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Abstract: In order to develop multifunctional quaternary ammonium salts and explore their advantages
as modifiers for wastewater treatment, castor oil-based quaternary ammonium salts were synthesised
and subsequently used as modifiers for attapulgite treatment. The structures of untreated and treated
attapulgite were compared by Fourier transform infrared spectra and X-ray diffraction. The mech-
anism of modification was speculated. Various factors such as the amount of modified attapulgite,
temperature and pH were also investigated in the batch experiments on the removal rates of acetone
and phenol from wastewaters. The synthesis conditions were set as follows: the reaction temperature
was 80 ◦C, the reaction time was 8 h, the molar ratio of castor oil to N,N-dimethyl-1,3-propanediamine
was 1:5, the catalyst was 6% NaOH and the product yield was about 64.72%. The grafting rate of the
castor oil-based quaternary ammonium salt was about 99.6% when the amount of modifier was 0.69 g
per 5 g of attapulgite, the ultrasound treatment time was 11 min and the pH was 5. The quaternary
ammonium salt was only associated with the surface of attapulgite and did not change the rod-like
crystal structure of the silicate. The modified attapulgite is much more fibrous and exhibits a good
distribution of crystal bundles. The removal rates were found to be less favourable under strongly
acidic and strongly alkaline conditions. Under suitable conditions, for 50 mL industrial wastewaters
(phenol: 100–160 mg/L; acetone: 680–800 mg/L), the amount of modified attapulgite was 1 g, the
temperature was 80 ◦C and the pH was 7, and the maximum removal rates of acetone and phenol after
80 min reached about 65.71% and 78.72%, respectively, which were higher than those of ATP.

Keywords: castor oil; castor oil based-quaternary ammonium salt; removal rate; modified attapulgite;
industrial wastewaters

1. Introduction

Castor oil is a kind of triglyceride with natural fatty acids and is rich in China. The
molecular structure of castor oil contains long hydrophobic fatty acid chain segments,
unsaturated carbon–carbon double bonds, hydroxyl groups and ester-reactive groups [1].
It is the only hydroxyl-containing vegetable oil with an average hydroxyl functionality of
2.7 in its molecular structure [2]. As a non-edible oil, castor oil is also a natural, degradable
and renewable resource [2]. Considering the environmental problems caused by non-
renewable, biodegradable fossil fuels and scarce resources, there is a trend to replace fossil
fuels with cheap and renewable vegetable oil resources. Castor oil is a widely used, cheap
and renewable raw material, which is widely used for the production of surfactants, soaps,
lubricants, coatings, dyes, plastics, pharmaceuticals, perfumes, etc. [3].

Quaternary ammonium salts refer to a class of substances that contain hydrophobic
long alkyl chains and positively charged nitrogen atoms in their molecular structure [4].
Quaternary ammonium salts possess surface activity, adsorption and antibacterial activity.
They are often used as emulsifiers for emulsion polymerisation [5,6], corrosion inhibitors [7],
fabric softeners [8] and organic modifiers for clay mineral modification [9]. The surface
properties of a natural sodium montmorillonite were drastically changed by dioctadecyl
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dimethyl ammonium chloride [10]. Sepiolite modified with tetradecyl trimethylammonium
bromide, cetyl trimethylammonium bromide, and octadecyl trimethylammonium bromide
showed a change in the surface wettability from strongly hydrophilic to increasingly
hydrophobic, and a reversal of charge from negative to positive [11]. The commonly
used quaternary ammonium salts are produced from petroleum feedstocks and have high
toxicity. There is an urgent need to develop multifunctional quaternary ammonium salts
with low toxicity and environmental friendliness.

