and reconfiguration behavior of O2 on the Al (111) surface by first-
principles was calculated and it was found that the differences in the coverage of the orig-
inal adsorption sites would affect the type of adsorption configuration [23], while DFT 
calculations found that O2 molecules could only adsorb to the first FCC site on the Al (111) 
surface and could not penetrate to the subsurface [24]. The interface between metal and 
water also plays a crucial role in the corrosion process, so it is significant to study the 
bonding interaction between water and oxygen molecules on the material surface [25]. 
Although DFT calculations can effectively study the interactions between Al [26,27], Cu 
[28], Pt [29], etc., and metals and H2O molecules, the inability of the standard DFT method 
to represent the weak interactions between metal surfaces and H2O molecules makes the 
calculations difficult [30]. 

Moreover, it has been shown that the van der Waals dispersion forces should be 
taken into account when considering the interaction of metal surfaces with H2O molecules 
[31,32], and, in response to this view, Soria et al. [33] found that the van der Waals forces 
can only affect the adsorption energy magnitude and have no significant effect on the 
adsorption structure. Klimeš et al. [34] also improved the standard DFT method by in-
cluding the van der Waals forces, which effectively corrected the errors for most systems 
that required the consideration of van der Waals interactions. In addition to the studies 
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2.1. First-Principles

DFT describes the physical properties of the ground state of a system by the density of
particles [11,12]. The calculations based on DFT are called first-principles, and software
such as the Vienna Ab-initio Simulation Package (VASP) and Cambridge Sequential Total
Energy Package (CASTEP) have been developed. In the field of corrosion, first-principles
calculations are mainly focused on the study of the corrosion failure mechanisms of materi-
als. In the past decade or so, first-principles calculations based on DFT have demonstrated
powerful capabilities in studying the corrosion mechanisms [13–16], including the material
surface properties, the interpretation and analysis of adsorption, diffusion, bonding and
other behaviors presented in the corrosion processes on a nanoscale [17–21].

2.1.1. Material Surface Model

Since the electrochemical corrosion processes are mainly related to the oxidation of
O2 molecules and the formation of an electrical double layer by H2O molecules, most
studies have been discussed with O2 and H2O molecules as the adsorption objects. In
2000, Graedel and Leygraf [22] found that it would take about 1 µs to form an oxide
layer on the metal surfaces when they were exposed to the atmosphere, so the formation
mechanism of the oxide layer cannot be investigated by conventional experimental methods.
The decomposition and reconfiguration behavior of O2 on the Al (111) surface by first-
principles was calculated and it was found that the differences in the coverage of the
original adsorption sites would affect the type of adsorption configuration [23], while DFT
calculations found that O2 molecules could only adsorb to the first FCC site on the Al
(111) surface and could not penetrate to the subsurface [24]. The interface between metal
and water also plays a crucial role in the corrosion process, so it is significant to study
the bonding interaction between water and oxygen molecules on the material surface [25].
Although DFT calculations can effectively study the interactions between Al [26,27], Cu [28],
Pt [29], etc., and metals and H2O molecules, the inability of the standard DFT method to
represent the weak interactions between metal surfaces and H2O molecules makes the
calculations difficult [30].

Moreover, it has been shown that the van der Waals dispersion forces should be taken
into account when considering the interaction of metal surfaces with H2O molecules [31,32],
and, in response to this view, Soria et al. [33] found that the van der Waals forces can only
affect the adsorption energy magnitude and have no significant effect on the adsorption
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structure. Klimeš et al. [34] also improved the standard DFT method by including the
van der Waals forces, which effectively corrected the errors for most systems that required
the consideration of van der Waals interactions. In addition to the studies targeting the
adsorption of O2 and H2O molecules, the adsorption behavior of SO2 molecules [35] and
benzotriazole (BTA) [36] on the surface of the metal-passivated film was studied using a
DFT method through adapting the algorithm. The results showed that the adsorption of
SO2 molecules on the surface is greatly enhanced in the presence of O vacancies, further
indicating the importance of the integrity of the passivated film on the material surface for
corrosion resistance.

By studying the shielding effect of the material surface structure on corrosive molecules,
it laterally reflects the corrosion resistance of the material or coating, and it is also important
to study the corrosion resistance mechanism of materials. Based on DFT calculations,
Li et al. [37] showed that BN films with more than two layers of structural integrity already
possess a strong dielectric shielding effect, and this performance helps to protect metals
from corrosion by stray currents. Kulmas et al. [38] investigated the effect of adding TiO2 on
the performance of pure ZnO overlays by model calculations, and found that Ti atoms on
the ZnO surface slightly reduced the energy band gap of ZnO, thus increasing the stability
of the electrode and improving the corrosion resistance.

2.1.2. Internal Lattice Model

First-principles calculations can also simulate the internal structure of crystals and
investigate the material failure process. Most of the studies focus on the development
of hydrogen atom diffusion models to investigate the corrosion mechanism of materials
by calculating the interfacial binding energy with the effect of the aggregated hydrogen
atoms on the interfacial binding energy. Relevant calculations have been performed to
demonstrate that hydrogen atoms readily occupy octahedral gaps within crystals [39–42].
The interaction of hydrogen atoms with 17 transition group metal surfaces was studied
by the periodically self-consistent DFT-GGA (PW91) method [43]. It is found that the
activation energy barrier of H diffusing inward on different surfaces is very different, even
for the same metal. The diffusion energy barriers of hydrogen atoms are higher than the
experimentally obtained values of the grain boundary energy barriers, indicating that the
diffusion process of hydrogen atoms inside Er2O3 is controlled by the grain boundaries [44].
For the metal Al, H atom biasing causes a decrease in the grain boundary binding energy
at each crystal plane [45]. Unlike the newly revealed mechanism, Fernandez et al. [46]
investigated the diffusion of H atoms inside Wolfram(W) using a combination of DFT,
transition state theory and a thermodynamic static model. By combining the temperature
data obtained from the model with the macroscopic experimental results, it is effectively
revealed that the deviation between the H diffusion coefficient measured by DFT and the
experimental results is caused by the temperature difference and vacancy concentration.

In addition to diffusion modeling, some studies have taken the lattice itself as the
object of study. The effect of cyclic loading on the crack formation threshold region of
alumina was explored, and it was found that alumina lattices subjected to uniaxial tensile
and unloading stresses can suffer from nanoscale fatigue, which in turn may affect the
durability of ceramics [47]. Additionally, it proved further that the fracture energy can be
obtained by calculating grain boundary energy and surface energy, which greatly simplified
the characterization of fracture energy [48].

2.2. Molecular Dynamics

Since quantum chemical calculation methods based on first principles are usually
only applicable to models where the system contains no more than 100 atoms or small
molecules, and cannot support a large number of metal atoms and hundreds of solvent
molecules at the same time, the molecular dynamics (MD) method is required to meet the
needs of the simulation scale. MD uses the laws of endogenous dynamics to calculate and
determine the shape transition of a system. At the beginning of the calculation, the MD
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method needs to determine the form of force between the atoms in the system, establish
a mathematical model by means of Newtonian mechanics, and study the corresponding
characteristics of particles by mathematical statistics. In recent years, due to the transition
of the corrosion mechanism from a static to dynamic status, MD simulation has become an
important research tool [49,50].

MD is frequently used to study phase interfaces [51,52]. For example, the size of
the contact angle was simulated between water droplets and graphene coatings with
different numbers of molecular layers, and the results showed that the water contact
angle was independent of the number of graphene molecular layers, and that a single
graphene molecular layer had good hydrophobicity [53]. The corrosion processes of oxygen
molecules, chloride ions and metals have an important relationship with the types of metals.
At the early stage of corrosion, it was found that the surface oxygen concentration plays
a decisive role in the stability and corrosion resistance of the passivation film [54]. On
the gold surface, the first layer of water molecules forms a network that is not connected
to the gold surface, and the orientation of the water molecules is evenly distributed [55].
Prasanna et al. used molecular dynamics and quantum chemical parameters simulations to
study the corrosion inhibition for soft-cast steel by the corrosion inhibitors olmesartan [56]
and ketosulfone [57] in 1 mol dm−3 HCl. The experiment suggests that the inhibition
efficiency of olmesartan increases with its increasing concentrations due to the adsorption
at the temperature region of 303 K to 333 K. Even at a higher temperature of 333 K, the
inhibitor molecules attain their stability towards the corrosion resistance of steel surfaces.
The adsorption of olmesartan on steel surfaces is spontaneously found to include a mixture
of physisorption and chemisorption. However, the inhibition efficiency of ketosulfone
increases with an increase in concentration and with increase in temperature up to 313 K.
The adsorption of the ketosulfone on a steel surface is predominately due to chemisorption
and is spontaneous, which is confirmed by the activation parameters.

MD can also be used to simulate changes inside the material lattice to find the failure
mechanism of materials. Beyerlein et al. [58] used MD modeling to confirm that radiation
damage to materials is mainly caused by the stress concentration caused by the generation
of vacancies in the material. The failure forms of galvanized iron products and copper prod-
ucts were simulated using MD. The simulation results showed that the onset of failure was
accompanied by a corresponding stretching of the Zn atomic lattice [59], and the [110]/[100]
interface of copper could more easily withstand the changes in temperature and load than
other interface structures, but was less prone to the formation of failure behavior [60].

2.3. Monte Carlo Simulation at the Micro- and Nano-Scale

The Monte Carlo method is a process simulation method based on probabilistic and
statistical theory methods. The basic idea is to set the corresponding base parameters
to establish a probabilistic model or generate a stochastic process. Through multiple
simulation operations on the model or process, the statistical distribution characteristics
of the requested parameters are obtained, and the arithmetic mean is regarded as the
approximate value of the requested solution. The Monte Carlo method can simulate the
corrosion process in micro- and nano-scales by combining the first principles, molecular
dynamics and other methods, and it can also set the simulation conditions as the pitting rate
and other macro-scale parameters. The difference is that the use of Monte Carlo methods
for micro- and nano-scale simulations is mostly aimed at studying the corrosion mechanism
of materials, while macro-scale simulations are mainly used for service life prediction and
safety assessment.

The Monte Carlo simulation methods can be used to model the effect of corrosion
inhibitors on carbon steels by combination with MD and molecular mechanics. The effects
of the hydrogen bond length and alkyl side chain of the inhibitor and the steel surface were
obtained after calculation results and experimental results [61]. For instance, Sasikumar
et al. [62] used the first-principles combined with the Monte Carlo simulation process to
simulate the corrosion inhibition of alkylimidazolium tetrafluoroborate ions on carbon steel
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in an acidic environment at the atomic scale. Combining with the experimental verification,
it is found that the corrosion inhibition efficiency of the compound is affected by the length
of its alkyl side chain, and the corrosion inhibition effect is ranked as [C10MIM]+ [BF4]− >
[BDMIM]+ [BF4]− > [EMIM]+ [BF4]−.

2.4. Cellular Automata

Cellular automata (CA) is an ideal physical system model, which is discrete in time
and space and requires only a finite set of values for its physical states [63]. Usually, a
probabilistic CA is used in the simulation of the corrosion process.

Cordoba-Torres et al. [64–67] first used the CA approach to model metal corrosion
processes. The electrochemical reaction rate constants were replaced by probabilistic factors
such as cellular automata evolution rules to simulate the anodic dissolution process of
metals. The results show that there is a cellular islanding phenomenon in the simulation
process, which is consistent with the actual mesoscopic morphology formed during the
dissolution of the metal anode. In addition, the mesoscopic inhomogeneity is quantitatively
analyzed based on the fractal theory. In addition, the CA method was used to simulate
intergranular corrosion, pitting and uniform corrosion. The intergranular corrosion of the
AA2024 aluminum alloy in Cl− solution was simulated by the CA, and the results showed
that both quantitative and qualitative results obtained by the model were in good agreement
with the corrosion data measured by the experiments, which verified the scientific validity
of the CA method to simulate the corrosion process [68]. The competing mechanisms of
pitting and uniform corrosion were proposed from the perspective of corrosion kinetics
and the relationship between corrosion kinetics and corrosion morphology by comparing
the simulation and experimental results [69], which indicated that the growth of sub-pitting
corrosion was controlled by the anode solution [70].

