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Abstract: CO2, as a cheap and abundant renewable C1 resource, can be used to synthesize high
value-added chemicals. In this paper, a series of bifunctional metallic niobium complexes were
synthesized and their structures were characterized by IR, NMR and elemental analysis. All of these
complexes have been proved to be efficient catalysts for the coupling reaction of CO2 and epoxides to
obtain cyclic carbonates under solvent- and co-catalyst-free conditions. By using CO2 and propylene
oxide as a model reaction, the optimal reaction conditions were systematically screened as: 100 ◦C,
1 MPa, 2 h, ratio of catalyst to alkylene oxide 1:100. Under the optimal reaction conditions, the
bifunctional niobium catalysts can efficiently catalyze the coupling reaction with high yield and
excellent selectivity (maximum yield of >99% at high pressure and 96.8% at atmospheric pressure).
Moreover, this series of catalysts can also catalyze the coupling reaction at atmospheric pressure and
most of them showed high conversion of epoxide. The catalysts have good substrate suitability and
are also applicable to a variety of epoxides including diepoxides and good catalytic performances
were achieved for producing the corresponding cyclic carbonates in most cases. Furthermore, the
catalysts can be easily recovered by simple filtration and reused for at least five times without
obvious loss of catalytic activity and selectivity. Kinetic studies were carried out preliminarily
for the bifunctional niobium complexes with different halogen ions (3a(Cl−), 3b(Br−), 3c(I−)) and
the formation activation energies (Ea) of cyclic carbonates were obtained. The order of apparent
activation energy Ea is 3a (96.2 kJ/mol) > 3b (68.2 kJ/mol) > 3c (37.4 kJ/mol). Finally, a possible
reaction mechanism is proposed.

Keywords: bifunctional niobium complex; carbon dioxide; epoxides; cyclic carbonate; recyclability

1. Introduction

In the last one to two centuries, with the large-scale application of fossil energy sources
such as coal, oil and natural gas in countries around the world, a large amount of green-
house gases has been released and the CO2 content in the atmosphere has increased, which
has led to an increase in global temperature and frequent global extreme weather [1]. Mean-
while, CO2, as an abundant non-toxic, cheap and easily available C1 resource, can be used
to synthesize a series of industrial products with high added value [2], which provides an
idea to alleviate environmental problems. CO2 can be used as a building block to construct
C–C, C–O, and C–N bonds for the synthesis of methanol [3], cyclic carbonates [4], oxazolidi-
nones [5], and amides [6], which are important chemical intermediates and pharmaceutical
intermediates. Among them, the construction of C–O bonds is a focus as well as a hot spot
of current research.
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Through the reaction of CO2 with epoxy compounds, cyclic carbonate can be obtained,
which is a class of organic solvents with excellent performance and important fine chemical
intermediates, and its application is very wide and the demand is particularly high [7–9].
In response to the market demand, a variety of catalytic systems have been developed,
such as Al, Mg, Zn, and other metal catalysts [10–13], ionic liquids [14], azacyclic car-
bines [15], 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) [16] and other catalytic systems, all of
which can catalyze the coupling reaction of CO2 with epoxides with excellent catalytic per-
formance. Among them, metal complexes are one of the most utilized catalysts, mainly due
to three advantages: (1) the wide scope of metal centers, which allows the preparation of a
large number of metal complexes, (2) facile preparation from commercially available and
relatively inexpensive starting materials, and (3) relatively high catalytic efficiency [11–13].

