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Abstract: Laboratory research of wood–CFRP (carbon fiber reinforced polymer) structural elements,
especially beams, is a scientific issue undertaken by many scientists. Research is often complemented
with numerical analysis with the use of complex finite element method (FEM) models. Modern
FEM software offers models that can reproduce such properties and phenomena as orthotropy and
plasticity of wood and CFRP, delamination and mechanical behavior of adhesive layers, and damage
of a strengthened element. The author of the paper reproduces numerical laboratory research of
a four-point bending test of a glulam beam strengthened with CFRP tape. The main goal of the
numerical research is an analysis of how the complexity of the FEM model influences the results of
calculations, especially stress, deflection, and bearing capacity of the glulam beam. In some cases,
a simpler model can be satisfactory, especially for a structural engineer, who takes into account
serviceability limit states (permissible deflection of a structural member) and assumes that stress
should not exceed the yield stress of timber.
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1. Introduction

Structural elements made of wood and strengthened with various materials are a
frequent subject of laboratory tests and numerical analysis. Research concerns different
types of timber, for instance, veneer lumber [1], spruce timber [2], historic timber [3],
glulam [4–6], as well as timber with knots and local deviation of grain [7]. Structural
elements (mainly beams) are strengthened in various manners, e.g.,:

• With CFRP plates with different cross-sectional layouts [3,5,8];
• With CFRP cords [4];
• With screwed steel plates [9];
• As timber–glass composites (TGC) [10];
• With pultruded GFRP reinforcement [11];
• With basalt fibers [12,13];
• With jute fibers [14].

Laboratory tests are often accompanied by numerical simulations. Kawecki [15] pre-
sented a summary of guidelines for FEM modeling of CFRP–wood beams in the Abaqus
environment. The guidelines take into consideration a few issues important in the numeri-
cal modeling of strengthened timber structures, namely:

• Constitutive law for wood, CFRP tapes, and adhesive,
• Cohesive behavior and traction separation of an adhesive layer,
• Material orientation,
• Proper recreation of damage and delamination,
• Convergence of solution of non-linear FEM problem.

Recently FEM calculation of timber structures using advanced numerical models has
been a current and important topic of scientific interest. A few important papers on this
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topic are listed in this paragraph in chronological order. Mirianon et al. [16] presented a
method to model wood in Abaqus code, which takes into consideration moisture flow and
diffusion. Kim and Harries [17] discussed a parametric study of five timber species using
orthotropic constitutive characteristics, analyzing stress concentration and failure modes.
Raftery and Harte [18] developed a numerical model that incorporated non-linear material
behavior and non-linear geometry as well. Glisović et al. [5] defined a numerical model
using anisotropic plasticity theory and maximum stress criterion for failure. However, they
defined an adhesive bond between timber and CFRP plates as a perfect connection. In the
previously mentioned work of Kawecki [15], the same bond was defined with the use of the
so-called “cohesive behavior” in the ABAQUS code. As the author claims, the definition
is intended to better reproduce the delamination process. There is also an effort put into
the numerical simulation of the hygro-mechanical creep behavior of strengthened timber
elements, as shown in [19]. The authors used DFLUX and UMAT subroutines to describe
the relative humidity and material behavior. Kawecki and Podgórski [20,21] developed
numerical models which recreated fractures in softwood bent elements (using linear elastic
fracture mechanics, continuum damage mechanics, and Hill’s function) and examined the
effect of glue cohesive stiffness on the elastic response of timber beams. Eslami et al. [22]
proposed a non-linear anisotropic material model for failure and its implementation in the
UMAT subroutine in the ABAQUS environment.

The vast majority of scientific analyzes of the statics of timber elements assume an
elastic–plastic material model. A simple version of the elastic–plastic model assumes yield-
ing in the compressive zone [5], which is consistent with design codes [23]. One can also
define plastic behavior separately in tension and compression, which was demonstrated
in [15,20]. The other approach is a separate definition of the elastic–plastic model in three
directions: parallel to grain, radial, and tangential direction [18]. It is also possible to
incorporate damage formulations with damage criteria in tension and compression, as
shown in [22]. Elastic models in scientific research are rarely used; an example of the use
of the elastic model can be found in work by Braun et al. [24]. However, even in that case,
the authors reported some restrictions when using the elastic model. On the other hand,
design codes [23] recommend the use of the elastic model or the elastic–plastic model with
a definition of yielding in the compressive zone only. Structural engineers often use the
simplest (so elastic) model and may not be aware of the disadvantages of this model. There
is a need to perform analyses that compare the behavior of the elastic and elastic–plastic
models and determine how complex should be a FEM model to reflect a real behavior of a
timber structural element. A novelty of the presented work is based on the comparative
study of assumed numerical models.