Attapulgite is a natural clay mineral with silicate structures and is abundant in China.
Due to its layered chain and fine regular structure, it has a multi-pore morphology and a large
specific surface area, which gives it good adsorption performance, so it is widely used in the
treatment of pollutants in water [12,13]. However, due to the hydrophilic surface of natural
attapulgite, it has a weak adsorption capacity for organic pollutants in wastewater and often
requires appropriate organic modification. An effective approach to improve the adsorption
capacity and selectivity of attapulgite is the chemical surface modification of attapulgite
with organic reagents [14]. Attapulgite modified with quaternary ammonium salt, which
has an oil-friendly surface and can adsorb organic pollutants, has become an important
issue in water pollution control. Huang and his co-author [15] investigated the selective
adsorption of tannin on organically modified attapulgite clay with octadecyl trimethyl
ammonium chloride (OTMAC). Cisneros-Rosado and co-workers used hexadecyl tributyl
phosphonium bromide (HDTBP) to modify attapulgite, where the hydrophobic segments of
HDTBP remain extended outward on the attapulgite surface, thus changing the hydrophilic
nature of clay [16]. Attapulgite modified with dioctadecyl dimethylammonium bromide
has significant implications for the development of adsorptive remediation materials for
ionisable organic pollutants in wastewaters [17]. The removal rate of Acid Orange 7 and total
organic carbon by attapulgite modified with cationic surfactant cetyltrimethylammonium
bromide reached about 98.4% and 59.21%, respectively, after 2 h [18].

In this study, castor oil, a renewable biomass, was used as a raw material and re-
acted with N,N-dimethyl-1,3-propanediamine to obtain castor oil amides, which were
subsequently quaternised to obtain castor oil-based quaternary ammonium salts. The
parameters such as reaction time, reaction temperature, molar ratio of raw materials and
catalyst dosage were optimised. The synthesis route and chemical structure of castor
oil-based quaternary ammonium salt are shown in Figure 1. Modified attapulgite was
prepared using castor oil-based quaternary ammonium salt as a modifier. The structures
of castor oil-based quaternary ammonium salt, modified attapulgite and attapulgite were
compared by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD) to
speculate the modification mechanism. The surface microstructures of attapulgite before
and after modification were observed by scanning electron microscopy (SEM). The removal
rates of acetone and phenol from the industrial wastewaters were investigated by using
modified attapulgite for wastewater treatment. Various factors such as the amount of
modified attapulgite, temperature and pH were also investigated in batch experiments on
the removal rates of acetone and phenol from wastewaters. The comparative experiments
were conducted using modified attapulgite and attapulgite for wastewater treatment.
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2. Materials and Methods
2.1. Materials

Analytical reagents such as N,N-dimethyl-1,3-propanediamine (DM) and epichlorohy-
drin (ECH) were purchased from Aladdin Reagent (Shanghai, China) Co., Ltd.; analytical
reagent-grade methanol, sodium tetraphenyl boron, bromophenol blue and sodium hy-
droxide (NaOH) were purchased from Jiangsu Tongsheng Chemical Reagent Co., Ltd.
Analytical castor oil (CO), n-hexane, ethanol, potassium bromide (KBr), cetyl trimethyl
ammonium bromide (CTAB), hydrochloric acid (HCl) and other chemicals were purchased
from Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China). Attapulgite was
supplied by Jiangsu Maige sorbent Co., Ltd. (Xuzhou, China). Attapulgite was washed,
filtered, dried and ground at 30 ◦C to obtain pretreated attapulgite (ATP). Industrial wastew-
ater samples (phenol: 100–160 mg/L; acetone: 680–800 mg/L; pH: 5–8) were taken from
the actual wastewater of a chemical factory producing phenol acetone by the isopropyl
benzene method; de-ionized water was prepared in our laboratory.

2.2. Synthesis
2.2.1. Synthesis of Castor Oil-Based Quaternary Ammonium Salt (COQS)

As a general procedure, COQS synthesis was performed in two steps (see Figure 1).
First, the desired amount of CO and NaOH dissolved in methanol (2.5 mL) solvent was
added to a 250 mL three-neck flask equipped with a mechanical stirrer, reflux condenser
and thermometer. DM was added dropwise at a drop rate of 0.25 mL/min. After the
dropwise addition, the mixture was heated to a specified temperature for a period of time.
The supernatant was repeatedly washed with deionised water to remove the lower turbid
layer, concentrated with a rotary evaporator at 60 ◦C and then dried at 60 ◦C under vacuum
to obtain a transparent yellowish liquid (castor oil-based amides). Secondly, an appropriate
amount of castor oil-based amide was added to a 250 mL four-neck flask equipped with
a mechanical stirrer, a reflux condenser, a nitrogen inlet and a thermometer. The reactor
was degassed with nitrogen for 15 min before the reaction. When the temperature reached
48 ◦C, ECH (the molar ratio of amide to epichlorohydrin is 1:3) was added dropwise at a
dropping rate of 0.25 mL/min. After the dropwise addition was completed, the mixture
was heated at 50 ◦C for 2 h. The resulting product was repeatedly washed with hexane,
purified and dried at 60 ◦C under vacuum to obtain a brown viscous liquid with 64.72%
yield (COQS).