So far, many metal complexes (e.g., Zn, Ni, Rh, Ir, Fe, Cu, Re, Al, Co, Cr, Pb, Mg, Nb,
etc.) are mainly used as catalysts for the coupling reaction of epoxides with CO2 [17–20].
It has been known that niobium-containing materials are presently of great interest in
heterogeneous catalysis where they are used as catalyst components. As a nontoxic,
inexpensive metal, niobium complexes have also been used to catalyze the conversion of
CO2 and epoxides into carbonates. Although Kühn and co-workers have proved several
niobium-based catalysts to be efficient in the catalytic conversion of carbon dioxide and
epoxides into carbonates under mild conditions, the addition of suitable nucleophiles
as co-catalysts is required in order to maintain high activity [21–23]. Until 2015, Hou’s
group reported a series of peroxoniobate salts of organic bases as a halogen-free, air-stable,
recyclable and single-component catalyst for the cycloaddition reaction of epoxides and
CO2 [24]. The work represented a simple, ecologically friendly and efficient route for
CO2 chemical fixation into high value chemicals and exhibited the unique advantages of
niobium-based catalysts. However, there has been almost no work reported about niobium-
based catalysts, especially with bifunctionalization ability, for the coupling reaction of CO2
and epoxides.

Herein, a series of bifunctional niobium complexes were designed and synthesized
to catalyze the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free
and co-catalyst-free conditions. The catalytic activities of different complexes and the
optimization of the reaction conditions were also investigated.

2. Materials and Methods
2.1. Chemicals and Analytical Methods

All of the chemicals were purchased from Acros.com and used as received except for
the epoxides, which were purified by distillation from CaH2 before utilization. Copies
of all spectra of synthesized complexes and carbonate products are provided in the
Supplementary Materials (Figure S1).

A Bruker Al-400 MHz instrument manufactured by Bruker Technologies Switzerland
Ltd., Fällanden, Switzerland, was used for recording NMR spectra using TMS as an internal
standard. A Perkin-Elmer 2000 FT-IR spectrometer (manufactured by Perkin-Elmer Ltd.,
Waltham, MA, USA) was used for IR spectra record. Elemental analysis was conducted
on a PE 2400 series II CHNS/O elemental analyzer (manufactured by Perkin-Elmer Ltd.,
Waltham, MA, USA).

2.2. Synthesis of Bifunctional Niobium Complexes

The synthetic route of bifunctional niobium complexes is shown in Scheme 1. The com-
pounds 1a–1c and 2a–2e are known and were synthesized according to the literature [25–27].

Synthesis of compound 3: 5.0 g of compound 2, 2.16 g of o-aminophenol and 5.36 g
of NbCl5 were dissolved in 20 mL of ethanol in the flask. After stirring for 24 h at room
temperature, the produced solid was filtered and washed with ethanol and acetone several
times and dried under vacuum to obtain the corresponding bifunctional niobium complex.
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3a: pale yellow powder, yield 82%, melting point > 300 ◦C. 1H NMR (400 MHz, DMSO)
δ 10.28 (s, 1H), 7.73 (dd, J = 23.0, 12.6 Hz, 3H), 7.59 (d, J = 8.8 Hz, 1H), 7.46 (s, 1H), 7.32
(d, J = 8.2 Hz, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.09 (d, J = 8.5 Hz, 1H), 7.07–6.95 (m, 1H), 6.87
(d, J = 7.1 Hz, 1H), 5.35 (d, J = 12.0 Hz, 2H), 3.83 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz,
DMSO) δ 190.69, 161.71, 151.32, 136.95, 129.55, 124.71, 124.41, 122.59, 119.51, 40.61, 40.40,
40.20, 39.99, 39.93, 39.78, 39.57, 39.36, 36.32; Selected IR peaks (KBr, cm−1): ν 3383, 3092,
2920, 2686, 2568, 1604, 1475, 1358, 1301, 1254, 1168, 1025, 881, 770, 621. Anal. Calcd for
C18H16Cl3N3NbO2: C, 42.76; H, 3.19; N, 8.31. Found: C, 42.96; H, 3.35; N. 8.21.