Numerical modeling of timber structures encounters a few relevant issues, which
are highlighted in this paragraph. In general, the more accurate the model is, the more
complicated phenomena should be implemented in the FEM software. The very first
problem is a choice of a material model for timber. Brol et al. [25] stated that the assumption
of timber as homogenous material leads to the neglection of irregularities in the material.
Because of that, an assumption of orthotropic material is widely used. As an anisotropic
yield criterion, Hill’s criterion is most often assumed, as it was developed from the Huber–
Mises–Hencky (HMH) criteria and allows consideration of different material behavior
in three orthogonal directions [26], even with the distinction between compressive and
tensile behavior of the material. The other issue concerns the proportion of dimensions
of timber, adhesive, and CFRP plates. Relatively small thickness of adhesive and CFRP
layers may cause some numerical problems. An exemplary solution to the problem was
proposed by Kawecki [27], who introduced a unit constitutive thickness for the cohesive
element and surfaces. The next problem refers to a definition of connections between timber,
adhesive, and CFRP plates. There are two approaches; one of them is a simple perfect bond
between all items [3,5]. Of course, this means the neglection of phenomena in adhesive
layers. The other approach, presented, e.g., by Kawecki [27], assumes an introduction of
the traction–separation law. Finally, some problems with convergence can occur during
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non-linear FEM analysis. A solution to the problem was proposed in [27] by inputting a
viscosity parameter, which guarantees the stability of the model.

To sum up, current trends in research of strengthened timber elements demand a com-
parison of laboratory and numerical research. Numerical models become more complicated
in the sense that they can reproduce more and more complex phenomena. The author of
the paper would like to present the results of the FEM calculations and compare them to
the experimental results presented in [5]. The main goal of the paper is a review of results
depending on the complexity of the FEM model; therefore, it can be considered a numerical
study (a FEM calculation report). The complexity manifests itself with the following issues:
choice of a material model (elastic or elastic–plastic) and definition of a cross-section of the
glulam beam (whole section or division into laminations). Results obtained in an elastic
model (taking into account a serviceability limit state, and namely permissible deflection
in the middle span of the beam) can have importance to structural engineers, while more
complex models can be of interest to both engineers and researchers.

2. Materials and Methods
2.1. Materials

Numerical simulations were carried out on a glulam beam under four-point bending,
strengthened with CFRP tapes. Geometry (see Figure 1), mechanical properties, and
boundary conditions were assumed according to [5]. Boundary conditions and load of the
specimen (displacement control was applied) are shown in Figure 2. Maximal displacement
of the indicated nodes was assumed as 0.1 m. Translational degrees of freedom U1, U2,
and U3 affiliated with the x-, y-, and z-axis of the global coordinate system, respectively
(Figure 2). The assembled specimen is presented in Figure 3. The whole timber section
consists of seven parts (laminations) which are connected by six adhesive layers. A CFRP
tape is glued with another adhesive layer to the bottom of the glulam beam. Meshing of the
specimen is shown in Figure 4, wherein Figure 4a) presents a zoom of a support zone (one
can see a finer mesh defined for the CFRP tape and a coarser mesh applied for the glulam
beam) and Figure 4b) shows a zoom of one part of the glulam beam with an adhesive layer.
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Material properties of timber and CFRP are listed in Tables 1 and 2 according to [5].
Timber and CFRP were assumed as orthotropic, while adhesive layer is isotropic and linear–
elastic with modulus of elasticity equal to 11,200 MPa and Poisson’s ratio 0.35, according to
a manufacturer of the adhesive [5]. A few mechanical properties of materials (in the case of
timber—parallel to grain), especially those valid for definition of constitutive relationships,
were presented in Table 3 [5].

Table 1. Orthotropic material properties of timber.