2.2.2. Modification of Attapulgite

A certain amount of COQS was completely dissolved in 50 mL of water, and subse-
quently, ATP (5.0 g, dried at 105 ◦C) was dispersed in this solution. The suspension was
subjected to ultrasound at 25 ◦C for a certain period of time. The modified ATP (M-ATP)
was separated from the aqueous phase by filtration. M-ATP was washed with deionised
water to remove excess quaternary ammonium salt molecules until no chloride ions were
detectable in the filtrate by adding AgNO3 solution (0.1 mol/L) [19], then was dried at
80 ◦C under vacuum for 24 h, ground and sieved.

The grafting rate of the quaternary ammonium cationic salt on attapulgite was mea-
sured and calculated as follows [20]: 5 mL of the above M-ATP supernatant was added
with 15 mL of distilled water and 0.5 mL of bromophenol blue indicator. This was then
titrated with 0.02 mol/L sodium tetraphenyl boron until the blue colour faded to purple,
and the grafting rate was calculated according to the following equation.

Gra f ting rate(%) =

(
1 − 0.02 × 50 × V1

5 × N

)
× 100% (1)

where V1 is the volume of sodium tetraphenyl boron (mL) consumed by the titration; N is
the amount of initial substance (mol) of the modifier in the treatment of attapulgite.
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2.3. Characterisation
2.3.1. COQS Characterisation

The infrared spectra of CO and COQS were recorded on a Nicolet iS 10 FT-IR mea-
surement (Nicolet Co., Madison, WI, USA), and the samples were prepared with KBr salt
film. The spectra were recorded over the range of 4000–500 cm−1, with a resolution of
4 cm−1. Different concentrations of COQS solutions were prepared, the pressure difference
was measured by the maximum bubble method surface tension measurement device at
25 ± 0.1 ◦C and the surface tension of COQS solutions at different concentrations was
determined by calculation.

2.3.2. M-ATP Characterisation

ATP and M-ATP samples were prepared by KBr compression and characterised by
FTIR; XRD analyses were performed on an X’Pert3Powder (PANalytical Co., Heracles
Almelo, The Netherlands) with graphite filter slide, a tube pressure of 40 KV, a tube current
of 40 mA, 2θ diffraction angle of 50–800 and scanning step of 0.026◦/s; SEM characterisation
was performed by a FEI QUANTA200 SEM (FEI Co., Hillsborough, OR, USA).

2.4. Application of M-ATP

Batch experiments were conducted to investigate the effects of pH, temperature and
the amount of M-ATP on the removal rates of acetone and phenol in industrial wastewater.
The pH of the industrial wastewater was adjusted from 4 to 10 by adding either diluted
HCl or NaOH (0.1 mol/L). A series of 250 mL conical flasks containing 50 mL of industrial
wastewater and various amount of M-ATP (0.2–1.4 g) were used at a certain temperature
(25–90 ◦C) for 80 min, and the supernatant was taken for analysis after solid–liquid sep-
aration. The effects of experimental parameters such as pH, temperature of the solution
and the amount of M-ATP were studied by varying one parameter and keeping the other
parameters constant. Comparison experiments with ATP and M-ATP were performed as
follows: two 50 mL untreated industrial wastewater samples were placed in a 250 mL coni-
cal flask, and 1 g of each ATP and M-ATP were added. The reaction was stirred at 80 ◦C for
80 min (150 rpm), and the supernatant was taken for analysis after solid–liquid separation.
Phenol concentration was determined by TV-1810 UV–vis spectrophotometer (Beijing Puxi
Universal Instrument Co., Ltd.). The uptake of phenol was monitored by measuring the
absorbance at a λmax of 265 nm, and its concentration was calculated according to the stan-
dard curves. The residual concentration of acetone in the supernatant was determined by a
gas chromatographic method [21]. The acetone concentration was analysed by GC-1102
gas chromatography (Thermo Fisher Co., USA) with a flame ionisation detector. Based
on the concentration change, the removal rates were calculated to evaluate the removal
performance of ATP and M-ATP. Equation (2) shows how to calculate the removal (%) of
phenol and acetone.

emoval rate(%) =

(
1 − C1

C0

)
× 100 (2)

where C0 (mg/L) is the concentration of phenol or acetone in the initial wastewater; C1
(mg/L) is the concentration of phenol or acetone in the treated wastewater.