3b: green powder, yield 71%, melting point >300 ◦C. 1H NMR (400 MHz, DMSO) δ
10.23 (d, J = 38.8 Hz, 1H), 7.86–7.68 (m, 3H), 7.62 (d, J = 8.6, 2.2 Hz, 1H), 7.51 (d, J = 8.5, 2.1 Hz,
1H), 7.39 (d, J = 7.8 Hz, 1H), 7.25–7.14 (m, 1H), 7.10 (d, J = 16.0, 6.8 Hz, 1H), 7.00 (d, J = 8.5 Hz,
1H), 6.85 (dt, J = 15.1, 7.5 Hz, 1H), 5.38 (d, J = 15.1 Hz, 2H), 3.84 (d, J = 7.6 Hz, 3H); 13C NMR
(101 MHz, DMSO) δ 186.55, 161.82, 140.05, 137.00, 132.25, 124.42, 123.54, 122.60, 122.06,
119.59, 119.30, 117.96, 105.27, 51.79, 40.63, 40.57, 40.42, 40.36, 40.22, 40.15, 40.01, 39.94, 39.80,
39.74, 39.59, 39.53, 39.38, 39.32, 36.45, 36.32; Selected IR peaks (KBr, cm−1): ν 3383, 3093,
2921, 2686, 2568, 1642, 1474, 1358, 1299, 1253, 1167, 1024, 881, 768, 620. Anal. Calcd for
C18H16BrCl2N3NbO2: C, 39.30; H, 2.93; N, 7.64. Found: C, 39.02; H, 2.85; N. 7.53.

3c: brown powder, yield 67%, melting point >300 ◦C. 1H NMR (400 MHz, DMSO) δ
10.28 (s, 1H), 7.77 (dd, J = 38.3, 9.1 Hz, 3H), 7.62 (d, J = 8.6 Hz, 1H), 7.49 (d, J = 6.9 Hz, 1H),
7.37 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 8.3 Hz, 1H), 7.09 (d, J = 16.5, 8.6 Hz, 1H), 7.05–6.93 (m,
1H), 6.85 (d, J = 9.5 Hz, 1H), 5.38 (d, J = 14.1 Hz, 2H), 3.84 (d, J = 7.0 Hz, 3H); 13C NMR
(101 MHz, DMSO) δ 191.03, 161.63, 151.11, 137.06, 136.91, 129.45, 126.08, 124.41, 122.92,
122.65, 122.55, 120.13, 119.78, 118.59, 118.01, 116.64, 51.56, 40.49, 40.28, 40.07, 39.87, 39.66,
39.45, 39.24, 36.40, 36.34; Selected IR peaks (KBr, cm−1): ν 3417, 3092, 1637, 1476, 1384, 1289,
1253, 1163, 1018, 751, 620. Anal. Calcd for C18H16ICl2N3NbO2: C, 36.21; H, 2.70; N, 7.04.
Found: C, 36.10; H, 2.89; N. 7.34.

3d: yellow powder, yield 59%, melting point >300 ◦C. 1H NMR (400 MHz, DMSO)
δ 10.24 (d, J = 31.4 Hz, 1H), 7.96–7.80 (m, 3H), 7.74 (d, J = 2.2 Hz, 1H), 7.67–7.54 (m, 1H),
7.51–7.37 (m, 1H), 7.21 (d, J = 8.5 Hz, 1H), 7.14 (d, J = 14.7, 4.9 Hz, 1H), 7.06 (d, J = 8.6 Hz,
1H), 6.90–6.76 (m, 1H), 5.39 (d, J = 19.2 Hz, 2H), 4.19 (p, J = 7.4 Hz, 2H), 1.40 (q, J = 7.7 Hz,
3H); 13C NMR (101 MHz, DMSO) δ 190.70, 161.86, 161.20, 151.51, 136.97, 136.22, 133.43,
129.55, 129.12, 126.01, 124.72, 122.97, 122.93, 122.72, 120.49, 120.02, 119.52, 119.40, 118.71,
118.04, 117.25, 116.81, 51.71, 51.58, 44.78, 40.61, 40.40, 40.32, 40.19, 40.11, 39.98, 39.90, 39.77,
39.70, 39.56, 39.49, 39.35, 15.44. Selected IR peaks (KBr, cm−1): ν 3380, 3136, 2987, 2692, 2573,
1643, 1509, 1473, 1358, 1299, 1252, 1167, 1022, 876, 771. Anal. Calcd for C19H18Cl3N3NbO2:
C, 43.92; H, 3.49; N, 8.09. Found: C, 43.81; H, 3.34; N. 7.95.

