Fretting Fatigue Life Prediction of Dovetail Structure Based on Plastic Effect and Sensitivity Analysis of Influencing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of the Fretting Fatigue Life Prediction Model
2.2. Fretting Fatigue Simulation Analysis and Dangerous Point Evaluation
3. Results
3.1. Fretting Fatigue Test and Analysis
3.1.1. Test Materials and Samples
3.1.2. Test Equipment
3.1.3. Test Plan
3.1.4. Fretting Test Results and Analysis
3.2. Fatigue Test and Analysis of Dovetail Structure
3.2.1. Determining the Dangerous Location of a Dovetail Structure
3.2.2. Fretting Fatigue Test of Dovetail Specimen
3.2.3. Fretting Fatigue Test Results of Dovetail Specimens
4. Sensitivity Analysis of Structural Parameters
4.1. Sensitivity Analysis of Factors Affecting Fretting Fatigue Life of the Dovetail Structure
4.2. Form of Contact Surface
4.3. Width of Contact Area
4.4. Friction Coefficient of Contact Surface
5. Conclusions
- (1)
- By monitoring the strain at the lower edge of the contact area in real time, the initiation and propagation of cracks can be judged. The introduction of the maximum plastic strain improves the accuracy of the prediction of fretting fatigue life of surface-to-surface contact structures. The error between the theoretical prediction value and the test value is within 12%. The model is applicable to predicting the fretting fatigue life of structures and provides theoretical support for the design of major equipment structures.
- (2)
- With the goal of minimizing fretting stress, a more reasonable contact form, contact zone width, and contact surface friction coefficient should be uncovered in order to reduce fretting fatigue and extend the fretting fatigue life of the model. Under the same fretting load, changing the contact zone parameters will not change the Mises equivalent force S and the contact stress profile, nor will it change the location of structural dangerous points (which still appear at the contact zone edge); the basic characteristics of fretting fatigue are thus met.
- (3)
- Changing the parameters of the contact zone will change the magnitude of the stress, and fretting fatigue is most sensitive to the width of the contact zone and the contact form. In the actual engineering design, the size and form should be determined by combining multiple factors. For the selection of the friction coefficient, the friction coefficient shall be as small as possible in order to save costs and meet requirements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Huo, J.; Zhang, W.; Zhang, Z. Research on real-time prediction method of advanced load of service structure. J. Northeast. Univ. Nat. Sci. Ed. 2022, 43, 541–550. [Google Scholar]
- Yan, X.; Zhang, H.; Xing, Z. Optimal design of turbine tenon connection structure against fretting fatigue damage. Gas Turbine Test Res. 2022, 35, 36–40. [Google Scholar]
- Bhatti, N.; Wahab, M.A. Fretting fatigue crack nucleation: A review. Tribol. Int. 2018, 121, 121–138. [Google Scholar] [CrossRef]
- Pereira, K.; Bhatti, N.; Wahab, M.A. Prediction of fretting fatigue crack initiation location and direction using cohesive zone model. Tribol. Int. 2018, 127, 245–254. [Google Scholar] [CrossRef]
- Shen, F.; Hu, W.; Meng, Q. A damage mechanics approach to fretting fatigue life prediction with consideration of elastic–plastic damage model and wear. Tribol. Int. 2015, 82, 176–190. [Google Scholar] [CrossRef]