3. Results and Discussion
3.1. COQS Synthesis Conditions

In order to improve the reaction efficiency and increase the yield of COQS, the param-
eters such as reaction time, reaction temperature, molar ratio of raw materials and catalyst
dosage were optimised, and the results are shown in Figure 2.
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Figure 2. Effects of reaction time (a), reaction temperature (b), n(CO): n(DM) (c) and NaOH dosage
(d) on the yield of COQS.

It is well known that too short a reaction time leads to insufficient reaction and low
yield; too long a reaction time increases the production cost. The COQS yield increased
linearly with the increase of reaction time from 5 to 8 h (Figure 2a). The yield reached a
maximum of approximately 64.72% at 8 h. Within 8–10 h, the yield curve flattened with
increasing reaction time. As shown in Figure 2b, the acylation rate accelerated, and the
COQS yield increased with the gradual increase of reaction temperature within 65–80 ◦C.
The yield reached the highest value at 80 ◦C. It is well known that amides hydrolyse easily
under alkaline conditions at high temperatures. Above 80 ◦C, the COQS yield decreased
with increasing temperature; high reaction temperatures may have led to hydrolysis and
other side reactions of castor oil-based amides, resulting in lower yields. When n(CO):
n(DM) was in the range of 1:3–1:5, COQS yield showed an increasing trend with the increase
of n(DM) (Figure 2c), and when n(CO): n(DM) was in the range of 1:5–1:8, too much DM
will interfere with the catalytic performance of the catalyst, leading to a significant decrease
in COQS yield. Therefore, the optimum molar ratio is 1:5. The catalyst dosage within a
certain range will affect the reaction rate and product yield. The effect of catalyst dosage on
yield was discussed separately in the range of 2–10% NaOH (mass percent of castor oil),
and the results are shown in Figure 2d. After increasing the catalyst dosage, the COQS yield
increased significantly to a maximum of approximately 64.72% and decreased thereafter,
probably because the excessive catalyst dosage led to other side reactions that affected the
COQS yield.
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3.2. Organic Modification Parameters of ATP

COQS was used to modify ATP by ultrasound. In this section, the process conditions
for the modification of ATP were studied using the grafting rate as an indicator. The effects
of COQS addition amount, ultrasonication time and pH on grafting rate were investigated.

As shown in Figure 3a, when COQS addition amount was 0.1–0.69 g, the grafting rate
increased linearly with the increase of COQS; when COQS was added at 0.69–0.92 g, the
grafting rate on attapulgite changed very little. Surface tension measurements showed
COQS to be surface active and slightly foamy. A large amount of addition is not only
unfavourable for washing M-ATP, but also leads to agglomeration of the modifiers, which
may result in the failure of the modification [22]. Therefore, 0.69 g of quaternary ammonium
salt was added per 5 g of ATP. Within 2–11 min, the grafting rate increased with increasing
ultrasound treatment time (Figure 3b), and the highest grafting rate reached about 99.6%
when the ultrasound treatment time was 11 min. The grafting rate decreased slightly when
the ultrasound treatment time continued to be extended. This may be due to the fact
that the ultrasound treatment promoted the interaction between attapulgite and COQS
within 2–11 min, and when the ultrasound treatment time was continued to be prolonged,
the grafting rate decreased since the strong force of the ultrasound waves destroyed the
grafted COQS. From Figure 3c, the maximum grafting rate was about 99.6% when the
pH was 5. The grafting rate changed very little when the pH was varied from 2 to 9,
indicating that the pH of the solution had little effect on the grafting effect of COQS on
attapulgite. The ion exchange properties of clay particles are strongly dependent on pH [23].
Therefore, it was speculated that the interaction between the quaternary ammonium cations
and attapulgite did not result from an ion-exchange interaction with the cations between
attapulgite fibre crystals.
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3.3. Characterisation
3.3.1. COQS Characterisation