3e: yellow powder, yield 51%, melting point >300 ◦C. 1H NMR (400 MHz, DMSO)
δ 10.21 (d, J = 29.4 Hz, 1H), 7.84–7.76 (m, 3H), 7.68 (d, J = 1.8 Hz, 1H), 7.57–7.43 (m, 1H),
7.38–7.28 (m, 1H), 7.15 (d, J = 7.9 Hz, 1H), 7.07 (d, J = 15.8, 5.3 Hz, 1H), 6.98 (d, J = 8.9 Hz,
1H), 6.87–6.73 (m, 1H), 5.17 (d, J = 18.9 Hz, 2H), 4.07 (p, J = 6.5 Hz, 2H), 1.23 (q, J = 6.8 Hz,
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2H), 0.48 (t, J = 5.9 Hz, 3H); 13C NMR (101 MHz, DMSO) δ 183.01, 151.18, 147.81, 129.10,
127.38, 124.30, 123.81, 122.89, 122.25, 120.12, 120.00, 119.62, 119.06, 116.72, 113.00, 49.21,
45.43, 40.63, 40.42, 40.21, 40.00, 39.79, 39.58, 39.38, 38.17, 31.75, 31.60, 19.30, 17.84, 13.74,
12.02. Selected IR peaks (KBr, cm−1): ν 3385, 2960, 2590, 1618, 1558, 1487, 1462, 1384, 1293,
1249, 1158, 760, 617. Anal. Calcd for C21H22Cl3N3NbO2: C, 46.05; H, 4.05; N, 7.67. Found:
C, 46.21; H, 4.12; N. 7.78.

2.3. Experimental Procedure for the Cycloaddition of Carbon Dioxide and Epoxides

Reaction under high pressure: The quantitative epoxy compound and bifunctional
niobium complex were added into a stainless steel reactor with a magnetic stir, then the
reactor was sealed. CO2 was pressurized into the reactor to replace the gas three times
before it was immersed into the oil bath with pre-set temperature for 20 min. The reaction
started under stable CO2 pressure in the reactor. When the preset time was reached, the
reaction vessel was cooled quickly with ice water to release the pressure slowly. After
exhausting the gas, a small amount of the mixture was taken for 1H NMR characterization
to calculate the yield and selectivity.

Reaction under atmospheric pressure: Under the protection of CO2, a quantitative
amount of bifunctional niobium complex and stir bar were added into the Schlenk bottle
connecting with a CO2 balloon sealed with rubber cap. Then, a quantitative amount of
epoxide compound was injected into the bottle with a syringe. The reaction system was
preheated in a constant temperature oil bath for 20 min and then the reaction was started.
When the required reaction time was reached, the reactor was cooled quickly with ice water
to release the pressure slowly, and then a small amount of the mixture was taken with a
syringe for 1H NMR analysis and the yield and selectivity were calculated.

3. Results and Discussion
3.1. Optimization of Reaction Conditions

The synthetic route of cyclic carbonate is shown in Figure 1. The effect of catalyst
type, catalyst dosage, temperature, time and CO2 pressure on the reaction was investigated
systematically, and ultimately the optimum reaction conditions were explored, under which
a variety of epoxides were catalyzed to investigate the catalytic efficiency and substrate
suitability of the catalytic system.
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3.1.1. Effect of Catalyst Type on Catalytic Activity

