The Optimized Homogenization Process of Cast 7Mo Super Austenitic Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. As-Cast Microstructure
3.2. Determination of the Heating Temperature
3.3. The Process of ISHT and SSHT
3.4. Dissolution of σ Phase and Diffusion of Elements during ISHT and SSHT
3.5. Hardness of the Homogenized Sample
4. Discussion
5. Conclusions
- (1)
- Increasing the Ce element can refine the cast microstructure and reduce the σ phase from 10.5% to 5.9%, which speeds up the homogenization process and increases the average hardness of the homogenized microstructure.
- (2)
- Raising the Mn element promotes severe element segregation and coarse dendrites in the cast microstructures, which slows down the dissolution rate of atoms. Homogenized grains are also enlarged, with smaller hardness after the Mn contents increase by 2 wt.%.
- (3)
- The stepped solution heat treatment can make the cast 7Mo SASS meet the homogenization standard efficiently, shorten the homogenization time from 30 h to 12~13 h, as well as avoid the incipient remelting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wallen, B.; Liljas, M.; Stenvall, P. AVESTA 654SMO™–A new nitrogen-enhanced superaustenitic stainless steel. Mater. Corros. 1993, 44, 83–88. [Google Scholar] [CrossRef]
- Olsson, J.; Wasielewska, W. Applications and experience with a Superaustenitic 7Mo stainless steel in hostile environments. Mater. Corrosion 1997, 48, 791–798. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, J.; Li, H.; Jiang, Z.; Geng, Y.; Feng, H.; Zhang, B.; Zhu, H. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2021, 102, 105–114. [Google Scholar] [CrossRef]
- Kalandyk, E.B.; Zapala, E.R.; Palka, P. Effect of Isothermal Holding at 750 degrees C and 900 degrees C on Microstructure and Properties of Cast Duplex Stainless Steel Containing 24% Cr-5% Ni-2.5% Mo-2.5% Cu. Materials 2022, 15, 8569. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, A.; Li, C.; Yu, X.; Xie, J.; Liu, C. Effect of Secondary-Phase Precipitation on Mechanical Properties and Corrosion Resistance of 00Cr27Ni7Mo5N Hyper-Duplex Stainless Steel during Solution Treatment. Materials 2022, 15, 7533. [Google Scholar] [CrossRef]
- Hosseini, V.A.; Karlsson, L.; Wessman, S.; Fuertes, N. Effect of Sigma Phase Morphology on the Degradation of Properties in a Super Duplex Stainless Steel. Materials 2018, 11, 933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; He, J.; Xu, S.; Zhang, F.; Wang, X. The roles of Ce and Mn on solidification behaviors and mechanical properties of 7Mo super austenitic stainless steel. J. Mater. Res. Technol. 2023, 22, 1238–1249. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhang, W.; Li, J.; Chou, K. Effect of cerium on the austenitic nucleation and growth of high-Mo austenitic stainless steel. Metall. Mater. Trans. B 2020, 51B, 1773–1783. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, S.; Li, H.; Jiang, Z.; Feng, H.; Xu, P.; Han, P. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 112, 184–194. [Google Scholar] [CrossRef]
- Biezma, V.M.; Martin, U.; Linhardt, P.; Ress, J.; Rodríguez, C.M.; Bastidas, D. Non-destructive techniques for the detection of sigma phase in duplex stainless steel: A comprehensive review. Eng. Fail. Anal. 2021, 122, 105227. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Wu, W. Overview of intermetallic sigma phase precipitation in stainless steels. ISRN Metall. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
- Nasir, N.I. The effect of heat treatment on the mechanical properties of stainless steel type 304. Int. J. Sci. Eng. Res. 2015, 3, 87–93. [Google Scholar]
- Vermilyea, D.; Tedmon, C.; Broecker, D.E. Some effects of heat treatment variables on the sensitization of type 304 stainless steel. Corrosion 1975, 31, 140–142. [Google Scholar] [CrossRef]
- Gao, J.; Fan, S.; Zhang, S.; Jiang, Z.; Li, H. Segregation behavior and homogenization process of novel super austenitic stainless steel 654SMO. Iron Steel 2018, 53, 83–89. [Google Scholar]
- Li, Z.; Wei, Z.; Qi, W. Hot deformation behavior of super austenitic stainless steel. Iron Steel 2017, 52, 72. [Google Scholar]
- Su, X.; Xu, Q.; Wang, R.; Xu, Z.; Liu, S.; Liu, B. Microstructural evolution and compositional homogenization of a low Re-bearing Ni-based single crystal superalloy during through progression of heat treatment. Mater. Des. 2018, 141, 296–322. [Google Scholar] [CrossRef]
- Liu, J.L.; Meng, J.; Yu, J.; Zhou, Y.; Sun, X.F. Influence of solidification conditions and alloying elements Re and Ti on micropores formed during homogenization of Ni base single crystal superalloy. J. Alloys Compd. 2018, 746, 428–434. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Huang, T.; Yue, Q.; Sun, D.; Zhang, J.; Yang, W.; Su, H.; Fu, H. Investigation on a ramp solution heat treatment for a third generation nickel-based single crystal superalloy. J. Alloys Compd. 2017, 723, 922–929. [Google Scholar] [CrossRef]