Modulus of Elasticity [MPa] Shear Modulus [MPa] Poisson’s Ratio [-]

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

11,080 886 554 791 744 79 0.37 0.42 0.47

Table 2. Orthotropic material properties of CFRP tape.

Modulus of Elasticity [MPa] Shear Modulus [MPa] Poisson’s Ratio [-]

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

165,543 10,000 10,000 5000 5000 1000 0.30 0.30 0.03

Table 3. Mechanical properties of materials.

Property Timber CFRP Adhesive Layer

Compressive strength [MPa] 36.3 - 70.0
Tensile strength [MPa] 27.8 2846.0 24.0

Bending strength [MPa] 42.5 - -
Shear strength [MPa] - - 18.0
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2.2. Methods

Calculations were performed with FEM using Abaqus [28] environment. Four variants
of a model with different assumptions were analyzed. The variants are listed in Table 4. The
glulam beam taken into consideration consists of seven parts glued with adhesive layers,
and the first question is if one can simply define a whole timber cross-section without
dividing it into seven glued laminations. One of goals of the research is to check out if the
cross-section definition has any significant influence on obtained results.

Table 4. Different model assumptions.

Model Name Cross-Section Timber Definition

A whole section, no division orthotropic, linear elastic
B divided into 7 parts, glued with adhesive orthotropic, linear elastic
C whole section, no division orthotropic, plastic
D divided into 7 parts, glued with adhesive orthotropic, plastic

The more important problem concerns a material model definition of timber. There
is no doubt it should be an orthotropic model [15], but the open issue is the use of plastic
behavior in timber. From a structural engineer’s point of view, codes recommend employ-
ing a linear elastic model of timber, as, for example, stated in Eurocode [23]. The code
mentions only compressive behavior of timber; more precisely, it allows using a non-elastic
model in compression but without any specific constitutive equation. It is very likely that
structural engineers use linear–elastic models without any consideration of plastic behavior
of timber. On the other hand, a comparison of results obtained using FEM for both models
(linear elastic and plastic) combined with SLS (serviceability limit state), especially with
a verification of a permissible deflection in the midspan of the glulam beam, can be an
answer to an engineering issue if the use of the plastic model is necessary, whereas, when
comparing laboratory tests with numerical simulations, the plastic model (often combined
with cohesive behavior of an adhesive layer to reproduce delamination—see [15]) is a more
correct option.

Timber and CFRP tapes as orthotropic materials were defined using “Elastic–engineering
constants” option in Abaqus. This option allows inputting all nine material constants listed
in Tables 2 and 3. To reproduce an anisotropic plastic flow of timber (when reaching a yield
point), Hill’s function is applied—see Equation (1):

f (σ) =
√

F(σ22 − σ33)
2 + G(σ33 − σ11)

2 + H(σ11 − σ22)
2 + 2Nτ2

12 + 2Mτ2
13 + 2Lτ2

23 (1)

where σij and τij denote components of a stress tensor σ and six constants appearing in the
equation can be expressed in the form given by Equations (2) and (3):

F =
1
2

(
1

R2
22

+
1

R2
33
− 1

R2
11

)
, G =

1
2

(
1

R2
33

+
1

R2
11
− 1

R2
22

)
, H =

1
2

(
1

R2
11

+
1

R2
22
− 1

R2
33

)
, (2)

N =
3

2R2
12

, M =
3

2R2
13

, L =
3

2R2
23

, (3)

where constants were calculated using formulas given by Abaqus guide [28] and yield
points assumed in [5]. The formulas and values of the six constants are listed below:

R11 =
σ11

σ0 =
36.30MPa
36.30MPa

= 1, (4)

R22 =
σ22

σ0 =
5.00MPa

36.30MPa
= 0.138, (5)
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R33 =
σ33

σ0 =
5.00MPa

36.30MPa
= 0.138, (6)

R12 =
σ12

τ0 =
6.10MPa

21.96MPa
= 0.291, (7)

R13 =
σ13

τ0 =
6.10MPa

21.96MPa
= 0.291, (8)

R23 =
σ23

τ0 =
3.00MPa

21.96MPa
= 0.143, (9)

where τ0 = σ0
√

3
. All the Rij constants are listed in Table 5 and in this order they should be

input while defining Hill’s function in Abaqus environment.

Table 5. Constants Rij assumed for FEM simulation.