2.5. Finite Element Simulation and Boundary Element Simulation

The Finite Element Method [71] (FEM) is a modern computational method used to
decompose the entire problem area, turning sub-regions into simple structural parts that
can be solved easily. The application of finite element simulation based on mechanics in
corrosion is mainly used to study the stress distribution around structural materials or
pitting pits [72].

Turnbull et al. [73] studied the stress–strain distribution around the pitting pits on
the surface of cylindrical specimens by finite element FEM simulation. They concluded
that the stress at the bottom of the pits was the maximum and the strain at the shoulders
of the pits was even higher. The development of the corrosion process in the pitting
pits was simulated by reducing the number of meshes. Based on the cohesion model,
the influence of hydrogen diffusion on corrosion was studied by FEM software [74,75],
and the simulation data were consistent with the experimental results. Except for the
diffusion of hydrogen atoms, the bias of hydrogen atoms also has a large effect on the
sprouting and extension of intergranular cracks in metals [45]. At the same deformation
displacement, the percentage of failure cells increased with decreased grain boundary
binding energy, while under the same grain boundary binding energy, the percentage of
failure units increased with the increase in displacement, which is an intuitive simulation
and confirmation of the traditional hydrogen-induced intergranular cracking theory [76].
Based on the Abaqus method, the process of crack sprouting and extension was simulated
through two-dimensional linear and secondary bonding cells [77], and a system was
developed for predicting the critical internal stress value of high-strength steels with a
given corrosion defect size through the FEM model. The system has been applied to assess
pipeline safety in Canada.

Since the finite element method is too computationally intensive for three-dimensional
problems, and for problems in infinite domains due to the inability to determine the
boundary conditions and thus the accuracy of the solution, it is a good choice to apply the
numerical calculation of the potential boundary element method in cathodic protection
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engineering. Li [78] established the potential distribution model of cathodic protection
based on the boundary element method by discretely solving the Laplace equation of
the mathematical model of cathodic protection. The results showed that the error of the
boundary element method was controlled within 10% and the evaluation error was at 5%;
so, the calculation results were satisfactory.

2.6. Grey Correlation Analysis

Grey system theory was proposed by Deng Julong in 1982, which was a new method
to solve the problem of a small amount of data and poor information certainty. Grey system
theory takes the “small sample” and “information-poor” uncertain system with partial
information missing as the research object, and through mining the known information,
the correct description of the behavior and evolution law of the system can be realized.
Grey correlation analysis [79] is a data correlation analysis based on grey theory, which is
used to find the key variables by mining the contribution weight of independent variables
to the changes in dependent variables. At present, it is mainly applied to explore the
correlation between various corrosion factors and material corrosion parameters under
specific environments, and to find the key factors of the material corrosion mechanism.

Fu et al. [79] analyzed the correlation between oil and gas pipeline corrosion and
environmental factor data by the grey correlation method, and found that the main factors
causing oil and gas pipeline corrosion were sulfur-free corrosion and the erosion of oil
and gas. Wang et al. [80] analyzed the influence of four atmospheric corrosion factors on
the corrosion rate of distillation equipment in the distillation column by grey correlation
quantification, and found that the salt content in oil and gas had the greatest influence on
the corrosion of the equipment. Cao et al. [81] added more influence factors and analyzed
the relationship between the corrosion rate of Q235 carbon steel accumulated in seven
test stations in China, during a one-year period of atmospheric exposure corrosion tests
(using weight loss method), and the data of 10 environmental factors affecting corrosion,
and concluded that environmental factors contributed to the corrosion rate of carbon
steel. However, the selection of these environmental factors is questionable in regard to
whether the factors are correlated and repeatable, e.g., relative air humidity affects the
time of condensation, while they are assumed to be uncorrelated during data mining.
The limitation of grey correlation analysis is that it can only reflect the specific context of
corrosion factors on the total weight of corrosion contribution.

The material corrosion process from the nano to macroscopic scale simulation, using
DFT, MD, CA, FEM, and the boundary element method of numerical calculation, showed
through grey correlation analysis the contribution of environmental factors to corrosion.
The results showed that grey correlation analysis cannot express the influence of changes in
environmental factors on corrosion. Therefore, it is applicable to the analysis of the material
corrosion mechanism in specific situations.

3. Data Mining Methods for Corrosion Mechanism Research

Material corrosion is a subject that relies on basic data. As human society enters
the era of big data, the amount and complexity of corrosion-related data have greatly
increased [82]. Viktor Mayer-Schönberger [83] pointed out four essential characteristics of
big data (4V): volume, variety, velocity and value, which are also present in the corrosion-
related data. Using data mining tools to effectively dig out hidden corrosion regulars from
existing corrosion data and build a concrete or abstract prediction mathematical model is
an important means to deal with this information. Corrosion data mining includes a variety
of mining methods, which can be selected according to different types of corrosion data or
prediction targets, as shown in Figure 2. At present, most corrosion prediction modeling
research focuses on the prediction of the corrosion rate and corrosion life of materials,
which are described in detail below.
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3.1. Multiple Linear Regression Equation

Multiple linear regression refers to the method of establishing a mathematical model
and making predictions by analyzing the correlation between two or more independent
variables and one dependent variable. The general equation form is as follows.

Y = a + b1x1 + b2x2 + b3x3 + . . . bnxn (1)

where x1, x2, . . . , xn are the independent variables, Y is the dependent variable, and the
rest are unknown constants. Multiple linear equations were the first data mining methods
used to predict the effect of environment on material corrosion.

In 1971, Haynie and Upham [84] proposed an atmospheric corrosion model for carbon
steel with influencing factors such as SO2, exposure time and total oxides. However, due to
the lack of comprehensive data on environmental factors, the fitting effect of this model
was very poor. A Japanese research group used annual atmospheric environmental data
(including temperature T, relative humidity RH, chloride ion Cl−, sulfur dioxide SO2 and
precipitation rainfall) and corresponding exposure test data from seven locations to derive
the carbon steel corrosion rate equation by multiple regression analysis [85].

corrosionrate(mdd)
= 0.484× T(°C) + 0.701× RH(%)
+0.075×

[
Cl−

](
×10−6)+ 8.202× [SO2](mdd)

−0.022× Rainfall
( mm

mon
)
− 52.67

(2)

where T is the temperature, RH is the relative humidity, [Cl−] is the concentration of
chloride ions, [SO2] is the concentration sulfur dioxide and Rainfall is the precipitation
rainfall. This equation is important for the prediction of the corrosion rate of materials
in an unknown atmospheric environment. After that, researchers tend to change the
environmental conditions for the corrosion rate equation, for example, the corrosion rate
of metals at different concentrations of hydrochloric and sulfuric acid solutions [86–88].
Since the multiple linear regression equation requires a linear relationship between the
variables and a high linear regularity of the data itself, it has limited application in the field
of material corrosion data.

3.2. Artificial Neural Networks

Artificial neural networks (ANN) is also the most widely used networks learning
method in corrosion [89–92]. The ANN algorithm can adjust the connection strength be-
tween neural units in an adaptive manner through pre-set mathematical functions, and
then can learn the knowledge from data samples. Compared with the multiple linear
regression equation, ANN has the ability to handle nonlinear data, and also has a strong
fault tolerance for data with noise interference. Therefore, in the modeling and predic-
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tion of corrosion data, ANN usually has better prediction accuracy compared with the
multiple linear method. A typical neural networks model applied to corrosion is shown
in Figure 3 [93]. The left input layer is fed with sample data of corrosion factors (such
as humidity), and the right output layer is fed with sample data of the prediction target
(e.g., first rust time), with a hidden layer in the middle for networks training.
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Currently, ANN is mainly used for modeling corrosion data to adjust the input and
output objects for material life prediction. In 1992, Smets and Bogaerts [94] used neural
networks to predict the stress corrosion cracking of 304 austenitic stainless-steel samples
in near-neutral Cl− solution, which is one of the earliest applications of neural networks
in corrosion research. The prediction accuracy of material corrosion resistance assessed
by ANN is higher than that of the multiple linear regression model [93]. Shi et al. [90]
used similar ANN models with input layers containing temperature, pH, electrochemical
corrosion potential, conductivity and stress intensity factor (Ki) to predict the crack expan-
sion rate of 600 alloy steels and 304 stainless steels due to stress corrosion, respectively,
and the results showed that the errors of the predicted values were basically within the
95% confidence interval, and that all models showed good prediction accuracy. Many
similar studies have been performed [95–98]. In order to substantially innovate the existing
methods of corrosion data mining, ANN and various polarization curves are combined
to predict the polarization curves and then the corrosion potential, polarization resistance
and other parameters are derived, through which the corrosion resistance of materials can
be judged [91]. The effect of time on corrosion kinetics is determined by changing the
algorithm for the ANN model, using the current k moments as inputs to predict the output
of the next moment [99]. Because of the large number of neural network parameters, there
is a certain requirement for the sample size to establish the model, as otherwise there will
be an overfitting problem.

3.3. Bayesian Networks

Bayesian networks are developed based on Bayes’ theorem, and they are graphical
probabilistic networks based on probabilistic reasoning. Bayesian networks focus on
mining the connections between variables and exploring the causality between corrupting
factors. Bayesian networks are mostly used to model the carbonation corrosion process of
reinforced concrete. The causal relationship between data was revealing, as the effects of
temperature, humidity, Cl− concentration, Cl− diffusion coefficient, etc., on the carbonation
coefficient k of reinforced concrete were explored. In addition, the time of corrosion
onset was determined, while the corrosion onset time and the strength value of concrete
together determined the corrosion current. This laterally confirmed the correctness of
stress corrosion theory from the data perspective [100,101]. Because Bayesian networks
are probabilistic statistical models, a certain amount of data was required to ensure the
reliability of the model; so, it is impossible to conduct corrosion data mining in the case of
little data and poor information.
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3.4. Support Vector Machines and Support Vector Regression

Support vector machines (SVM) [102] is a supervised machine learning method built
on the principle of structural risk minimization and the statistical learning theory VC
dimensional theory. SVM aim to find the optimal hyperplane in a high-dimensional space
containing all data equally spaced with different kinds of data sets, so that the type of un-
known corrupted data can be predicted in an identifiable form. SVM have shown excellent
performance in dealing with linear problems and high-dimensional pattern recognition
problems, and have become an emerging tool for material data mining. They can even
effectively use the “waste” data in the experiment, which is a revolution compared to
the traditional research methods [103]. SVM can determine the type of corrosion through
classifying data images by electrochemical noise [104]. At the same time, the optimized
parameters were used to evaluate the corrosion state of weathering steel, and the results
showed that the prediction accuracy of the SVM was higher than that of the ANN [105].
Qiu et al. [106] first proposed a SVM with recursive feature elimination to solve the atmo-
spheric corrosion feature classification problem, but the model could not be fitted accurately
for long-period prediction results due to an insufficient amount of sample data.

Support vector regression (SVR) is built on the theoretical basis of SVM, which aims
to find the regression hyperplane with the minimum variance from the hyperplane for all
sample points in the high-dimensional space. Unlike SVM, which favor the function of
classifying discriminative predictions, SVR focuses more on building regression models
for prediction. Based on the SVR method and back propagation (BP) neural networks,
Wen [107] established a regression model of the corrosion rate of 3C steel in the marine
environment under the influence of five environmental parameters (temperature, dissolved
oxygen concentration, salinity, pH, redox potential), and compared the prediction accuracy
of the two models, which also showed that the SVR method could predict high-dimensional
corrosion data. In addition, the SVR method can be used to predict the corrosion inhibition
efficiency of corrosion inhibitors [108]. The 19 amino acid and 20 benzimidazole derivatives
corrosion inhibitors were studied and the structural parameters of the SVR model were
improved to establish a nonlinear model of corrosion inhibitor efficiency; the results showed
that the average error of this model in predicting the corrosion inhibition efficiency was as
low as 1.48% [109].