- Peng, J.; Jin, X.; Xu, Z.; Zhang, J.; Cai, Z.; Luo, Z.; Zhu, M. Study on the damage evolution of torsional fretting fatigue in a 7075-aluminum alloy. Wear 2018, 402–403, 160–168. [Google Scholar] [CrossRef]
- Leung, J.F.; Voothaluru, R.; Neu, R.W. Predicting white etching matter formation in bearing steels using a fretting damage parameter. Tribol. Int. 2021, 159, 106966. [Google Scholar] [CrossRef]
- Shen, F.; Ke, L.-L.; Zhou, K. A debris layer evolution-based model for predicting both fretting wear and fretting fatigue lifetime. Int. J. Fatigue 2021, 142, 105928. [Google Scholar] [CrossRef]
- Leung, J.F.; Voothaluru, R.; Neu, R.W. Experimental and numerical simulation study on fatigue life of coiled tubing with typical defects. J. Pet. Sci. Eng. 2021, 198, 108212. [Google Scholar]
- Li, J.; Wang, X.; Li, K.; Qiu, Y. A modification of Matake criterion for considering the effect of mean shear stress under high cycle fatigue loading. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 1760–1782. [Google Scholar] [CrossRef]
- Albinmousa, J.; Al Hussain, M. Polar Damage Sum Concept for Constant Amplitude Proportional and Nonproportional Multiaxial Fatigue Analysis. Forces Mech. 2021, 4, 100025. [Google Scholar] [CrossRef]
- Dantas, R.; Correia, J.; Lesiuk, G.; Rozumek, D.; Zhu, S.-P.; de Jesus, A.; Susmel, L.; Berto, F. Evaluation of multiaxial high-cycle fatigue criteria under proportional loading for S355 steel. Eng. Fail. Anal. 2021, 120, 105037. [Google Scholar] [CrossRef]
- Almeida, G.M.J.; Pessoa, G.C.V.; Cardoso, R.A.; Castro, F.C.; Araújo, J.A. Investigation of crack initiation path in AA7050-T7451 under fretting conditions. Tribol. Int. 2021, 144, 106103. [Google Scholar] [CrossRef]
- Floros, D.; Ekberg, A.; Larsson, F. Evaluation of mixed-mode crack growth direction criteria under rolling contact conditions—ScienceDirect. Wear 2021, 448–449, 203184. [Google Scholar]
- Sunde, S.L.; Haugen, B.; Berto, F. Experimental and numerical fretting fatigue using a new test fixture. Int. J. Fatigue 2021, 143, 106011. [Google Scholar] [CrossRef]
- Pinto, A.L.; Araújo, J.A.; Talemi, R. Effects of fretting wear process on fatigue crack propagation and life assessment. Tribol. Int. 2021, 156, 106787. [Google Scholar] [CrossRef]
- Pandey, V.B.; Singh, I.V.; Mishra, B.K. A Strain-based Continuum Damage Model for Low Cycle Fatigue under Different Strain Ratios. Eng. Fract. Mech. 2020, 242, 107479. [Google Scholar] [CrossRef]
- Zeng, D.; Zhang, Y.; Lu, L.; Zou, L.; Zhu, S. Fretting wear and fatigue in press-fitted railway axle: A simulation study of the influence of stress relief groove. Int. J. Fatigue 2018, 18, 225–236. [Google Scholar] [CrossRef]
- Mario, L.; Daniele, B. Fretting Fatigue Analysis of Additively Manufactured Blade Root Made of Intermetallic Ti-48Al-2Cr-2Nb Alloy at High Temperature. Materials 2018, 11, 1052. [Google Scholar]
- Lemoine, E.; Nélias, D.; Thouverez, F.; Vincent, C. Influence of fretting wear on bladed disks dynamic analysis. Tribol. Int. 2020, 145, 106148. [Google Scholar] [CrossRef]
- Macdonald, B.E.; Fu, Z.; Wang, X.; Li, Z. Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy. Acta Mater. 2019, 181, 25–35. [Google Scholar] [CrossRef]