R11 R22 R33 R12 R13 R23

1.000 0.138 0.138 0.291 0.291 0.143

Plastic properties of timber were defined using classical plasticity option in Abaqus
code. The ideal elastic–plastic model was assumed, as shown in Figure 5, with maximal
tensile stress equal to 4.59‰ (see series B in [5]). Yield strains at tension and compression
(at the beginning of the plastic process) were calculated as follows (Equations (10) and (11)):

εy,t =
27.8MPa

11080MPa
= 0.00251, (10)

εy,c =
36.3MPa

11080MPa
= 0.00328. (11)
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Figure 5. Stress–strain relationship assumed in numerical simulations.

All the parts were modeled with the C3D8R finite elements (8-node linear brick with
reduced integration and enhanced hourglass control). All interaction properties between
timber, adhesive layers, and CFRP tapes were applied as so-called “tie” in Abaqus code, so
a full bond between all parts was defined.

3. Results

To compare laboratory tests [5] with numerical analysis, the author of the paper
decided to present the following results (all maps at the last step of FEM calculations):
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• Stress distribution in timber and CFRP tape;
• Force–deflection relationship for a point in the mid-span of the beam;
• Shear stress in adhesive layers.

The force–deflection relationship is presented in Figure 6. Deflection was measured in
the mid-span and at the bottom of the beam. Two typical permissible deflections (L/500 for
lintels and L/350 for main beams or joists, where L denotes the span of the beam; in this
paper, L = 3.78 m) are marked with vertical lines. We can see that model A responds with a
higher stiffness even for small values of deflection. The observation means that a linear
elastic model of a glulam beam with no division of the cross section into laminations is not
a proper option to model this structural element. In the case of model B, the response is
better and similar to models C and D, but only limited to small deflection (L/500). Finally,
models C and D show a very similar response, and both are comparable with laboratory
tests of Glisović et al. [5]. In the following part of the paper, results in the form of maps and
graphs obtained in models A–D are presented. Moreover, for the sake of the visibility of
the presented maps, only half of the model is shown (results are symmetric).
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Normal (S11 in the presented maps) and shear (S12) stress distribution in timber in
models A to D is shown in Figures 7–10. Results are expressed in [Pa] and notation, e.g., 106

denotes 10 to the power of 6. In the case of models A and B (elastic), both normal and shear
stress are much higher than in the case of models C and D. In model B, the normal stress
reaches almost 80 MPa in the tension zone and 113 MPa in the compression zone, which
are values widely higher when comparing them to the compressive and tensile strength
of timber (36.3 MPa and 27.8 MPa respectively). That means that models A and B do not
reflect reality. In the case of models C and D (elastic–plastic) we can see that in tension
as well as in a compression zone, normal stress reached a value of yield stress, and the
yielding of timber occurred in large regions of the glulam beam (red and blue color in the
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maps). In practice, this means damage to the structural element, which also occurred in
laboratory tests by Glisović et al. [5]. Moreover, general patterns of normal and shear stress
are comparable with those presented in [5] (see Figure 10 in [5]).
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Normal stress distribution (S11) in the CFRP tape is presented in Figure 11, separately
for all the models. The distribution in all cases is practically identical, with the highest
value in the range of 1.21 to 1.28 GPa, which is far lower than the tensile strength presented
in Table 3. Glisović et al. [5] obtained a very similar distribution but a smaller value of the
maximal normal stress (0.86 GPa—see Figure 12a) in [5]). It does not change the fact that
the CFRP did not damage according to FEM calculations, regardless of the applied material
model of timber (elastic or elastic–plastic).
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Shear stress (S12) in adhesive layer(s) is presented in Figure 12. In the case of models
B and D, the maps in Figure 12b,d present all adhesive layers in the model, while in the
case of model C, the only adhesive layer is the one between the timber beam and the CFRP
tape. In models A to C, the highest value of shear stress differs from 2.16 to 4.82 MPa, and
it is significantly lower the shear strength of the adhesive layer (18 MPa). Moreover, the
value obtained in model C is comparable with the one presented in [5] (4.30 MPa). In the
case of model D, the highest value of shear stress is 17.45 MPa, and it occurs in the support
zones. It is still lower than the shear strength of the adhesive layer, so no delamination
occurs, according to the FEM models.
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In order to make sure that there are plastic deformations in models C and D, the maps
of an equivalent plastic strain (PEEQ in the Abacus code) were plotted and presented
in Figure 13. We can see large values of the equivalent plastic strains in the boundary
condition zones (i.e., supports and external forces). Lower but still plastic strains are marked
with a light-blue color in the mid-span of the beam (both in the tension and compression
zones). This means that there are actually plastic deformations in the model (which will not
disappear after removing the load of the beam), and therefore, the elastic–plastic orthotropic
model seems to be more accurate in reproducing the beam using FEM.
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Finally, a distribution of the normal stress (S11) in the cross-section of the beam was
analyzed for all the models. The cross-section was chosen exactly in the mid-span of the
beam, where the highest values of the bending moment and deflection are expected. A
sample scheme of a few points chosen to plot the normal stress graph is presented in
Figure 14a); the scheme is presented for model C. A division of the cross-section height into
calculation points differed depending on the model (please note that for models B and D,
the cross-section is divided into laminates, so the numbering and amount of calculations
point can be different for the different models). The node is numbered as 1336 in Figure 14a)
is the one in which the deflection of the beam was controlled in the numerical analysis.
The graph of the normal stress versus the distance from the center of symmetry of the
rectangular timber section is presented in Figure 14b). Please note that negative coordinates
of the distance mean that a calculation point lies below the center of symmetry. A negative
value of normal stress denotes compressive stress. As we can see, the stress distribution
in the case of models A and B is purely elastic and almost identical. As mentioned above,
the values of the normal stress are much higher than the strength of timber applied in
the model. The stress distribution for models C and D shows a large yielding of timber,
especially in the compression zone. Both graphs look similar, and the only difference is the
distribution of the stress apart from the yielding region.
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4. Discussion