3.5. Markov Chain

In 1906, the Russian mathematician A.A. Markov proposed the Markov chain, of
which the evolution of the future state of things is only related to the present state as it is
now known, but not to the past [110]. For example, Brownian motion can be considered
as a Markov process. Multiple linear regression, ANN, SVM and SVR are applicable for
mining multiple and discrete data. For example, for the multi-point etching pits under the
same dimensional condition, each etching pit sample belongs to an independent sample
and is not affected by other etching pit states. Compared with these data mining methods,
the Markov process is more suitable for mining continuous and time-series type data. For
example, for the same pitting pit depth over time, the pitting pit depth at the next moment
is developed on the basis of the current depth considered to be related to the known current
state, and is independent of the state of the pitting pit at the previous moment.

The current corrosion data mining objects through Markov chains are mainly focused
on pitting corrosion datasets. Provan et al. [111] first used a non-singular Markov process
to establish a pitting corrosion depth growth prediction model, and completed the first
combination of Markov chains and material corrosion science research. A model for
predicting the external pitting depth of X52 buried pipeline steels was established by a
continuous time non-flush linear growth Markov process and it compared the prediction
results with the experimental data. The experimental results showed that the prediction
accuracy of the pitting corrosion depth is above 95%, but the prediction accuracy of the
pitting corrosion distribution region is insufficient [112]. Based on Markov process analysis,
researchers discussed the feasibility of jointly determining the service safety of equipment
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by multiple localized corrosion, and proposed the pipeline corrosion index (PCI) to measure
the service safety of aging pipeline steel [113].

3.6. Monte Carlo Simulations at the Macroscopic Scale

The principle of the Monte Carlo simulation method has been described above, which
is a means of data mining for process simulation by setting the corresponding base pa-
rameters to establish probabilistic models or generate stochastic processes. Unlike the
previously introduced data mining tools, the material corrosion model established by the
Monte Carlo simulation cannot adjust the input and output for flexible prediction. This
part is mainly about macro-scale Monte Carlo simulation research, which can be applied
to predict the pitting rate of the pipeline wall and to determine the safety of the pipeline
service by establishing the distribution model of pitting depth or pitting rate in a certain
time period.

Reigada and Sagues [114] first used Monte Carlo methods to discuss localized cor-
rosion in 1994, and in the following year Wang et al. [115] studied the stress corrosion
cracking behavior of Mn-Cr and Ni-Cr-Mo-V, thus opening a new era in the Monte Carlo
simulation study of corrosion issues. Monte Carlo simulation is used to simulate the pitting
rate, probability distribution of pitting depth and service safety reliability analysis of buried
pipeline steels [116]. Additionally, it was found that the pitting growth is the main factor af-
fecting the thinning of the pipeline steel’s inner wall; the pitting rate distribution was more
consistent with F distribution than the Weibull and Gumbel distributions. The Markov
process with non-uniform continuous time was used to establish the distribution model of
the pitting depth of pipelines in future time, and verified that the prediction accuracy was
high, which provided a new way to judge the reliability of pipelines in the future. For the
inspection and maintenance problems within the pipeline at different stages, the authors
divided the pipeline life cycle and maintenance decision into six and five states, respectively,
and used the Markov model and Weibull distribution to establish the pipeline remaining
life model to predict the future corrosion condition of the pipeline and the corresponding
maintenance decision.

3.7. Grey Forecasting

As mentioned above, grey system theory is applicable to the study, but has the prob-
lems of few data, poor information and uncertainty. The core of grey prediction is to
summarize multiple factors affecting the corrosion rate of materials over time, so the type
of corrosion dataset must be in time series. Multiple linear regression, ANN, SVM, SVR,
Markov chains and Monte Carlo simulation have a certain demand for the amount of data
in the sample and cannot handle corrosion data with poor information. The grey prediction
GM (1, 1) model only requires three to seven time-series corrosion data for mining and
modeling, which can predict the change of corrosion-related parameters over time.

At present, GM (1, 1) mining studies on corrosion data are relatively homogeneous,
most of which only predict corrosion rate by changing the specific context of the dataset
mapping [117–119]. Based on the GM (1, 1) model, using grey theory to explore the
corrosion of metals, the corrosion rate caused by oil on the bottom plate of stored petroleum
containers was compared with the experimental data. The error interval was between
0.13% and 5.41%. It shows that the GM (1, 1) model has a high prediction accuracy for
predicting the corrosion data [120–122].

4. Corrosion Resistance Performance Control by Data-Driven

The evaluation of the corrosion resistance of structural steels is often verified by tra-
ditional experimental methods such as periodic immersion experiments, electrochemical
experiments and outdoor exposure tests. However, the corrosion process and corrosion data
obtained for structural steels have the characteristics of discontinuity and dispersion. This
means that the traditional experimental methods cannot accurately assess the corrosion re-
sistance of structural steels. To solve the above problems, the “big data technology research



Materials 2023, 16, 3396 12 of 24

and development of corrosion-resistant steels” can effectively obtain a large number of
environmental factors and the corrosion data of the structural steels field service, avoiding
the problems of small amounts of experimental data and discrete data. This technology
first uses a corrosion probe to capture the continuous and dynamic corrosion process data
of structural steels and the corresponding environmental parameters, such as tempera-
ture, humidity, environmental pollutants, etc. It then uses big data mining technology to
deeply explore the relationship between environmental parameters and structural steel
composition, organization, structure and corrosion data, and finally regulates the corrosion
resistance of structural steels. At present, the corrosion resistance of metal matrix and the
stability of the rust layer are improved mainly by micro-alloying and organization mod-
ulation techniques. At present, the design concept of improving the corrosion resistance
and rust layer stability of the metal matrix, and thus protecting the metal matrix, which
is a high-quality corrosion-resistant material, is mainly realized through micro-alloying
technology and organization structure control technology. Micro-alloying control technol-
ogy refers to the addition of Mo, V, Nb, Cr, Ti and other elements in structural steels. After
a large amount of data are obtained through the corrosion probe test and hanging test,
using the Work function, Pearson correlation analysis and other methods to analyze the
impact of the added alloying elements on the corrosion resistance of structural steels are
used. The organization control technology is used to improve the corrosion resistance of
structural steels by refining the grain size and purification of the organization through heat
treatment. The effect of alloying elements or organization on the corrosion resistance of
structural steels can be assessed using an electrical quantity diagram, clock diagram and
F-index on the large amount of data obtained from both micro-alloying and organization
control techniques. The performance control method of corrosion-resistant steels based
on big data technology is shown in Figure 4. The development of a cross-scale theoretical
model of material corrosion failure and the integration of data mining methods such as
machine learning can significantly shorten the service evaluation cycle of structural steels
and improve the accuracy of material life prediction.
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4.1. Advances in Micro-Alloying Control Technology for Corrosion-Resistant Structural Steels

The most successful structural steels in the design and evaluation of corrosion re-
sistance are weathering steels. In as early as 1900, European and American researchers
discovered that Cu could improve the corrosion resistance of steels in the atmosphere [123].
In 1916, the American Society for Testing and Materials pioneered a standardized field
corrosion test for atmospheric corrosion, which laid the foundation for corrosion evalua-
tion techniques for the development of weathering steels. As a result, the United States,
Germany, Britain and Japan began the research and development of weathering steels. The
U.S. Steel Company first developed a high-strength corrosion-resistant copper-containing
structural steels, i.e., Cor-ten steel, but it was very expensive [124]. From 1934 to 1958,
after three large-scale field tests and studies, the theoretical basis of low-alloy weathering
steels was basically laid, that is, the composition design principle of Cr-Ni-Cu-P and the
concept of climate index. Climate index can evaluate the weathering performance of steels
with different compositions, which is based on the accumulation of a large number of field
corrosion test data. The formula is as follows.

I = 26.01(%Cu) + 3.88(%Ni) + 1.20(%Cr) + 1.49(%Si) + 17.28(%P) −
7.29(%Cu)(%Ni) − 9.10(%Ni)(%P) − 3.9(%Cu)

(3)

where I is the climate index. The data in the formula are the mass percentage ratio of each
component. The design requirements are I index ≥ 6.0 (Cu, P, Cr, Ni and Si, USA 1995).
The formula was based on the design of a variety of ingredients and the statistical analysis
of the results of numerous exposure experiments in the United States. The United States
has been using this formula to determine the weathering properties of steels from the
composition. However, the formula does not apply to Ni-series high-strength weathering
steels. In the 1850s, the United States developed more economical weathering steels (A588)
with a minimum yield strength of 350 MPa, which became the hallmark of high-strength
weathering steels, and subsequently increased the yield strength to 690 MPa. The common
series of weathering steels in the United States include the A242 series, A588 series, A606
series and A871 series. It should be pointed out that the I index does not take into account
the types of inclusions, microstructure, surface state and environmental factors on the
corrosion resistance performance [125].

From 1981 to 1993, Japan conducted exposure tests at 41 locations in its territory and
found a large amount of corrosion resistance of weathering steels in salt conditions. This
promoted the development of Ni-series weathering steels that could be used in coastal
areas, and could gradually break the original restrictions on the use of weathering steels
bridges. The weathering steels series commonly used in Japan include the SPA series and
JIS SMA series. In 2003, the V index was proposed (≥0.9, adding C, Mn, S, Ti and Mo).
Here, V is the indicator of the corrosion resistance of structural steels.

V = 1/{(1.0 − 0.16(%C)) (1.05 − 0.05(%Si)) (1.04 − 0.016(%Mn)) (1.0 − 0.5(%P))
(1.0 + 1.9(%S)) (1.0 − 0.10(%Cu)) (1.0 − 0.12(%Ni)) (1.0 − 0.3(%Mo)) (1.0 − 1.7 (%Ti))}

(4)

In Europe, weathering steels also appeared early, and the UK has general provisions
for weathering steels in British Standard European Norm (BS EN) 10155. In UK bridge
engineering, S355J2G1W is the most commonly used weathering steel and its mechanical
properties are similar to those of S355, as specified in BS EN 10025.

China began to develop weathering steels in 1950. In 1965, 09MnCuPTi weathering
steels were trial-produced for the first time in China, and a number of new steel grades
containing Cu, P, Ti, RE and other elements were also developed in combination with do-
mestic resources, such as 08CuPVRE series, 09CuPTi series, 09MnNb, etc. [126,127]. Since
1983, a 20-year-long data accumulation work has been carried out. So far, it has integrated
the material corrosion data production resources consisting of more than 30 national field
stations in China and a large number of overseas cooperative observation sites. The aim
is to develop various types of corrosion-resistant materials, especially corrosion-resistant
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steels. In recent years, with the rapid development of China’s steel industry, high-strength
weathering steels also have experienced great development, and new high-strength weath-
ering steels have emerged one after another. At present, the commonly used weathering
steels in China are 09CuPCrNi, with a yield strength of not less than 345 MPa, a tensile
strength of not less than 480 MPa, elongation of not less than 22%, corrosion resistance for
ordinary carbon steels being two to eight times greater, and their use in trucks has a long
history. With the development of Chinese steelmaking technology, the steel yield strength
of 600 MPa or more has been available in the steelworks. In recent years, CrNiCuP and
3Ni-series weathering steels of 690 MPa grade have been successfully used in cross-sea
bridges. According to different types of structures, high-strength weathering steels and
welding weathering steels have achieved positive improvement of strength, toughness,
corrosion resistance and welding performance by regulating alloying elements, such as Nb,
V, Ti, Sb, Cr, Mo, Sn, Ca and rare earth elements.

Ni [128] and Cr [129] alloying elements can improve the corrosion potential of steels
due to their stable thermodynamic properties, so as to improve corrosion resistance. The
Cr [130] element can form smaller grains in the rust layer of the steel, making it dense
and cation-selective, and the rust layer exhibits a significant inhibitory effect against Cl−

intrusion. Meanwhile, Ca [131] and Rare Element (RE) [132] improve the size and properties
of inclusions and promote the generation of α-FeOOH to reduce the aggressiveness. Both
Nb and V can effectively precipitate high-energy hydrogen traps to improve the hydrogen
resistance of steel. In addition, refined grains can reduce interfacial hydrogen concentration
by increasing grain boundary area [133]. Sb reduces various defects in the rust layer,
especially the stability of the outer rust layer, and promotes the conversion of γ-FeOOH
to α-FeOOH, thus improving the corrosion resistance of the steels [134–136]. There have
been many studies on the use of microalloying techniques to obtain corrosion-resistant
structural steels, but the data obtained from these studies are severely fragmented and
the test results have large errors. Therefore, it is very important to establish a big data
accumulation method for the corrosion of corrosion-resistant structural steels and to form a
cross-scale research technology based on macroscopic corrosion behavior.