Figure 4 shows the infrared spectra of CO and COQS. There is a hydroxyl absorp-
tion peak at 3340 cm−1 for CO. Compared with the spectrum of CO, the broad peak at
3365 cm−1 in the infrared spectrum of COQS is the N-H stretching vibration, and the peaks
at 3009 cm−1, 2927 cm−1 and 2855 cm−1 can be attributed to the C-H stretching vibra-
tion absorption peaks of methylene and methyl groups with stronger absorption peaks,
reflecting the structural characteristics of the trialkylmethyl salt. The stretching vibration of
C=O of the α-unsaturated ester with conjugated structure is at 1742 cm−1. The absorption
peak at 1651 cm−1 is the characteristic absorption peak of the stretching vibration of the
C=C bond.
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The critical micelle concentration was determined from the surface tension (γ) and
the log molar concentration (C) curve of the surfactant at 25 ◦C. As can be seen from
Figure 5, the surface tension decreased rapidly at first with the increase of COQS molar
concentration. When lgC was close to −2.0, the surface tension did not change significantly.
At this time, the surface tension was 31.21 mN/m, and the critical micelle concentration
was 2.51 × 10−3 mol/L, which was of the same order as the critical micelle concentration
(1.09 × 10−3 mol/L) of CTAB in the literature [24]. This result indicates that the synthesised
COQS have some surface activity.
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The FTIR spectra of ATP and M-ATP are shown in Figure 6. The broad adsorption
peaks of ATP are at 3547 cm−1, 3405 cm−1 and 1650 cm−1, corresponding to the coordi-
nation water, adsorbed water and bound water, respectively [25]. The peak at 1030 cm−1

is associated with the stretching vibration of the Si-O-Si bond [26]. Unlike ATP, the wide
absorption peak of M-ATP at 3446 cm−1 is the N-H stretching vibration; the absorption
peaks at 2930 cm−1 and 2832 cm−1 are the C-H stretching vibrations of methyl and methy-
lene groups in the long alkyl chains of COQS. The results indicate that organic functional
groups were adsorbed on the surface of attapulgite treated with COQS.
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As can be seen in Figure 7, the spectra in both a and b showed the characteristic
diffraction peaks of the samples at 2θ = 8.4, 29.8, 26.6 and 35.3; these correspond to the (110),
(040), (400) and (440) crystal faces of attapulgite, respectively [27]. Both samples exhibit a
crystalline character. The characteristic spacings of ATP were 10.46 Å, 4.47 Å, 4.23 Å and
3.33 Å, and those of M-ATP were 10.48 Å, 4.47 Å, 4.24 Å and 3.34 Å, respectively. The
characteristic spacings of M-ATP do not change significantly compared to those of ATP. This
shows that the crystal structure of M-ATP remains unchanged and the surfactant is only
bound to the surface of ATP, without inserting into the nanochannels of the ATP [14,28].
This is similar to the results of Li [11], who used CTAB to modify natural sepiolite and
found that the crystal structures of CTAB-modified sepiolite were identical to those of the
original sepiolite, and the d-values of CTAB-modified sepiolite were almost constant to
those of the original sepiolite. They explained that the CTAB surfactant molecules were
mainly covered on the outer surface of the clay particles and/or loaded at the edges of the
clay particles.
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The SEM images of ATP and M-ATP are shown in Figure 8. ATP exhibits a densely
ordered fibrous structure consisting of closely and parallel arranged single crystals which
assemble into crystal bundles and form particles. In contrast, most of the rod crystal bundles
of M-ATP were separated into single rod crystals, and the crystal bundles were obviously
dispersed. The microstructure consisting of fibres was relatively loose and fibrous. This
might be due to the presence of the organic substance, COQS, on the surface of the rod
crystals or bundles, which weakened the original intermolecular binding force and reduced
the affinity among them, leading to the reduction of bundle agglomeration [16]. These
results are in agreement with those of Peng [29].
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3.4. Application of M-ATP