- Wahab, M.A.; Bhatti, N.A. A numerical investigation on critical plane orientation and initiation lifetimes in fretting fatigue under out of phase loading conditions. Tribol. Int. 2018, 115, 307–318. [Google Scholar]
- Han, Q.; Rui, S.; Qiu, W.; Su, Y.; Ma, X.; He, Z.; Cui, H.; Zhang, H.; Shi, H.J. Subsurface crack formation and propagation of fretting fatigue in Ni-based single-crystal superalloys. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2520–2532. [Google Scholar] [CrossRef]
- Sunde, S.L.; Berto, F.; Haugen, B. Predicting fretting fatigue in engineering design. Int. J. Fatigue 2018, 117, 314–326. [Google Scholar] [CrossRef]
- Han, Q.; Lei, X.; Yang, H.; Yang, X.; Su, Z.; Rui, S.-S.; Wang, N.; Ma, X.; Cui, H.; Shi, H. Effects of temperature and load on fretting fatigue induced geometrically necessary dislocation distribution in titanium alloy. Mater. Sci. Eng. A 2021, 800, 140308. [Google Scholar] [CrossRef]
- Wu, B. Model and Experimental Research on Fretting Fatigue Life of TC11 Titanium Alloy at Different Temperatures. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2019. [Google Scholar]
- Wang, N.; Cui, H.; Zhang, H. Low cycle fretting fatigue tests of dovetail structure at elevated temperature. Hangkong Dongli Xuebao J. Aerosp. Power 2018, 33, 3007–3012. [Google Scholar]
- Kumar, K.; Goyal, D.; Banwait, S. Effect of Key Parameters on Fretting Behaviour of Wire Rope: A Review. Arch. Comput. Methods Eng. 2019, 27, 549–561. [Google Scholar] [CrossRef]
- Hills, D.A.; Thaitirarot, A.; Barber, J.R.; Dini, D. Correlation of fretting fatigue experimental results using an asymptotic approach. Int. J. Fatigue 2012, 43, 62–75. [Google Scholar] [CrossRef]
- Sun, D.; Huo, J.; Chen, H.; Dong, Z.; Ren, R. Experimental study of fretting fatigue in dovetail assembly considering temperature effect based on damage mechanics method. Eng. Fail. Anal. 2022, 131, 105812. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, H. A hierarchical mechanism-informed neural network approach for assessing fretting fatigue of dovetail joints. Int. J. Fatigue 2023, 168, 107453. [Google Scholar] [CrossRef]
- Mirsayar, M.M. A generalized criterion for fatigue crack growth in additively manufactured materials–Build orientation and geometry effects. Int. J. Fatigue 2021, 145, 106099. [Google Scholar] [CrossRef]
- Huo, J.; Yang, B.; Ren, R.; Dong, J. Research on fretting fatigue life estimation model considering plastic effect. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 112. [Google Scholar] [CrossRef]
Material Properties | A | B | C | n | m |
---|---|---|---|---|---|
DZ125 | 637 | 573.2 | 0.033 | 0.45 | 0.92 |
Normal Load/MPa | a/mm | Simulation/MPa | Theoretical/MPa | Error |
---|---|---|---|---|
45 | 2.538 | 824.836 | 750.504 | 9.01% |
50 | 2.543 | 916.573 | 830.618 | 9.38% |
60 | 2.548 | 1100.1 | 992.833 | 9.75% |
70 | 2.554 | 1283.69 | 1161.95 | 9.48% |
80 | 2.558 | 1467.36 | 1313.45 | 10.49% |
90 | 2.563 | 1651.09 | 1471.87 | 10.85% |
100 | 2.567 | 1834.9 | 1630.317 | 11.15% |
110 | 2.572 | 2018.77 | 1786.38 | 11.51% |
120 | 2.576 | 2202.72 | 1942.73 | 11.80% |
130 | 2.58 | 2386.73 | 2098.11 | 12.09% |
140 | 2.584 | 2570.81 | 2252.51 | 12.38% |
Material | Density ρ (g/cm3) | Elasticity Modulus E1 (GPa) | Poisson’s Ratio ν1 |
---|---|---|---|
DZ125 | 8.59 | 183 | 0.41 |
Cycles | E(1 − D)/GPa | D |
---|---|---|