Yang et al. [137] combined corrosion big data and machine learning to analyze the
differences in the effects of microelements Sn and Sb on the corrosion resistance of structural
steels. Sn and Sb inhibit the corrosion behavior of structural steels in general, and structural
steels containing 0.10% Sb have the best corrosion resistance. Jia [138] determined the
influence of regular factors and the mechanisms of elements such as Ni, Mn and Cu on the
stress corrosion resistance of 690 MPa steel based on the study of electro-couple big data
technology. Pan [139] combined corrosion big data methods and machine learning methods
to determine the influence of regular factors and the mechanism of the stress corrosion
behavior of duplex stainless steel and its weld organization in the seawater environment. It
was found that it can significantly improve the corrosion cracking resistance of offshore
steel by inhibiting microscopic hydrogen damage and local anodic dissolution processes
through compounding with micro-alloying corrosion-resistant elements such as Nb, Sb, Cu
and Ni [140–143].

Yang et al. [144] evaluated the influence of the Cr element on the corrosion behavior of
weathering steels, and the effect of the Cr element on the corrosion evolution behavior of
weathering steels was evaluated by combining big data techniques with in situ corrosion
specimens. To quantitatively describe the effect of Cr, an evaluation index based on mass
loss was proposed with the expression shown in Equation (5), where QB is the cumulative
corrosion of the base material and QEle is the cumulative corrosion of the material when
corrosion-resistant elements are added. F is the evaluation index with a value range of
[−1, 1]. When F ∈ (0, 1), it indicates that the addition of elements in the structural steels is
beneficial for improving the steel’s corrosion resistance. The closer the F value is to one,
the better the improvement effect. When F ∈ [−1, 0], it indicates that the addition of the
element in the structural steels is not beneficial or is even harmful for corrosion resistance.
The closer the F value is to −1, the greater the effect of the element on the reduction in
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corrosion resistance. Additionally, when F = 0, it shows that the addition of this element has
no effect on the corrosion resistance of structural steels. Atmospheric corrosion monitoring
sensor technology is shown in Figure 5. Figure 5c shows a statistical analysis of the pitting
corrosion of structural steels after 6 months of exposure to sunlight, and after the addition
of different contents of Cr elements. As the Cr content increases, the slope of the linear
fitting gradually decreases and the overall pitting developed in the direction of depth
does too, indicating that the increase in Cr content in the structural steels promotes the
development of pitting. Figure 5d shows the evolution of the F-index after the addition
of different contents of Cr elements. The F-index is greater than 1, indicating that the
addition of Cr is beneficial to the improvement of the uniform corrosion resistance of the
structural steels. Combining the effects of Cr content on corrosion resistance in Figure 5c,d,
the F-index can be used as a competing mechanism for the beneficial effects of Cr elements
on uniform corrosion and the harmful effects on pitting resistance.

F =
QB −QEle
QB + QEle

(5)
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(b) the in-situ exposure experiment of sensor, (c) Slope of linear fit of pitting pit depth versus diameter
for specimens exposed to 6 months with different levels of Cr (a1: 0Cr, a2: 0.76Cr, a3: 1.69Cr,
a4: 2.52Cr), (d) F-index trend of alloy corrosion resistance [144].

However, the amount of alloying elements in structural steels still requires a large
number of experiments to explore it further, increasing the difficulty and cost of the
experiment. Therefore, Sun introduced the work function, which indicated the minimum
energy required for electrons to escape from a solid surface, i.e., the smaller the work
function, the greater the possibility of it losing electrons and the more likely corrosion
will occur [145–147]. Based on the first-principles calculation of density functional theory,
the influence of Cr, Mo and Sn elements on the surface work function was studied by
MEDEA-VASP 5.4 software. A 6-layer supercell Fe surface model with a 15 Å vacuum
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layer is used during calculation. The (110) surface with the lowest surface energy of the
bcc-Fe structure was selected [148], and the surface optimization was performed after
selecting the same Fe atom position in the Fe surface layer for the doping of Cr, Mo and Sn
atoms. The results showed that the addition of Sn to the steel is more helpful in improving
the corrosion resistance of the steel itself [149]. Table 1 summarizes the test methods
and machine learning methods used to study the corrosion resistance of structural steels
reported in recent studies. Among these studies, the test methods were similar, while the
machine learning methods differed due to the type of data.

To more accurately obtain the contents of three alloying elements Cr, Mo, and Sn in the
structural steels, a dual evaluation model of corrosion rate and pit depth was constructed
by Pearson correlation analysis based on the existing corrosion data of structural steels in
the tropical marine atmosphere. The ability of the evaluation model and the reliability of
the accelerated indoor tests were verified by combining the outdoor exposure test data.
Combining the corrosion rate and pit depth model with the corrosion resistance range of
Cr, Mo and Sn, it can be inferred that the overall corrosion resistance of structural steels
is optimal when the contents of Cr, Mo and Sn are 2.5 wt.%, 0.25 wt.% and 0.22 wt.%,
respectively, in the tropical marine atmosphere.

4.2. Organization Control Technology

Organization control technology has been widely used to improve the mechanical
properties of structural steels. The main purpose of organization structure control is
to refine the grain and purify the organization structure, which not only improves the
strength, elongation and toughness of steel, but also improves the corrosion resistance of
the structural steel [150].

From the Hall–Petch relationship, it is clear that grain refinement can improve the
mechanical properties. The effect of grain refinement on corrosion resistance requires
a lot of work to prove the relationship between the two. The early view was that the
uniform corrosion rate of metallic materials and alloys increases with decreasing grain size.
However, Ralston et al. [151] reviewed the effect of grain size on the corrosion resistance
of materials and concluded that in an activated environment, grain refinement leads to
a decrease in corrosion resistance, while in a passivated environment, grain refinement
leads to an increase in corrosion resistance. Wang et al. [152,153] studied the corrosion
behavior of bulk nanocrystalline iron and coarse crystalline iron in acidic solutions, among
which bulk nanocrystalline iron has a better acidic solution. Liu et al. [154] further stated
that in the activated environment, if the corrosion products are soluble, grain refinement
will lead to accelerated corrosion. If the corrosion products are insoluble, grain refinement
will improve the corrosion resistance. In a passivation environment, grain refinement
contributes to the formation of a dense film, which affects the semiconductor properties.
However, the results of experiments showed that the grain size mainly affected the initial
stage of corrosion, and the fine grain size was more helpful in the formation of the surface
protective rust layer, but the effect on the improvement in corrosion resistance was not
obvious when the grain size was refined to a certain degree [155]. The rust layer was
gradually stabilized in the later stage of corrosion, and the effect of grain size difference in
the steel matrix on the corrosion resistance of steels was no longer obvious. Therefore, how
the grain size affects material corrosion is of great research importance.

The purification of structural steel organization is also an effective means to improve
corrosion resistance and mechanical properties. Because of the excellent mechanical proper-
ties of ultra-low carbon bainite organization, structural steels with this organization as the
main phase have become a trend in the development of new high-strength and corrosion-
resistant structural steels. The structure of low temperature bainite in structural steels
after optimization mainly consists of carbon free bainite ferrite and residual austenite film,
which not only improves the corrosion resistance, but also improves the strength [156,157].
In addition, the addition of specific elements in structural steels can optimize the structure,
as with the increase in Mo content, the phase transition temperature decreases, the bainite
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zone expands, and the corrosion resistance is significantly improved [158]. Secondly, the
surface of the sample containing only a ferritic structure tends to form uniform corrosion
product films with fewer cracks, and its corrosion resistance is better than that of the
mixed ferritic and pearlite structures [159]. There have been many studies on the corrosion
resistance of structural steels that have focused on regulating the structure. However, due
to the lack of data, it is still unclear how the relevant organization structure affects the
corrosion resistance of structural steels.

Table 1. The testing methods and machine learning methods.

Reference Test Methods Machine Learning

[137] Sn/Sb

SEM, EDS, XRD, EBSD, XPS, SECM,
Raman, Electrochemical test, SSRT,

Periodic infiltration simulation
acceleration experiment, Corrosion

big data detectors,

RF

[138] Ni/Mn/Cu

SEM, XRD, XPS, TEM, SAED, EBSD,
Electrochemical test, SSRT, SAED,

Periodic infiltration simulation
acceleration experiment, Corrosion
big data detectors, Hydrogen filling

experiment,

GBDT

[143] Nb/Cu/Sb
SEM, EBSD, TEM, XRD, XPS,

Electrochemical test, Axial stress
corrosion fatigue test

Work Function, PCC,
SVC, SVR, LC, RF,

MLP, KNN

[149] Cr/Sn/Mo/Grain
size

SEM, EBSD, EDS, AFM, EDS, XRD,
XPS, TEM, CLSM, Electrochemical

test, SSRT, Periodic infiltration
simulation acceleration experiment,

Corrosion big data detectors,

PCC, Work Function

[160] Cr/Sn/Mo/M-A
organization

SEM, EDAX, XRD, XPS, TEM, AFM,
Periodic infiltration simulation

acceleration experiment, Corrosion
big data detectors,

ANN, SVM, RF, DNN

SEM—Scanning Electron Microscope; EBSD—Electron Backscattered Diffraction; EDS—Energy Dispersive Spec-
trometer; AFM—Atomic Force Microscope; XRD—X-Ray Diffraction; XPS—X-Ray Photoelectron Spectroscopy;
SAED—Selected Area Electron Diffraction; TEM—Transmission Electron Microscope; CLSM—Confocal Laser
Scanning Microscope; SECM—Scanning Electrochemical Microscopy; AFM—Atomic Force Microscope; EDAX—
Energy Dispersive X-ray Analysis; SSRT—Slow Strain Rate Tension; RF—Random Forecast; PCC—Pearson
Correlation Coefficient; LC—Logistic Classification; SVR—Support Vector Regression; SVM—Support Vector
Machines; MLP—Multilayer Perceptron; KNN—k-Nearest Neighbor; DNN—Deep Neural Network; GBDT—
Gradient Boosting Decision Tree.

The influence of organization structure on the corrosion resistance of structural steels
is usually determined by conventional electrochemical methods, while the influence of
organization on the corrosion resistance of materials is still fuzzy due to the uncertainty of
the hanging method and the environment. Big data techniques are superior to traditional
electrochemical techniques in identifying the differences in corrosion resistance between
materials with small differences in corrosion resistance or with time-varying corrosion
resistance. The corrosion clock diagram (Figure 6a1–f1, blue color indicates low corrosion
rate, red color indicates a higher corrosion rate.) and the corrosion cumulative electrical
quantity diagram (Figure 6a2–f2) were used to investigate the effects of austenite grain
size, bainite lath thickness, and cathode to anode phase ratios on the corrosion resistance
of structural steels (Figure 6 data from the author’s thesis). It is found that the corrosion
resistance of structural steels can be improved by refining the original austenite grain size
and the bainitic ferrite sub-crystalline grain size, as well as by reducing the content of M-A
group elements. The combination of traditional experiments and big data experiments not
only allows for corrosion regulation using different organizations at different times, but
also determines the ranking of the corrosion rates using different organizations [160]. For
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instance, the corrosion resistance of four types of organizations in the heat-affected zone is
high in the initial stage of corrosion, namely, coarse crystalline organization, fine crystalline
organization, two-phase organization (coarse and fine crystalline) and matrix. With the
extension of corrosion time, the corrosion rate of coarse crystal organization is always the
highest, and the corrosion rate of fine crystal organization is the lowest; the matrix shows
a high corrosion rate at the initial corrosion stage, but decreases rapidly at the later stage.
The final corrosion result is coarse crystal organization > two-phase organization > matrix
> fine crystal organization [149].
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In the further study of the influence of alloying elements and organizational structure
on the corrosion behavior of structural steels, it was concluded that the corrosion big data
method can accurately identify the influence of various factors, such as small changes in var-
ious alloying elements and small differences in microstructure, on the corrosion resistance
of structural steels, which is an effective and promising corrosion research method [160].