- Tancret, F. Thermo-Calc and Dictra simulation of constitutional liquation of gamma prime (γ′) during welding of Ni base superalloys. Comput. Mater. Sci. 2007, 41, 13–19. [Google Scholar] [CrossRef]
- Yang, Q.; Cui, Z.; Liao, B.; Yao, M. Effect of rare earth elements on growth dynamics of austenite in 60CrMnMo steel. J. Rare Earths 1999, 17, 46–48. [Google Scholar]
- Lou, D.; Cui, K.; Grong, O.; Akselsen, O.M. Effect of Rare Earth Metals and Calcium in Solid Phase Transformation Microstructure of Low Alloy Steels; International Symposium on Microslloyed Steels: Columbus, OH, USA, 2002. [Google Scholar]
- Guo, F.; Zheng, C.; Wang, P.; Li, D.; Li, Y. Effects of Rare Earth on Austenite-Ferrite Phase Transformation in a Low-Carbon Fe-C Alloy. Acta Metall. Sin. 2023, 36, 6. [Google Scholar] [CrossRef]
- Raghavan, V. Effect of manganese on the stability of austenite in Fe-Cr-Ni alloys. Metall. &Mater. Trans. A 1995, 26, 237–242. [Google Scholar]
- Flemgins, M.C.; Barone, R.V.; Brody, H.D. Microsegregation in iron-base alloys. J. Iron Steel Inst. 1970, 208, 371–380. [Google Scholar]
- Phillips, N.S.L.; Chumbley, L.S.; Gleeson, B. Phase transformations in cast superaustenitic stainless steels. J. Mater. Eng. Perform. 2009, 18, 1285–1293. [Google Scholar] [CrossRef]
- Sundman, O.B.; Ansara, I. The Gulliver–Scheil Method for the Calculation of Solidification Paths; Woodhead Publishing: Sawston, UK, 2008. [Google Scholar]
- Kurosu, S.; Nomura, N.; Chiba, A. Effect of σ phase in Co-29Cr-6Mo alloy on corrosion behavior in saline solution. Mater. Trans. 2006, 47, 1961–1964. [Google Scholar] [CrossRef]
- Andilab, B.; Ravindran, C.; Dogan, N.; Lombardi, A.; Byczynski, G. In-situ analysis of incipient melting of Al2Cu in a novel high strength Al-Cu casting alloy using laser scanning confocal microscopy. Mater. Charact. 2020, 159, 110064. [Google Scholar] [CrossRef]
- Lombardi, A.; Mu, W.; Ravindran, C.; Dogan, N.; Barati, M. Influence of Al2Cu morphology on the incipient melting characteristics in B206 Al alloy. J. Alloy. Compd. 2018, 747, 131–139. [Google Scholar] [CrossRef]
- Yan, Y.; Shan, W.; Hao, Y.; Li, Y. Microstructure and composition evolution of magnesium alloy MB15 during semi-solid isothermal heat treatment. Mater. Sci. Technol. 2005, 49, 652–655. [Google Scholar]
- Chen, T.J.; Ma, Y.; Hao, Y.; Lu, S.; Sun, J. Structural evolution of ZA27 alloy during semi-solid isothermal heat treatment. Trans. Nonferrous Met. Soc. China 2001, 1, 98–102. [Google Scholar]
- Hegde, S.R.; Kearsey, R.M.; Beddoes, J.C. Designing homogenization–solution heat treatments for single crystal superalloys. Mater. Sci. Eng. A 2010, 527, 5528–5538. [Google Scholar] [CrossRef]
- Fuchs, G.E. Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng. A 2001, 300, 52–60. [Google Scholar] [CrossRef]
- Cardona, M.; Fulde, P.; Klitzing, K.v.; Merlin, R.; Queisser, H.J.; Stormer, H. Diffusion in Solids; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
Cr | Mo | Ni | Mn | N | Cu | Si | Ce | Fe | |
---|---|---|---|---|---|---|---|---|---|
6Mn-Ce | 25.012 | 6.771 | 18.891 | 5.733 | 0.459 | 0.405 | 0.091 | 0.024 | bal. |
6Mn | 25.182 | 6.892 | 18.819 | 6.028 | 0.418 | 0.412 | 0.108 | 0.001 | bal. |
3Mn | 25.321 | 7.088 | 19.052 | 3.124 | 0.438 | 0.443 | 0.113 | 0.001 | bal. |
Tσ (°C) | Tδ (°C) | TL (°C) | |
---|---|---|---|
6Mn-Ce | 1267.48 | 1268.00 | 1326.21 |
6Mn | 1267.82 | 1268.30 | 1326.18 |
3Mn | 1279.10 | 1285.84 | 1338.00 |
wt.% | Cr | Mo | Mn | Ni | Fe | Ce | TLL (°C) |
---|---|---|---|---|---|---|---|
6Mn-Ce | 25.66 | 6.62 | 6.42 | 16.16 | 42.00 | 0.02 | 1250.74 |
6Mn | 25.05 | 8.55 | 6.43 | 17.01 | 39.69 | 0.001 | 1248.30 |
3Mn | 25.94 | 7.51 | 3.68 | 17.84 | 41.68 | 0.001 | 1264.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; He, J.; Xu, S.; Zhang, F.; Wang, X. The Optimized Homogenization Process of Cast 7Mo Super Austenitic Stainless Steel. Materials 2023, 16, 3438. https://doi.org/10.3390/ma16093438
Zhang R, He J, Xu S, Zhang F, Wang X. The Optimized Homogenization Process of Cast 7Mo Super Austenitic Stainless Steel. Materials. 2023; 16(9):3438. https://doi.org/10.3390/ma16093438
Chicago/Turabian StyleZhang, Runze, Jinshan He, Shiguang Xu, Fucheng Zhang, and Xitao Wang. 2023. "The Optimized Homogenization Process of Cast 7Mo Super Austenitic Stainless Steel" Materials 16, no. 9: 3438. https://doi.org/10.3390/ma16093438
APA StyleZhang, R., He, J., Xu, S., Zhang, F., & Wang, X. (2023). The Optimized Homogenization Process of Cast 7Mo Super Austenitic Stainless Steel. Materials, 16(9), 3438. https://doi.org/10.3390/ma16093438