1 | 184 | 0 |
2 | 155 | 0.156 |
3 | 140 | 0.238 |
4 | 128 | 0.303 |
5 | 120 | 0.347 |
6 | 115 | 0.374 |
7 | 113 | 0.382 |
8 | 113 | 0.382 |
Test | Load/N | Stress Ratio ν | Frequencies/Hz | Fretting Stress/MPa | Life N/Cycles |
---|---|---|---|---|---|
Test-1 | 1.2 × 104 | 0.1 | 10 | 534.72 | 936,237 |
Test-2 | 1.8 × 104 | 0.1 | 10 | 709.94 | 455,875 |
Test-3 | 2.4 × 104 | 0.1 | 10 | 873.36 | 52,990 |
Test-4 | 2.7 × 104 | 0.1 | 10 | 952.07 | 25,160 |
Test | Axial Load Fx/N | Fretting Stress σfretting/MPa | Experimental Life N/Cycles | Predicted Life N/Cycles | Error |
---|---|---|---|---|---|
S2_1 | 1.5 × 104 | 624.22 | 627,663 | 534,601 | 14.8% |
S2_2 | 1.5 × 104 | 655.37 | 590,021 | 515,102 | 12.7% |
S4_1 | 2.1 × 104 | 792.79 | 253,563 | 215,532 | 15.0% |
S4_2 | 2.1 × 104 | 780.34 | 149,639 | 127,983 | 14.5% |
Test | Axial Load Fx/N | Fretting Stress σfretting/MPa | Stress Ratio R | Frequency f/Hz | Experimental Life N/Cycles | Predicted Life N/Cycles | Error |
---|---|---|---|---|---|---|---|
T1-1 | 8.58 × 103 | 508.5 | 0.1 | 10 | 96,645 | 102,815 | 6.38% |
T1-2 | 100,027 | 108,672 | 8.64% | ||||
T 2-1 | 1.18 × 104 | 658.5 | 34,197 | 37,998 | 11.12% | ||
T 2-2 | 33,521 | 36,960 | 10.26% | ||||
T 3-1 | 1.35 × 104 | 684.1 | 21,545 | 23,653 | 9.78% | ||
T 3-2 | 20,969 | 22,846 | 8.95% |
Number | Tenon | Mortise | Contact Area Width/mm | ||
---|---|---|---|---|---|
R1/mm | R2/mm | R5/mm | R6/mm | ||
1# | 1.8 | 1 | 2 | 1 | 4.343 |
2# | 1.8 | 1.1 | 2 | 1.1 | 4.302 |
3# | 1.8 | 1.2 | 2 | 1.2 | 4.261 |
4# | 1.8 | 1.3 | 2 | 1.3 | 4.219 |
5# | 1.8 | 1.4 | 2 | 1.4 | 4.178 |
6# | 1.8 | 1.5 | 2 | 1.5 | 4.136 |
7# | 1.8 | 1.6 | 2 | 1.6 | 4.095 |
Model | Reduction of Maximum Mises Equivalent Stress S/MPa | Reduction of Maximum Contact Stress/MPa | Reduction of Fretting Stress/MPa |
---|---|---|---|
2#–3# | 26.08 | 186.386 | 333.417 |
3#–4# | 8.827 | 18.176 | 32.514 |
4#–5# | 20.771 | 20.358 | 36.42 |
5#–6# | 10.464 | 48.092 | 86.03 |
6#–7# | 9.144 | 35.982 | 64.367 |
Friction Coefficient | Reduction of Maximum Mises Equivalent Stress S/MPa | Reduction of Maximum Contact Stress/MPa | Reduction of Fretting Stress/MPa |
---|---|---|---|
0.3–0.4 | 37.665 | 6.798 | 61.8 |
0.4–0.5 | 6.048 | 6.048 | 56.440 |
0.5–0.6 | 75.449 | 8.521 | 57.310 |
0.6–0.7 | 75.449 | 8.521 | 55.879 |
0.7–0.8 | 42.041 | 53.166 | 134.830 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Yang, B.; Li, S.; Huo, J. Fretting Fatigue Life Prediction of Dovetail Structure Based on Plastic Effect and Sensitivity Analysis of Influencing Factors. Materials 2023, 16, 3521. https://doi.org/10.3390/ma16093521
Zhou J, Yang B, Li S, Huo J. Fretting Fatigue Life Prediction of Dovetail Structure Based on Plastic Effect and Sensitivity Analysis of Influencing Factors. Materials. 2023; 16(9):3521. https://doi.org/10.3390/ma16093521
Chicago/Turabian StyleZhou, Jianjun, Bowen Yang, Shuaiyuan Li, and Junzhou Huo. 2023. "Fretting Fatigue Life Prediction of Dovetail Structure Based on Plastic Effect and Sensitivity Analysis of Influencing Factors" Materials 16, no. 9: 3521. https://doi.org/10.3390/ma16093521
APA StyleZhou, J., Yang, B., Li, S., & Huo, J. (2023). Fretting Fatigue Life Prediction of Dovetail Structure Based on Plastic Effect and Sensitivity Analysis of Influencing Factors. Materials, 16(9), 3521. https://doi.org/10.3390/ma16093521