5. Conclusions

In recent years, the development of corrosion-resistant structural steels is moving
from macroscopic to nano-scale characterization directions, from qualitative to precise
quantitative directions, from long-term to rapid test directions, from fragmented data to
big data directions, and from theoretical simulation to data-driven directions. This paper
presents the study of a microscopic model of the material corrosion mechanism, the study
of a data mining model, and the study of the performance control of corrosion-resistant
structural steels, and new insights into the corrosion mechanisms and patterns of structural
steels have been gained: (1) Combining corrosion test data with virtual processes through
computer technology is useful for the study of structural steels corrosion mechanisms
and patterns. (2) The data mining model is mainly used to predict the corrosion rate
and corrosion life of structural steels. (3) The Work function and F-index can be used
to assess the effect of alloying elements on the corrosion resistance of materials. (4) The
Pearson correlation analysis method can be used to construct a dual evaluation model
of corrosion rate and pit depth, and combined with the range of corrosion resistance of
alloying elements, it can be inferred that alloying elements at a certain level can help
structural steels to achieve excellent corrosion resistance. (5) The methods of corrosion
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clock diagrams and cumulative corrosion power diagrams allow for the magnitude of
corrosion rates for different grain sizes to be ranked at different times. (6) The lower the
M-A organization content in structural steels, the better the corrosion resistance.

Research work regarding material corrosion modeling has provided new approaches
to the study of scientific problems such as material corrosion mechanisms, life assessment
and new corrosion-resistant materials. However, the corrosion modeling of structural steels
still needs to be combined with laboratory micro/macro characterization. Therefore, how
to use material corrosion modeling to partially replace or completely replace field tests
in the development of corrosion-resistant structural steels will become an important part
of the work. Secondly, the existing structural steels corrosion data are not perfect, and
understanding how to standardize and perfect the corrosion data is an important part of
the corrosion database construction work. Thirdly, more research is needed on how to dig
out corrosion big data to maximize function. Additionally, the research and development
of high-quality corrosion-resistant structural steels represents a long-term goal; proficiency
in material corrosion mechanisms and the in-depth study of material corrosion models will
provide more convenient ways to develop corrosion-resistant materials.

Author Contributions: Conceptualization, D.X., Z.P. and L.M.; methodology, Q.L.; formal analysis,
Q.L., F.Z. and L.M.; investigation, D.X., Q.L., F.Z. and R.Z.; resources, F.Z.; writing—original draft
preparation, D.X.; writing—review and editing, D.X., Z.P., X.Y., Q.L., F.Z., R.Z., X.C. and L.M.; visual-
ization, X.C.; supervision, X.Y.; project administration, R.Z.; funding acquisition, X.Y.; methodology,
Q.L.; resources, F.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China
(No. 52171063) and Postdoctor Research Foundation of Shunde Graduate School of University of
Science and Technology Beijing (No. 2022BH003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sha, W.X.; Guo, Y.Q.; Yuan, Q.; Shun, T. Artificial Intelligence to Power the Future of Materials Science and Engineering. Adv.

Intell. Syst. 2020, 2, 1900143. [CrossRef]
2. Xia, D.H.; Yang, S.; Song, S.Z.; Behnamian, Y.S.; Xu, L.K.; Wu, Z.; Qin, Z.B. Identifying defect levels in organic coatings with

electrochemical noise (EN) measured in Single Cell (SC) mode. Prog. Org. Coat. 2019, 126, 53–61. [CrossRef]
3. Buzolin, R.H.; Mohedano, M.; Mendis, C.L.; Mingo, B.; Tolnai, D.; Blawert, C.; Kainer, K.U.; Pinto, H. As cast microstructures on

the mechanical and corrosion behaviour of ZK40 modified with Gd and Nd additions. Mater. Sci. Eng. A 2017, 682, 238–247.
[CrossRef]

4. Coelho, L.B.; Zhang, D.W.; Ingelgem, Y.V.; Steckelmacher, D. Reviewing machine learning of corrosion prediction in a data-
oriented perspective. Npj Mater. Degrad. 2022, 6, 8. [CrossRef]

5. Li, X.G.; Zhang, D.W.; Liu, Z.Y.; Li, Z.; Du, C.W.; Dong, C.F. Share corrosion data. Nature 2015, 527, 441–442. [CrossRef] [PubMed]
6. Kouril, M.; Prosek, T.; Scheffel, B.; Degres, Y. Corrosion monitoring in archives by the electrical resistance technique. J. Cult. Herit.

2014, 15, 99–103. [CrossRef]
7. Kent, P.R.C. Computational materials science: Trustworthy predictions. Nature 2013, 493, 314–315. [CrossRef]
8. Horstemeyer, M.F. Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate

Engineering Design with Science; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–44.
9. Wang, S.Z.; Gao, Z.J.; Wu, G.L.; Mao, X.P. Titanium microalloying of steel:A review of its effects on processing. microstructure

and mechanical properties. Int. J. Miner. 2022, 29, 645–661. [CrossRef]
10. Nasiri, Z.; Ghaemifar, S.; Naghizadeh, M.; Mirzadeh, H. Thermal Mechanisms of Grain Refinement in Steels: A Review. Met.

Mater. Int. 2021, 27, 2078–2094. [CrossRef]
11. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864. [CrossRef]
12. Kohn, W.; Sham, L. Self-ConsistentEquations Including Exchange and Correlation Effects. DFT Phys. Rev. 1965, 140, 1133–1138.

[CrossRef]
13. Xu, J.; Lai, D.; Xie, Z.; Munroe, P.; Jiang, Z.T. A critical role for Al in regulating the corrosion resistance of nanocrystalline

Mo(Si1−xAlx)2films. J. Mater. Chem. 2012, 22, 2596–2606. [CrossRef]

https://doi.org/10.1002/aisy.201900143
https://doi.org/10.1016/j.porgcoat.2018.10.027
https://doi.org/10.1016/j.msea.2016.11.022
https://doi.org/10.1038/s41529-022-00218-4
https://doi.org/10.1038/527441a
https://www.ncbi.nlm.nih.gov/pubmed/26607528
https://doi.org/10.1016/j.culher.2013.04.002
https://doi.org/10.1038/nature11767
https://doi.org/10.1007/s12613-021-2399-7
https://doi.org/10.1007/s12540-020-00700-1
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1039/C1JM14744G


Materials 2023, 16, 3396 20 of 24

14. Tina, Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of stainless steels. Acta. Mater. 2011, 48,
5070–5085.

15. Raabe, S.; Mierwaldt, D.; Ciston, J.; Uijttewaal, M.; Stein, H.; Hoffmann, J.; Zhu, Y. In Situ Electrochemical Electron Microscopy
Study of Oxygen Evolution Activity of Doped Manganite Perovskites. Adv. Funct. Mater. 2012, 22, 3378–3388. [CrossRef]

16. Pham, H.H.; Cagin, T. Fundamental studies on stress-corrosion cracking in iron and underlying mechanisms. Acta. Mater. 2010,
58, 5142–5149. [CrossRef]

17. Koverga, A.A.; Frank, S.; Koper, M.J. Density Functional Theory study of electric field effects on CO and OH adsorption and
co-adsorption on gold surfaces. Electrochim. Acta. 2013, 101, 244–253. [CrossRef]

18. Koo, J.; Jhon, Y.I.; Park, J.; Lee, J.; Lee, J.H. Near-Infrared Saturable Absorption of Defective Bulk-Structured WTe2 for Femtosecond
Laser Mode-Locking. Adv. Funct. Mater. 2016, 26, 7454–7461. [CrossRef]

19. Yan, P.; Nie, A.; Zheng, J.; Zhou, Y.; Lu, D.; Zhang, X. Evolution of lattice structure and chemical composition of the surface
reconstruction layer in Li(1.2)Ni(0.2)Mn(0.6)O2 cathode material for lithium ion batteries. Nano. Lett. 2015, 15, 514–522. [CrossRef]

20. Johnson, D.F.; Carter, E.A. First-principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel
embrittlement. Acta. Materc. 2010, 58, 638–648. [CrossRef]

21. Greiner, M.T.; Chai, L.; Helander, M.G.; Tang, W.M.; Lu, Z.H. Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work
Function and Band Structure of MoO3. Adv. Funct. Mater. 2013, 23, 215–226. [CrossRef]

22. Graedel, T.; Leygraf, T.E. Corrosion mechanisms for nickel exposed to the atmosphere. J. Electrochem. Soc. 2000, 147, 1010–1014.
[CrossRef]

23. Guo, J.X.; Wei, L.J.; Ge, D.Y.; Guan, L.; Wang, Y.L. Dissociation and reconstruction of O2 on Al (1 1 1) studied by First-principles.
Appl. Surf. Sci. 2013, 264, 247–254. [CrossRef]

24. Liu, X.; Frankel, G.S.; Zoofan, B.; Rokhlin, S.I. In-situ observation of intergranular stress corrosion cracking in AA2024-T3 under
constant load conditions. Corro. Sci. 2007, 49, 139–148. [CrossRef]

25. Guo, J.; Meng, X.; Chen, J.; Peng, J.; Sheng, J.; Li, X.Z. Real-space imaging of interfacial water with submolecular resolution. Nat.
Mater. 2014, 13, 184–189. [CrossRef]

26. Xin, W.; Dong, C.; Chen, Z.; Xiao, K.; Li, X.J. A DFT study of the adsorption of O2 and H2O on Al (111) surfaces. RSC Adv. 2016, 6,
56303–56312.

27. Wei, X.; Dong, C.; Chen, Z.; Xiao, K. Co-adsorption of O2 and H2O on Al(111) surface: A vdW-DFT study. RSC Adv. 2016, 6,
79836–79843. [CrossRef]

28. Khan, M.H.; Jamali, S.S.; Lyalin, A.; Molino, P.J.; Jiang, L.; Liu, H.K.; Taketsugu, T. Atomically Thin Hexagonal Boron Nitride
Nanofilm for Cu Protection: The Importance of Film Perfection. Adv. Mater. 2017, 29, 1603937. [CrossRef] [PubMed]

29. Xin, X.; Jones, G.; Sarwar, M.; Qian, T.; Harkness, I.; Thompsett, D.J. A DFT study of Pt layer deposition on catalyst supports of
titanium oxide, nitride and carbide. J. Mater. Chem. A 2015, 3, 24504–24511.

30. Hodgson, A.; Haq, S.J. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009, 64, 381–451. [CrossRef]
31. Poissier, A.; Ganeshan, S.; Fernandez-Serra, M.V. The role of hydrogen bonding in water-metal interactions. American Physical

Society. Phys. Chem. Chem. Phys. 2011, 13, 3375–3384. [CrossRef] [PubMed]
32. Tonigold, K.; Gro, A.J. Dispersive interactions in water bilayers at metallic surfaces: A comparison of the PBE and RPBE functional

including semiempirical dispersion corrections. J. Comput. Chem. 2012, 33, 695–701. [CrossRef]
33. Soria, F.A.; Paredes-Olivera, P.; Patrito, E.M. Chemical Stability toward O2 and H2O of Si(111) Grafted with CH3, CH2CH2CH3,

CHCHCH3, and CCCH3. J. Phys. Chem. C 2014, 119, 284–295. [CrossRef]
34. Klimes, J.; Bowler, D.; Michaelides, A. Van der Waals density functionals applied to solids. In Proceedings of the APS March

Meeting 2011, Dallas, TX, USA, 21–25 March 2011.
35. Wei, X.; Dong, C.; Chen, Z.; Xiao, K.; Li, X.J. Density functional theory study of SO4

2− adsorbed Ni(111) and hydroxylated
NiO(111) surface. Appl. Surf. Sci. 2015, 355, 429–435. [CrossRef]

36. Jiang, Y.; Adams, J.B. First principle calculations of benzotriazole adsorption onto clean Cu(1 1 1). Surf. Sci. 2003, 529, 428–442.
[CrossRef]

37. Li, L.H.; Chen, Y. Atomically Thin Boron Nitride: Unique Properties and Applications. Adv. Funct. Mater. 2016, 26, 2594–2608.
[CrossRef]

38. Kulmas, M.; Paterson, L.; Hoeflich, K.; Bashouti, M.Y.; Wu, Y. Composite Nanostructures of TiO2 and ZnO for Water Splitting
Application: Atomic Layer Deposition Growth and Density Functional Theory Investigation. Phys. Rev. Lett. 2016, 26, 4882–4889.