Firstly, the effect of anion halogen ions on catalyst activity was tested under the
conditions of 100 ◦C, 1 MPa, 2 h, catalyst:epoxide = 1:100 (Table 1). It can be seen that
there is no propylene carbonate (PC) produced without the catalyst. Ionic liquids have
been proved as efficient catalysts, so the catalytic activities of ligands 2a–2e have also been
performed and good results were obtained (Entries 2–6). However, the recyclability of
these ligands is worse compared with their metal complexes. The catalytic activities of
three niobium complexes 3a–3c were proved as efficient catalysts showing almost the same
activity within 2 h. To clarify the catalytic performance of 3a–3c, shorter time reactions of
1 h have been investigated and there are still no big differences for their catalytic activities
as shown in Table 1 (Entries 13–15). Due to the lower yields for the preparation of catalysts
with Br− and I− ions, the catalyst 3a containing Cl- ions were chosen for the following
studies. The effect of the alkyl substituent on the imidazole moiety of catalyst activity
was then investigated (Entries 7,10,11). The length of the alkyl chain showed a relatively
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significant effect on the catalyst activity. The best yields were obtained when the substituent
was methyl (3a). The reason for this occurrence may be due to the effect of spatial hindrance,
the greater the spatial hindrance, the lower the catalytic activity. So 3a was chosen as the
optimal catalyst for the coupling reaction of CO2 and epoxide.

Table 1. The effect of catalyst type on yield a.

Entry Catalyst PC yield (%) c Selectivity (%)

1 - - -
2 2a 78 99
3 2b 83 99
4 2c 89 99
5 2d 75 99
6 2e 73 99
7 3a 96 99
8 3b 97 99
9 3c 99 99
10 3d 49 99
11 3e 32 99
12 3f 13 98

13 b 3a 76 99
14 b 3b 78 99
15 b 3c 79 99

a Reaction conditions: propylene oxide (5 mL, 0.0714 mol), catalyst (0.714 mmol), temperature: 100 ◦C, CO2 pressure:
1 MPa, time: 2 h. b time: 1 h. c Yield and selectivity of the products were examined by 1H NMR (CDCl3, 400 MHz).

3.1.2. Effect of Reaction Parameters on Catalytic Activity

After determining the type of catalyst, the coupling reaction of propylene oxide and
carbon dioxide was used as a model reaction to explore the effects of temperature, CO2
pressure, time, and catalyst dosage on the reaction activity (Figure 2).

As shown in Figure 2a, low temperature resulted in lower activity. When the tempera-
ture gradually increases, the product yield continues to increase. Although the yield is a
little better at 120 ◦C than that obtained at 100 ◦C, the increase is not obvious. The cycload-
dition reaction of CO2 with epoxide is exothermic, so from the viewpoint of thermodynamic
equilibrium, too high temperature will hinder the formation of cyclic carbonate [28,29]. In ad-
dition, high temperature also leads to the polymerization of cyclic carbonate, which reduces
the catalytic efficiency [30]. Therefore, 100 ◦C is selected as the optimal reaction temperature.

The effect of CO2 pressure on the catalytic activity is shown in Figure 2b. The product
yield showed a trend of first rising and then decreasing with the CO2 pressure and the
highest activity was obtained at 1 MPa. The pressure is increased first because of the
increase in CO2 concentration involved in the reaction. Therefore, the yield showed an
upward trend at the initial stage. When the pressure increases to a certain value, too high
CO2 pressure would decrease the propylene oxide (PO) concentration in the vicinity of
the catalyst to lower PC yield. These opposite factors’ competition gave rise to an optimal
pressure of 1 MPa for the best PC yields [31,32].

Time is another indispensable factor and its effect is shown in Figure 2c. The yield of
cyclic carbonate increases with time. At the early stage, the yield increases sharply and
almost linearly, but the yield hardly increases when the time exceeds 2 h, so it is appropriate
to choose the optimal reaction time as 2 h.

In addition to these factors, the influence of the amount of catalyst on the reaction
activity is also important. As shown in Figure 2d, when the amount of catalyst is at a lower
level, the product yield is relatively low too. When the ratio of the amount of substrate to
catalyst reaches 1:100, the product yield reaches the maximum 96%. However, the increase
in product yield is not obvious when the amount of catalyst continues to increase. So, the
ratio of catalyst to alkylene oxide 1:100 is selected as the optimal value.
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In summary, the optimal conditions for the bifunctional niobium complex for the
cycloaddition of CO2 and epoxide were screened as: reaction temperature of 100 ◦C, carbon
dioxide pressure of 1 MPa, reaction time of 2 h and catalyst to epoxide ratio of 1:100.