Results obtained using FEM simulations leave no doubt that a linear elastic model is
not a proper one to analyze a glulam beam strengthened with CFRP tapes. As reported
in [5], such beams (in laboratory tests) show partial yielding with a non-linear segment
of a force–deflection relationship, and laminations remain intact. The use of the linear
elastic model leads to an overestimation of the stiffness of the glulam beam (see Figure 6)
and to an overestimation of normal stress, too (Figure 14). The other important issue is
a proper definition of a cross-section of the beam. When the cross-section is not divided
into laminations (glued with adhesive layers), the linear–elastic response is even stiffer.
Dividing into the laminations makes the force–deflection relationship more realistic, but
only in the case of relatively small deflections (no larger than L/500, where L denotes
a span of the structural element). On the other hand, the use of a plastic model (with
different yielding conditions in tension and compression) allows the reproduction of the
laboratory test well—as shown in Figure 6, the response is even more conservative than the
one obtained in laboratory tests [5]. In the case of the plastic model, there is no significant
difference in the definition of the cross-section. Of course, if one wants to reproduce
shear stress in the adhesive layers, division into the laminations is obligatory. To sum
up, modern FEM codes allow us to take into account more complex material models of
glulam elements, CFRP tapes, and adhesives. The author of the paper believes that design
codes and handbooks of the structural design of timber should also respond to the need for
supplementation of material models. Plastic models should take into account not only the
compressive but also the tensile behavior of timber.

A brief comparison of all four models is presented in Table 6. Models C and D seem to
be the most useful for FEM calculations of a timber beam strengthened with CFRP tapes.
There is no significant difference in results if one divides the cross-section of the beam
into laminations or not. A choice of the proper material model is clear—it should be the
elastic–plastic model. A division into the tensile and compressive plastic behavior of timber
is recommended. A very simple FEM model with the assumption of the elastic behavior
of timber leads to an overestimation of normal stress and deflection. Structural engineers
should be aware of these issues and should not try to make their model too simple (as
Albert Einstein said: “Make everything as simple as possible, but not simpler”).
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Table 6. Comparison of all investigated models.