39. Lu, G.; Kaxiras, E. Hydrogen Embrittlement of Aluminum: The Crucial Role of Vacancies. Phys. Rev. Lett. 2005, 94, 155501.
[CrossRef]

40. Ismer, L.; Park, M.S.; Janotti, A. Interactions between hydrogen impurities and vacancies in Mg and Al: A comparative analysis
based on density functional theory. Phys. Rev. B 2009, 80, 2665–2668. [CrossRef]

41. Ji, M.; Wang, C.Z.; Ho, K.M.; Adhikari, S.; Hebert, K.R. Statistical model of defects in Al. Phys. Rev. B 2010, 81, 024105. [CrossRef]
42. Gunaydin, H.; Barabash, S.V.; Houk, K.N.; Ozolins, V. First-principles theory of hydrogen diffusion in aluminum. Phys. Rev. Lett.

2008, 101, 075901. [CrossRef]
43. Ferrin, P.; Kandoi, S.; Nilekar, A.U.; Mavrikakis, M.J. Hydrogen adsorption, absorption and diffusion on and in transition metal

surfaces: A DFT study. Surf. Sci. 2012, 606, 679–689. [CrossRef]

https://doi.org/10.1002/adfm.201103173
https://doi.org/10.1016/j.actamat.2010.05.050
https://doi.org/10.1016/j.electacta.2012.12.061
https://doi.org/10.1002/adfm.201602664
https://doi.org/10.1021/nl5038598
https://doi.org/10.1016/j.actamat.2009.09.042
https://doi.org/10.1002/adfm.201200993
https://doi.org/10.1149/1.1393305
https://doi.org/10.1016/j.apsusc.2012.10.010
https://doi.org/10.1016/j.corsci.2006.05.013
https://doi.org/10.1038/nmat3848
https://doi.org/10.1039/C6RA17054D
https://doi.org/10.1002/adma.201603937
https://www.ncbi.nlm.nih.gov/pubmed/27874217
https://doi.org/10.1016/j.surfrep.2009.07.001
https://doi.org/10.1039/C0CP00994F
https://www.ncbi.nlm.nih.gov/pubmed/21180721
https://doi.org/10.1002/jcc.22900
https://doi.org/10.1021/jp508728v
https://doi.org/10.1016/j.apsusc.2015.07.134
https://doi.org/10.1016/S0039-6028(03)00277-2
https://doi.org/10.1002/adfm.201504606
https://doi.org/10.1103/PhysRevLett.94.155501
https://doi.org/10.1103/PhysRevB.80.184110
https://doi.org/10.1103/PhysRevB.81.024105
https://doi.org/10.1103/PhysRevLett.101.075901
https://doi.org/10.1016/j.susc.2011.12.017


Materials 2023, 16, 3396 21 of 24

44. Mao, W.; Chikada, T.; Suzuki, A.; Terai, T. Hydrogen diffusion along grain boundaries in erbium oxide coatings. J. Nucl. Mater.
2014, 455, 360–365. [CrossRef]

45. Wei, X.; Dong, C.; Chen, Z.; Xiao, K.; Li, X.J. The effect of hydrogen on the evolution of intergranular cracking: A cross-scale study
using first-principles and cohesive finite element methods. RSC Adv. 2016, 6, 27282–27292. [CrossRef]

46. Fernandez, N.; Ferro, Y.; Kato, D.J. Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory
calculations and statistical models. Acta. Mater. 2015, 94, 307–318. [CrossRef]

47. Jarvis, E.; Carter, E.A. A Nanoscale Mechanism of Fatigue in Ionic Solids. Nano. Lett. 2005, 6, 505–509. [CrossRef] [PubMed]
48. Bulatov, V.V.; Reed, B.W.; Kumar, M. Grain boundary energy function for fcc metals. Acta. Mater. 2014, 65, 161–175. [CrossRef]
49. Kornherr, A.; Hansal, S.; Hansal, W.; Besenhard, J.O.; Kronberger, H.; Nauer, G.E. Molecular dynamics simulations of the

adsorption of industrial relevant silane molecules at a zinc oxide surface. J. Chem. Phys. 2003, 119, 9719–9728. [CrossRef]
50. Kornherr, A.; French, S.A.; Sokol, A.A.; Catlow, C.; Hansal, S.; Hansal, W. Interaction of adsorbed organosilanes with polar zinc

oxide surfaces: A molecular dynamics study comparing two models for the metal oxide surface. Chem. Phys. Lett. 2004, 393,
107–111. [CrossRef]

51. Swiler, T.P.; Loehman, R.E. Molecular dynamics simulations of reactive wetting in metal–ceramic systems. Acta. Mater. 2000, 48,
4419–4424. [CrossRef]

52. Lindenblatt, M.; Heys, J.V.; Pehlke, E. Molecular dynamics of nonadiabatic processes at surfaces: Chemisorption of H/Al(111).
Surf. Sci. 2006, 600, 3624–3628. [CrossRef]

53. Raj, R.; Maroo, S.C.; Wang, E.N. Wettability of Graphene. Nano Lett. 2013, 13, 1509–1515. [CrossRef]
54. Jeon, B.; Sankaranarayanan, S.K.R.S.; Van Duin, A.C.T.; Ramanathan, S. Reactive Molecular Dynamics Study of Chloride Ion

Interaction with Copper Oxide Surfaces in Aqueous Media. ACS Appl. Mater. Inter. 2012, 4, 1225–1232. [CrossRef]
55. Louise, J.I.; Randall, T.; Cygan, S.A.; Kooser, H. Water and Halide Adsorption to Corrosion Surfaces: Molecular Simulations of

Atmospheric Interactions with Aluminum Oxyhydroxide and Gold. Mater. Today. 2008, 20, 4682–4693.
56. Prabhu, R.; Praveen, B.M.; Alhadhrami, A.; Prasanna, B.M. Anti-Corrosion Behavior of Olmesartan for Soft-Cast Steel in 1 mol

dm−3 HCl. Coatings 2021, 11, 965.
57. Matad, P.B.; Mokshanatha, P.B.; Hebbar, N.; Venkatesha, V.T.; Tandon, H.C.; Research, E.C. Ketosulfone Drug as a Green Corrosion

Inhibitor for Mild Steel in Acidic Medium. Ind. Eng. Chem. Res. 2014, 53, 8436–8444. [CrossRef]
58. Beyerlein, I.J.; Caro, A.; Demkowicz, M.J.; Mara, N.A.; Misra, A.; Uberuaga, B.P. Radiation damage tolerant nanomaterials. Mater.

Today 2013, 16, 443–449. [CrossRef]
59. Bhattacharya, B.; Kumar, G.; Agarwal, A.; Erko, A.; Singh, A.; Chakraborti, N. Analyzing Fe-Zn system using molecular dynamics,

evolutionary neural nets and multi-objective genetic algorithms. Comp. Mater. Sci. 2009, 46, 821–827. [CrossRef]
60. Wang, F.Y.; Liu, Y.H.; Zhu, T.M.; Gao, Y.J. Nanoscale interface of metals for withstanding momentary shocks of compression.

Nanoscale 2010, 2, 2818. [CrossRef] [PubMed]
61. Khaled, K.F. Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulphuric acid by some green corrosion

inhibitors. J. Solid. State. Electr. 2009, 13, 1743–1756. [CrossRef]
62. Sasikumar, Y. Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl

imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J. Mol. Liq. 2015, 211, 105–118.
[CrossRef]

63. Chopard, B.; Droz, M. Cellular Automata Modeling of Physical Systems. Computat. Complex. 2009, 865–892. [CrossRef]
64. Córdoba-Torres, P.; Nogueira, R.P.; Miranda, L.D.; Brenig, L. Cellular automaton simulation of a simple corrosion mechanism:

Mesoscopic heterogeneity versus macroscopic homogeneity. Electr. Acta. 2002, 46, 2975–2989. [CrossRef]
65. Córdoba-Torres, P.; Nogueira, R.P. Forecasting interface roughness from kinetic parameters of corrosion mechanisms. J. Electr.

Chem. 2002, 529, 109–123. [CrossRef]
66. Córdoba-Torres, P.; Bar-Eli, K.; Chemistry, V.F. Non-diffusive spatial segregation of surface reactants in corrosion simulations. J.

Electr. Chem. 2004, 571, 189–200. [CrossRef]
67. Córdoba-Torres, P.; Nogueira, R.P. Fractional reaction order kinetics in electrochemical systems involving single-reactant,

bimolecular desorption reactions. J. Electr. Chem. 2003, 560, 25–33. [CrossRef]
68. Lishchuk, S.V.; Akid, R.C.; Worden, K.; Michalski, J. A cellular automaton model for predicting intergranular corrosion. Corro. Sci.

2011, 53, 2518–2526. [CrossRef]
69. Caprio, D.D.; Vautrin-Ul, C.; Stafiej, J.; Saunier, J.; Chausse, A.; Feron, D. Morphology of corroded surfaces: Contribution of

cellular automaton modelling. Corro. Sci. 2011, 53, 418–425. [CrossRef]
70. Lei, L.; Li, X.; Dong, C.; Xiao, K.; Lin, L. Cellular automata modeling on pitting current transients. Electr. Commun. 2009, 11,

1826–1829. [CrossRef]
71. Clough, R.W.; Tocher, J.L. Finite Element Stiffness Matrices for Analysis of Plate Bending. In Proceedings of the First Conference

on Matrix Methods in Structural Mechanism, Dayton, OH, USA, 26–28 October 1965; pp. 515–545.
72. Zhu, L.K.; Yu, Y.; Qiao, L.J.; Volinsky, A.A. Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic

load. Corro. Sci. 2013, 77, 360–368. [CrossRef]
73. Turnbull, A.; Wright, L.; Crocker, L. New insight into the pit-to-crack transition from finite element analysis of the stress and

strain distribution around a corrosion pit. Corro. Sci. 2010, 52, 1492–1498. [CrossRef]

https://doi.org/10.1016/j.jnucmat.2014.06.063
https://doi.org/10.1039/C5RA26061B
https://doi.org/10.1016/j.actamat.2015.04.052
https://doi.org/10.1021/nl0525655
https://www.ncbi.nlm.nih.gov/pubmed/16522052
https://doi.org/10.1016/j.actamat.2013.10.057
https://doi.org/10.1063/1.1615491
https://doi.org/10.1016/j.cplett.2004.06.019
https://doi.org/10.1016/S1359-6454(00)00228-7
https://doi.org/10.1016/j.susc.2006.01.066
https://doi.org/10.1021/nl304647t
https://doi.org/10.1021/am201345v
https://doi.org/10.1021/ie500232g
https://doi.org/10.1016/j.mattod.2013.10.019
https://doi.org/10.1016/j.commatsci.2009.04.023
https://doi.org/10.1039/c0nr00333f
https://www.ncbi.nlm.nih.gov/pubmed/20944863
https://doi.org/10.1007/s10008-009-0845-y
https://doi.org/10.1016/j.molliq.2015.06.052
https://doi.org/10.1017/CBO9780511549755.002
https://doi.org/10.1016/S0013-4686(01)00524-2
https://doi.org/10.1016/S0022-0728(02)00919-1
https://doi.org/10.1016/j.jelechem.2004.05.009
https://doi.org/10.1016/j.jelechem.2003.06.004
https://doi.org/10.1016/j.corsci.2011.04.027
https://doi.org/10.1016/j.corsci.2010.09.052
https://doi.org/10.1016/j.elecom.2009.07.027
https://doi.org/10.1016/j.corsci.2013.08.028
https://doi.org/10.1016/j.corsci.2009.12.004


Materials 2023, 16, 3396 22 of 24

74. Scheider, I.; Pfuff, M.; Dietzel, W. Simulation of hydrogen assisted stress corrosion cracking using the cohesive model. Eng. Fract.
Mech. 2008, 75, 4283–4291. [CrossRef]

75. Raykar, N.R.; Maiti, S.K.; Raman, R.K. Modelling of mode-I stable crack growth under hydrogen assisted stress corrosion cracking.
Eng. Fract. Mech. 2011, 78, 3153–3165. [CrossRef]

76. Lvarez, D.; Blackman, B.; Guild, F.J.; Kinloch, A.J. Mode I fracture in adhesively-bonded joints: A mesh-size independent
modelling approach using cohesive elements. Eng. Fract. Mech. 2014, 115, 73–95. [CrossRef]

77. Xu, L.; Cheng, Y.F. A Direct Assessment of Failure Pressure of High-Strength Steel Pipelines with Considerations of the Synergism
of Corrosion Defects. Intern. Press. Soil Strain 2013, 9, 363–372.