The effects of the amount of M-ATP (a), treatment temperature (b) and pH (c) on the
removal rate are shown in Figure 9. As the amount of M-ATP increased, the removal rates
of acetone and phenol increased linearly and then levelled off. This indicated that the
best removal effect was achieved when the amount of M-ATP is 1g. Temperature is the
major parameter affecting the adsorption properties [11]. Figure 9b clearly reveals that
the removal rate increased rapidly with increasing temperature in the range of 25–80 ◦C.
Above 80 ◦C, the removal rate decreased slowly. The effect of temperature influences the
adsorption capacity by affecting the molecular interactions and solubility [30,31]. When the
temperature of the system was increased, the phenol or acetone molecules are more active,
which increases the contact between M-ATP and the phenol or acetone molecules, thus
enhancing the adsorption capacity. However, if the temperature is too high, this may lead
to a decrease in the interaction force between the quaternary ammonium cation and ATP,
reducing the removal rates. pH is one of the most important parameters in the adsorption
process because it affects the physicochemical properties of the surface and the surface
binding sites of the adsorbents [32]. In this study, the initial pH of the industrial wastewater
samples was 5–8, so the pH was adjusted from 4 to 10. The removal rates increased in the
pH range of 4–7 and decreased with further increases in pH. This can be explained by the
change in the number of protons in the solution. At a lower pH (pH < 7), more protons were
available and saturated the M-ATP sites, increasing the cationic properties of the M-ATP
surface, which greatly reduced the hydrophobic properties of M-ATP and hindered further
removal of acetone and phenol. The increased removal rates at a relatively high pH were
due to the lower number of protons, which preserved the hydrophobicity of the M-ATP
surface [32]. The removal rates decreased rapidly with the increase of hydroxyl ions in the
solution above a pH of 8, indicating that high pH was not conducive to the removal of
acetone and phenol because excess hydroxyl ions in the solution compete with acetone or
phenol for active M-ATP sites [33]. Removal was found to be less favourable under strongly
acidic conditions, and the maximum removal capacity was observed at about neutrality.
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The removal rates of acetone and phenol were about 43.55% and 48.39%, respectively,
for ATP (Figure 10). The removal rates of acetone and phenol by M-ATP were about 65.71%
and 78.72%, respectively, which were higher than those by ATP. According to reports in
the literature [34], the hydrophobic segments of COQS extended outward to modify the
hydrophilic nature of ATP. The organic modifier with a longer carbon chain would exhibit
better hydrophobicity [35]. The adsorption of acetone and phenol by M-ATP was significantly
improved, which may be due to the fact that the quaternary ammonium salt, as an organic
modifier, made the originally hydrophilic attapulgite surface hydrophobic and lipophilic.
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4. Conclusions

In this study, a green and efficient production process for castor oil derivatives was
developed, which is of theoretical importance and practical application for the development
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of quaternary ammonium salts with different molecular structures and the exploitation of
their advantages as modifiers in wastewater treatment.

The synthesis conditions for the castor oil-based quaternary ammonium salt were as
follows: reaction temperature of 80 ◦C, reaction time of 8 h, n(CO): n(DM) of 1:5, catalyst
6% NaOH and product yield of about 64.72%. The grafting rate of COQS on ATP was about
99.6% when the amount of modifier was 0.69 g per 5 g of ATP, the ultrasound treatment
time was 11 min and the pH was 5. COQS successfully modified the ATP. The crystal
structure of M-ATP remains unchanged and the surfactant is only bound to the surface of
ATP without inserting into the nanochannels of ATP. Most of the rod crystal bundles of
M-ATP were split into single rod crystals, and the crystal bundles were obviously dispersed.
The microstructure consisting of fibres was relatively loose and fibrous. The synthesised
castor oil-based quaternary ammonium salt can be used as a modifier of attapulgite, which
is efficiently bound to the surface of attapulgite.

The removal rates depended on the amount of M-ATP, pH and temperature. Removal
rates were less favourable under strongly acidic and strongly alkaline conditions, with maxi-
mum removal rates observed under near-neutral conditions. The removal rates of acetone and
phenol increased linearly with increasing amounts of M-ATP and then levelled off. The maxi-
mum removal rates were obtained at 50 mL of industrial wastewater (phenol: 100–160 mg/L;
acetone: 680–800 mg/L), 1 g of modified attapulgite, a temperature of 80 ◦C and a pH of 7. The
removal rates of acetone and phenol by M-ATP were about 65.71% and 78.72%, respectively,
which were higher than those by ATP. This confirmed the potential of attapulgite modified by
castor oil-based quaternary ammonium salt for the effective treatment of wastewater.
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