Criterion Model A Model B Model C Model D

Force vs deflection curve Overestimated, no plateau Similar to laboratory tests, with plateau

Normal stress in timber Very overestimated Restricted to the yield stress value, maps
similar to [5]

Shear stress in timber Overestimated, but maps similar to [5] in
a qualitative sense Maps and values similar to [5]

Normal stress in CFRP tapes Practically identical in all models, below the tensile strength and clearly higher than in the
laboratory tests

Shear stress in adhesive
layer(s)

Clearly below the shear strength,
no delamination

Similar to the
laboratory tests,

clearly below the
shear strength,

no delamination

Clearly higher than in
the tests, but still below

the shear strength,
no delamination

Plastic strains (not applicable) Very similar in both models, concentration in
the support and loading zones

The results presented in this paper can also be compared (in a qualitative sense) with
the work of Nowak et al. [3]. The authors also compared laboratory tests and numerical
simulations and also used an elastic and an elastic–plastic model. Equilibrium paths
obtained in their work using FEM software (see Figures 10–14 in [3]) are similar to the
graphs presented in Figure 6 in this paper. It is clear that in the case of the elastic model, a
typical plateau in the graph is not reproduced. Only the use of the plastic model allows a
better match to experimental results. A more interesting observation concerns a distribution
of normal stress in a cross-section of the beam. The above-mentioned authors (see Figure 11
and Figures 15–17 in [3]) obtained a linear distribution of the normal stress and, moreover,
the graphs for the elastic and the elastic–plastic model coincide each other. In this paper, in
Figure 14, we can also see the linear stress distribution, but only in the case of the elastic
model, whereas the elastic–plastic model recreates a presence of relatively large yielding
zones, both in tension and compression. In the author’s opinion, the elastic–plastic model
used in this work reproduces the normal stress distribution in a better way. Generally
speaking, the numerical models C and D adopted by the author allow us to reproduce the
laboratory test quite well and ensure a realistic distribution of the normal stress.

Finally, there are some issues that should be pondered in future work. The first issue
is a definition of a constraint between all consecutive parts forming a glulam element. In
this paper, the author proposed a simple full-bond connection called “tie” in the Abaqus
code. As presented in the paper, this simplified definition did not cause any significant
divergence in comparison with laboratory tests (in models C and D, where the plastic model
was applied). On the other hand, in that case, the delamination process can be reproduced
only with an analysis of shear stress in the adhesive layers. Kawecki [15] proposed a
definition of the so-called cohesive finite elements in the Abaqus code. The author of this
paper sees that option as the next step of his on-going work with FEM simulations of
glulam beams. However, it should be taken into account that this kind of non-linear effects
in a FEM model (contact and decohesion) can lead to some numerical problems (even
if a FEM solver assumes very small initial steps to make the contact conditions “visible”
for it in the model). A guideline on how to cope with such issues was presented in [15].
Moreover, the definition of contact (as cohesive elements) demands choosing a law that
defines damage initiation. Some material constants (e.g., energy for energy-based damage
criteria) should be calibrated and input into the model. The other issue is the incorporation
of damage criteria, separately for tension and compression. The author of the paper intends
to ponder these two issues (contact and damage criteria) in future work. As presented in
this paper, the simplified model can be sufficient to design a glulam beam.
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5. Conclusions

Based on the FEM calculation results and the author’s hitherto experience, the follow-
ing conclusions can be drawn:

• An orthotropic linear elastic model seems not to be a proper model to reproduce the
mechanical response of a glulam structural element; structural engineers should be
aware of this fact when designing a structural element made of timber strengthened
with CFRP tapes (the model can be valid only for relatively small values of mid-span
deflection);

• Exceptionally, an orthotropic linear elastic model in the case of a cross-section divided
into laminates (model B in the paper) can reproduce reality quite well, but it is limited
to small values of deflection of a glulam beam;

• An orthotropic elastic–plastic model behaves well in comparison to a laboratory test;
generally speaking, a structural engineer, when designing a timber glulam beam
strengthened with CFRP tapes, should seriously consider the use of the plastic model;

• A division of a cross-section into laminates does not significantly affect the results of
the FEM calculations.

The study presented in this paper assumes a simplified numerical model of a strength-
ened timber element. Further FEM calculations should take into account a different interaction
between adhesive, timber, and tapes, for example, cohesive finite elements. This modification
can reproduce delamination better than in the models presented in this paper. The other issue
for future work is a definition of damage criteria, both in tension and compression.

Funding: The work is supported by the program of the Minister of Science and Higher Education
under the name: Regional Initiative of Excellence in 2019–2023 project number 025/RID/2018/19
financing amount PLN 12.000.000.
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