78. Li, X.G. Informatics for Materials Corrosion and Protection: The Fundamentals and Applications of Materials Genome Initative in Corrosion
and Protection; Chinese Chemical Industry Press: Beijing, China, 2014; pp. 46–53.

79. Fu, C.; Zheng, J.; Zhao, J.; Xu, W. Application of grey relational analysis for corrosion failure of oil tubes. Corro. Sci. 2001, 43,
881–889. [CrossRef]

80. Wang, Z.; Yong, W.; Zhang, J.; Qu, D.; Liu, X. Grey Correlation Analysis of Corrosion on the First Oil Atmospheric Distillation
Equipment. In Proceedings of the Wase International Conference on Information Engineering, Taiyuan, China, 10–11 July 2009.

81. Cao, X.; Deng, H.; Lan, W. Use of the grey relational analysis method to determine the important environmental factors that affect
the atmospheric corrosion of Q235 carbon steel. Anti-Corro. Meth. Mater. 2015, 62, 7–12. [CrossRef]

82. Sabel, C.F.; Victor, D.G. Governing global problems under uncertainty: Making bottom-up climate policy work. Clim. Chang.
2015, 144, 15–27. [CrossRef]

83. Piatetsky, S. Comment on “A Revolution That Will Transform How We Live, Work, and Think: An Interview with the Authors of
Big Data”. Big Data 2013, 1, 193. [CrossRef]

84. Sun, Q.Q.; Sun, R.J.; Chen, S.Y.; Chen, Q.Y.; Chen, K.H. Effect of atmospheric pollutants on electrochemical corrosion behaviour of
7B50 aluminium alloy. Chin. J. Nonferrous. Met. 2015, 25, 575–581.

85. Winston, R.R. Uhlig’s Corrosion Handbook, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 1101–1102.
86. Zhao, T.; Mu, G. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid. Corro.

Sci. 1999, 41, 1937–1944. [CrossRef]
87. Tang, L.B.; Mu, G.N.; Liu, G.H. The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid.

Corro. Sci. 2003, 45, 2251–2262. [CrossRef]
88. Mu, G.; Li, X.; Liu, G. Synergistic inhibition between tween 60 and NaCl on the corrosion of cold rolled steel in 0.5 M sulfuric acid.

Corro. Sci. 2005, 47, 1932–1952. [CrossRef]
89. Bishop, C.M.; Pm, D.M. Neural Networks for Pattern Recognition. Adv. Comp. 1995, 12, 1235–1242.
90. Shi, J.B.; Wang, J.H.; Macdonald, D.D. Prediction of primary water stress corrosion crack growth rates in Alloy 600 using artificial

neural networks. Corro. Sci. 2015, 92, 217–227. [CrossRef]
91. Kamrunnahar, M.; Urquidi, M. Prediction of corrosion behavior using neural network as a data mining tool. Corro. Sci. 2010, 52,

669–677. [CrossRef]
92. Alar, V.; Runje, B. Development of models for prediction of corrosion and pitting potential on AISI 304 stainless steel in different

environmental conditions. Inter. J. Electr. Sci. 2016, 11, 7674–7689. [CrossRef]
93. Jiang, G.; Bond, P.L.; Keller, J. Predicting concrete corrosion of sewers using artificial neural network. Water. Res. 2016, 92, 52–60.

[CrossRef]
94. Smets, H.M.G.; Bogaerts, W.F.L. SCC Analysis of Austenitic Stainless Steels in Chloride-Bearing Water by Neural Network

Techniques. Corrosion 1992, 48, 618–623. [CrossRef]
95. Martin, O.; Tiedra, P.D.; Lopez, M. Artificial neural networks for pitting potential prediction of resistance spot welding joints of

AISI 304 austenitic stainless steel. Corro. Sci. 2010, 52, 2397–2402. [CrossRef]
96. Rolich, T.; Rezic, I.; Curkovic, L. Estimation of Steel Guitar Strings Corrosion by Artificial Neural Network. Corro. Sci. 2010, 52,

996–1002. [CrossRef]
97. Kenny, E.D.; Paredes, R.; Lacerda, L.; Sica, Y.C.; Souza, G. Artificial neural network corrosion modeling for metals in an equatorial

climate. Corro. Sci. 2009, 51, 2266–2278. [CrossRef]
98. Birbilis, N.; Cavanaugh, M.K.; Sudholz, A.D.; Zhu, S.M.; Easton, M.A.; Gibson, M.A. A combined neural network and mechanistic

approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys. Corro. Sci. 2011, 53, 168–176.
[CrossRef]

99. Danaher, S.; Dudziak, T.; Datta, P.K.; Hasan, R.; Leung, P.S. Long-term oxidation of newly developed HIPIMS and PVD coatings
with neural network prediction modelling. Corro. Sci. 2013, 69, 322–337. [CrossRef]

100. Tesfamariam, S.; Martin, P.B. Bayesian Belief Network to Assess Carbonation-Induced Corrosion in Reinforced Concrete, J. Mater.
Civil. Eng. 2008, 20, 707–717.

101. Ma, Y.; Wang, L.; Zhang, J.; Xiang, Y.; Liu, Y.J. Bridge Remaining Strength Prediction Integrated with Bayesian Network and In
Situ Load Testing. J. Bridge. Eng. 2016, 19, 04014037. [CrossRef]

102. Vapnik, V.; Golowich, S.E.; Smola, A.J. Support Vector Method for Function Approximation, Regression Estimation, and Signal
Processing. Adv. Neural Inf. Process. Syst. 2008, 9, 281–287.

103. Raccuglia, P. Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533, 73. [CrossRef]

https://doi.org/10.1016/j.engfracmech.2007.10.002
https://doi.org/10.1016/j.engfracmech.2011.07.013
https://doi.org/10.1016/j.engfracmech.2013.10.005
https://doi.org/10.1016/S0010-938X(00)00089-5
https://doi.org/10.1108/ACMM-10-2013-1308
https://doi.org/10.1007/s10584-015-1507-y
https://doi.org/10.1089/big.2013.1513
https://doi.org/10.1016/S0010-938X(99)00029-3
https://doi.org/10.1016/S0010-938X(03)00046-5
https://doi.org/10.1016/j.corsci.2004.09.020
https://doi.org/10.1016/j.corsci.2014.12.007
https://doi.org/10.1016/j.corsci.2009.10.024
https://doi.org/10.20964/2016.09.26
https://doi.org/10.1016/j.watres.2016.01.029
https://doi.org/10.5006/1.3315981
https://doi.org/10.1016/j.corsci.2010.03.013
https://doi.org/10.1016/j.corsci.2009.11.024
https://doi.org/10.1016/j.corsci.2009.06.004
https://doi.org/10.1016/j.corsci.2010.09.013
https://doi.org/10.1016/j.corsci.2012.12.016
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000611
https://doi.org/10.1038/nature17439


Materials 2023, 16, 3396 23 of 24

104. Jian, L.; Kong, W.; Shi, J.; Ke, W.; Zeng, Z.J. Determination of Corrosion Types from Electrochemical Noise by Artificial Neural
Networks. Inter. J. Electro. Sci. 2013, 8, 2365–2377.

105. Yan, B.; Goto, S.; Miyamoto, A.; Hua, Z.J. Imaging-Based Rating for Corrosion States of Weathering Steel Using Wavelet Transform
and PSO-SVM Techniques. J. Comp. Civil. Eng. 2014, 28, 04014008. [CrossRef]

106. Qiu, X. The Method for Material Corrosion Modelling and Feature Selection with SVM-RFE. In Proceedings of the International
Conference on Telecommunications and Signal Processing, Budapest, Hungary, 18–20 August 2011.

107. Wen, Y.F.; Cai, C.Z.; Liu, X.H.; Pei, J.F.; Zhu, X.J.; Xiao, T.T. Corrosion rate prediction of 3C steel under different seawater
environment by using support vector regression. Corro. Sci. 2009, 51, 349–355. [CrossRef]

108. Zhao, H.; Zhang, X.; Ji, L.; Hu, H.; Li, Q. Quantitative structure–activity relationship model for amino acids as corrosion inhibitors
based on the support vector machine and molecular design. Corro. Sci. 2014, 83, 261–271. [CrossRef]

109. Li, L.; Zhang, X.; Gong, S.; Zhao, H.; Bai, Y.; Li, Q.; Ji, L. The discussion of descriptors for the QSAR model and molecular
dynamics simulation of benzimidazole derivatives as corrosion inhibitors. Corro. Sci. 2015, 99, 76–88. [CrossRef]

110. Rota, G.C. Handbook of Stochastic Methods; Springer: New York, NY, USA, 1985; Volume 55, p. 101.
111. Provan, J.W.; Rodriguez, E.S. Part I: Development of a Markov Description of Pitting Corrosion. Corrosion 1989, 45, 178–192.

[CrossRef]
112. Caleyo, F.; Velázquez, J.C.; Valor, A.; Hallen, J.M. Markov chain modelling of pitting corrosion in underground pipelines. Corro.

Sci. 2009, 51, 2197–2207. [CrossRef]
113. Mccallum, K.; Zhao, J.; Workman, M.; Iannuzzi, M.; Young, G.W. Localized Corrosion Risk Assessment Using Markov Analysis.

Corrosion 2014, 70, 1114–1127. [CrossRef]
114. Reigada, R.; Sagues, J.M.; Costa, J. A Monte Carlo simulation of localized corrosion. J. Chem. Phys. 1994, 101, 2329–2337. [CrossRef]
115. Wang, Y.Z.; Ebtehaj, K.; Hardie, D.; Parkins, R.N. The behaviour of multiple stress corrosion cracks in a Mn-Cr and a Ni-Cr-Mo-V

steel: III-Monte Carlo simulation. Corro. Sci. 1995, 37, 1705–1720. [CrossRef]
116. Caleyo, F.; Velazquez, J.C.; Valor, A.; Hallen, J.M. Probability distribution of pitting corrosion depth and rate in underground

pipelines: A Monte Carlo study. Corro. Sci. 2009, 51, 1925–1934. [CrossRef]
117. Wang, Z.; Yong, W.; Wang, W.; Hui, Q.; He, Q. Grey Predication of Corrosion on Oil Atmospheric Distillation Equipment. In

Proceedings of the International Conference on Electronic Computer Technology, Macau, China, 20–22 February 2009.
118. Wang, P.; Yin, Z.H.; Ren, H.T.; Xu, S. Research on Prediction of Carbon Steel in SO2 Atmospheric Corrosion Using Grey Model.

Appl. Mech. Mater. 2014, 507, 258–262. [CrossRef]
119. Zhi, Y.J.; Fu, D.M.; Wang, H. Non-Equidistant GM(1,1) Model based on GCHM_WBO and its Application to Corrosion Rate

Prediction. In Proceedings of the IEEE International Conference on Grey Systems & Intelligent Services, Leicester, UK, 18–20
August 2015.

120. Li, P.; Tan, T.C.; Lee, J.Y. Grey Relational Analysis of Amine Inhibition of Mild Steel Corrosion in Acids. Corrosion 1997, 53,
186–194. [CrossRef]

121. Zhao, X.G.; Yi, Z.; Fei, C.; Zhu, J.C.; Gao, D.P. Prediction of Soleplate Corrosion in Petroleum Storage Tank based on Grey Model
GM(1,1). In Proceedings of the 2012 IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM), Hong Kong, China, 10–13 December 2012.

122. Ma, F.Y.; Wang, W.H. Prediction of pitting corrosion behavior for stainless SUS 630 based on grey system theory. Mater. Lett. 2006,
61, 998–1001. [CrossRef]

123. Buck, D.M. Copper in Steel—The influence on corrosion. Ind. Eng. Chem. Res. 2002, 5, 447–452. [CrossRef]
124. Albrecht, P.; Hall, T.T. Atmospheric Corrosion Resistance of Structural Steels. J. Mater. Civil. Eng. 2003, 15, 2–24. [CrossRef]
125. Zhao, Q.Y.; Fan, Y.; Fan, E.D.; Zhao, B.J.; Huang, Y.H.; Cheng, X.Q.; Li, X.G. Influence factors and corrosion resistance criterion of

low-alloy structural steel. Chin. J. Eng. 2021, 43, 255–262.
126. Hao, X.F. A Review of Research for Protecting Weathering Steel from Atmospheric Corrosion. J. Shanghai. Iron. Res. 2001, 2, 34–39.
127. Liu, L.; Qi, H.B.; Lu, Y.P. A review on weathering steel research. Corro. Sci. Protec. Techn. 2003, 15, 86–89.
128. Li, X.G.; Zhu, J.; Cheng, X.Q. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic

atmospheres. Corro. Sci. 2017, 115, 135–142.
129. Wang, J.S.; Shi, P.Y.; Liu, C.J. Corrosion Behavior of S450EW Low-alloy Weathering Steel in Cyclically Alternate Corrosion

Environments. J. Iron. Steel. Res. Int. 2015, 22, 1020–1023. [CrossRef]
130. Yamashita, M.; Nagano, H.; Misawa, T.; Townsend, H.E. Structure of Protective Rust Layers Formed on Weathering Steels by

Long-Term Exposure in the Industrial Atmospheres of Japan and North America. ISIJ Int. 1998, 38, 285–290. [CrossRef]
131. Choi, Y.S.; Shim, J.J.; Kim, J.G.J. Compounds, Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in

synthetic tap water. J. Alloys Compd. 2005, 391, 162–169. [CrossRef]
132. Wang, B.; Liu, Q.; Wang, X.; Jia, S.; Dong, H.J. Inhibitive corrosion mechanism of Ce-ion and La-ion for carbon steel in NaCl

solution. J. Chin. Soc. Corro. Protec. 2007, 27, 151–155.
133. Zhang, S.; Huang, Y.; Sun, B.; Liao, Q.; Lu, H.; Jian, B. Effect of Nb on hydrogen-induced delayed fracture in high strength hot

stamping steels. Mater. Sci. Eng. A 2015, 626, 136–143. [CrossRef]
134. Jiang, C.; Yang, Y.; Cheng, X.; Zhao, J.; Li, X. Effect of Sn on the corrosion behavior of weathering steel in a simulated tropical

marine atmosphere. Anti Corros. Method. Mater. 2020, 67, 129–139. [CrossRef]

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000293
https://doi.org/10.1016/j.corsci.2008.10.038
https://doi.org/10.1016/j.corsci.2014.02.023
https://doi.org/10.1016/j.corsci.2015.06.003
https://doi.org/10.5006/1.3577840
https://doi.org/10.1016/j.corsci.2009.06.014
https://doi.org/10.5006/1184
https://doi.org/10.1063/1.467673
https://doi.org/10.1016/0010-938X(95)00039-M
https://doi.org/10.1016/j.corsci.2009.05.019
https://doi.org/10.4028/www.scientific.net/AMM.507.258
https://doi.org/10.5006/1.3280459
https://doi.org/10.1016/j.matlet.2006.06.053
https://doi.org/10.1021/ie50054a003
https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(2)
https://doi.org/10.1016/S1006-706X(15)30106-0
https://doi.org/10.2355/isijinternational.38.285
https://doi.org/10.1016/j.jallcom.2004.07.081
https://doi.org/10.1016/j.msea.2014.12.051
https://doi.org/10.1108/ACMM-09-2019-2178


Materials 2023, 16, 3396 24 of 24

135. Liu, B.; Mu, X.; Yang, Y.; Hao, L.; Ding, X.; Dong, J.; Zhang, Z.; Hou, H. Effect of tin addition on corrosion behavior of a low-alloy
steel in simulated costal-industrial atmosphere. J. Mater. Sci.Techn. 2019, 35, 12. [CrossRef]

136. Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Arrabal, R. Pitting corrosion behaviour of austenitic stainless steels with Cu
and Sn additions. Corro. Sci. 2007, 49, 510–525. [CrossRef]

137. Yang, Y. Corrosion Mechanism of Sn/Sb-Microalloyed 420MPa Low-Alloy Steels in Polluted Marine Atmosphere; University of Science
and Technology: Beijing, China, 2021.

138. Jia, J.H. Corrosion Behavior and Mechanism of New Type High-Strength 3Ni Steel in the South China Sea Atmosphere Environment;
University of Science and Technology: Beijing, China, 2021.

139. Pan, Y. Stress Corrosion Cracking Behavior and Mechanism of 2205 Duplex Stainless Steel and the Heat Affected Zone; University of
Science and Technology: Beijing, China, 2022.

140. Jia, J.H.; Liu, Z.Y.; Li, X.G.; Du, C.W.; Li, W. Comparative study on the stress corrosion cracking of a new Ni-advanced high
strength steel prepared by TMCP, direct quenching, and quenching & tempering. Mater. Sci. Eng. A 2021, 825, 141854.

141. Wu, W.; Liu, Z.Y.; Wang, Q.Y.; Li, X.G. Improving the resistance of high-strength steel to SCC in a SO2−polluted marine atmosphere
through Nb and Sb microalloying. Corros. Sci. 2020, 170, 108693. [CrossRef]

142. Liu, Z.Y.; Li, X.G.; Du, C.W.; Lu, L.; Zhang, Y.R. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in
an acidic soil environment. Corros. Sci. 2009, 51, 895–900. [CrossRef]

143. Xu, X.X. Corrosion Fatigue Mechanism and Corrosion Fatigue Life Prediction of Microalloyed 780 MPa High-Strength Marine Engineering
Steel; University of Science and Technology: Beijing, China, 2021.

144. Yang, X.J.; Yang, Y.; Sun, M.H.; Jia, J.H.; Cheng, X.Q.; Peo, Z.B. A new understanding of the effect of Cr on the corrosion resistance
evolution of weathering steel based on big data technology. J. Mater. Sci. Technol. 2022, 104, 67–80. [CrossRef]

145. Zhang, X.; Wei, W.; Cheng, L.; Liu, J.; Wu, K.; Liu, M.J. Effects of niobium and rare earth elements on microstructure and initial
marine corrosion behavior of low-alloy steels. Appl. Surf. Sci. 2018, 475, 83–93. [CrossRef]

146. Li, W.; Li, D.Y. Effect of surface geometrical configurations induced by microcracks on the electron work function. Acta. Mater.
2005, 53, 3871–3878. [CrossRef]

147. Rohwerder, M.; Turcu, F. High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy
(SKPFM) versus classical scanning Kelvin probe (SKP). Electro. Acta. 2008, 53, 290–299. [CrossRef]

148. Yu, J.; Xin, L.; Wang, J.; Jing, C.; Huang, W. First-principles study of the relaxation and energy of bcc-Fe. fcc-Fe and AISI-304
stainless steel surfaces. Appl. Surf. Sci. 2009, 255, 9032–9039. [CrossRef]

149. Sun, M.H. Corrosion Resistance Mechanism of Cr-Mo-Sn Microalloyed Low-Alloy Steel in Tropical Marine Atmosphere; University of
Science and Technology: Beijing, China, 2021.

150. Yin, F.; Xu, G.J.; Zhao, R.; Li, K.J.; Jian, Q.; Hu, J. Ultrastrong nanocrystalline stainless steel and its Hall-Petch relationship in the
nanoscale. Scrip. Materi. 2018, 155, 26–31. [CrossRef]

151. Birbilis, N.; Ralston, K.D. Effect of grain size on corrosion: A review. Corros. Sci. 2010, 66, 319–324.
152. Wang, S.G.; Shen, C.B.; Long, K.; Yang, H.Y.; Wang, F.H.; Zhang, Z.D. Preparation and electrochemical corrosion behavior of bulk

nanocrystalline ingot iron in HCl acid solution. J. Phys. Chem. B 2005, 109, 2499. [CrossRef]
153. Wang, S.G.; Sun, M.H.; Cheng, P.C.; Long, K.J. The electrochemical corrosion of bulk nanocrystalline ingot iron in HCl solutions

with different concentrations. J. Phys. Chem. B 2011, 127, 459–464. [CrossRef]
154. Liu, L.; Li, Y.; Wang, F.H. Electrochemical Corrosion Behavior of Nanocrystalline Materials—A Review. J. Mater. Sci. Techn. 2010,

26, 1–14. [CrossRef]
155. Jiang, P.F.C.; Wang, B.; Liu, Q.Y.; Shi, Z.J. Effect of grain size on the corrosion resistance of Corten-B weathering steel. Iron Steel

2009, 44, 67–70.
156. Long, X.Y.; Zhang, F.C.; Kang, J.; Lv, B. Low-temperature bainite in low-carbon steel. Misrostructure Process. 2014, 594, 344–351.

[CrossRef]
157. Gensamer, M.; Pearsall, E.B.; Pellini, W.S. The Tensile Properties of Pearlite, Bainite, and Spheroidite. Metallogra. Microstruct.

Analy. 2012, 1, 171–189.145. [CrossRef]
158. Xiao, X.M.; Peng, Y.; Cheng, Y. Effects of Alloy Element and Microstructure on Corrosion Resistant Property of Deposited Metals

of Weathering Steel. J. Iron. Steel. Resea. Inter. 2016, 23, 7. [CrossRef]
159. Guo, J.; Yang, S.; Shang, C.; Wang, Y.; He, X. Influence of Carbon Content And Microstructure on Corrosion Behaviour of Low

Alloy Steels In a Cl− Containing Environment. Corro. Sci. 2009, 51, 242–251. [CrossRef]
160. Yang, X.J. Research on the Control of Corrosion Resistance of Cr-Contaning Low-Alloy Steel Based on Corrosion Big Data Technology;

University of Science and Technology: Beijing, China, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jmst.2019.01.008
https://doi.org/10.1016/j.corsci.2006.06.004
https://doi.org/10.1016/j.corsci.2020.108693
https://doi.org/10.1016/j.corsci.2009.01.007
https://doi.org/10.1016/j.jmst.2021.05.086
https://doi.org/10.1016/j.apsusc.2018.12.243
https://doi.org/10.1016/j.actamat.2005.04.042
https://doi.org/10.1016/j.electacta.2007.03.016
https://doi.org/10.1016/j.apsusc.2009.06.087
https://doi.org/10.1016/j.scriptamat.2018.06.014
https://doi.org/10.1021/jp046297v
https://doi.org/10.1016/j.matchemphys.2011.02.035
https://doi.org/10.1016/S1005-0302(10)60001-1
https://doi.org/10.1016/j.msea.2013.11.089
https://doi.org/10.1007/s13632-012-0027-7
https://doi.org/10.1016/S1006-706X(16)30030-9
https://doi.org/10.1016/j.corsci.2008.10.025

	Introduction 
	Microscopic Model of Corrosion Mechanism of Materials 
	First-Principles 
	Material Surface Model 
	Internal Lattice Model 

	Molecular Dynamics 
	Monte Carlo Simulation at the Micro- and Nano-Scale 
	Cellular Automata 
	Finite Element Simulation and Boundary Element Simulation 
	Grey Correlation Analysis 

	Data Mining Methods for Corrosion Mechanism Research 
	Multiple Linear Regression Equation 
	Artificial Neural Networks 
	Bayesian Networks 
	Support Vector Machines and Support Vector Regression 
	Markov Chain 
	Monte Carlo Simulations at the Macroscopic Scale 
	Grey Forecasting 

	Corrosion Resistance Performance Control by Data-Driven 
	Advances in Micro-Alloying Control Technology for Corrosion-Resistant Structural Steels 
	Organization Control Technology 

	Conclusions 
	References