3.2. Applicability of Substrates

To investigate the suitability of the catalytic system for more substrates expansion,
various epoxides were tested for the coupling reaction both at high and atmospheric
pressure and the results are shown in Table 2.

Under optimal reaction conditions (100 ◦C, 1 MPa, 2 h, 1:100 catalyst to epoxide ratio),
the bifunctional niobium complex can efficiently catalyze the cycloaddition reactions of
a wide range of epoxides with CO2. The yields of cyclic carbonate for epoxides with
relatively low spatial hindrance, such as epichlorohydrin, 2-(isopropoxymethyl)oxirane,
2-phenyloxirane and 2-butyloxirane, the corresponding yields of cyclic carbonates are
100%, 96.4%, 90.9%, and 74.8%, respectively (entries 1–4), but for epoxides with bigger
steric hindrance, such as cyclohexene oxide and 2,2-dimethyloxirane, the reaction was
extended to 12 h with only moderate yields (Table 2, entries 5,6). It is worth noting that
this catalyst is also suitable for bis-epoxides, which can be obtained in excellent yields
(entries 7,8). The bicyclic carbonate synthesized from the bis-epoxides has an important
role in industry, which is a feedstock for the reaction with polyfunctional primary amines
to produce non-isocyanate polyurethanes (NIPUs). The present catalyst is also suitable for
substrates of the glycidyl ether family, showing excellent catalytic activity (entries 9–12).
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Table 2. Reaction of carbon dioxide with other epoxides catalyzed by bifunctional niobium complexes.

Entry Epoxides Product
Condition A a Condition B b

Time (h) Yield (%) Time (h) Yield (%)

1
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a Reaction conditions: molar ratio of epoxy alkane (5 mL) to catalyst 1:100, 100 °C, 1 MPa, 2 h. b 
Reaction conditions: molar ratio of epoxy alkane (5 mL) to catalyst dosage 1:100, 100 °C, 0.1 MPa. 

The yield and selectivity of the products were detected by 1H NMR (CDCl3, 400 MHz) and all se-
lectivities are >99%. 

3.3. Kinetic Study 
The kinetics of the carbon dioxide cycloaddition reaction catalyzed by bifunctional 

niobium complexes was also investigated in detail. The cycloaddition of n-butyl glycidyl 
ether (BGE) and CO2 was selected as model reaction at atmospheric pressure, and the 
kinetic behavior of bifunctional niobium complexes containing different halogen ions 
was studied in the temperature range of 353–413 K and the reaction time range of 2–8 h 
(please refer to the Supplementary Materials). The apparent activation energy Ea of the 
bifunctional niobium complexes with different halogen ions are shown in Figure 3. The 
order of apparent activation energy Ea is 3a (96.2 kJ/mol) > 3b (68.2 kJ/mol) >3c (37.4 
kJ/mol) (Figure 3), which is consistent with the yields of 96%, 97% and 99% of cyclic 
carbonate formation from PC and CO2 catalyzed by 3a, 3b, and 3c, respectively. This is 
attributed to the leaving ability of the contained halogen ions (Cl− < Br− < I−). 
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a Reaction conditions: molar ratio of epoxy alkane (5 mL) to catalyst 1:100, 100 ◦C, 1 MPa, 2 h. b Reaction
conditions: molar ratio of epoxy alkane (5 mL) to catalyst dosage 1:100, 100 ◦C, 0.1 MPa. The yield and selectivity
of the products were detected by 1H NMR (CDCl3, 400 MHz) and all selectivities are >99%.

The catalytic performance of the bifunctional niobium complex for various epoxides
was also tested at atmospheric pressure and 100 ◦C (Table 2, condition b; most boiling
points of the substrates studied in our work are above 100 ◦C except for 2,2-dimethyloxirane
(entry 6)). Epichlorohydrin can be converted almost completely within 14 h (entry 1), and
for other epoxides with low steric hindrance, relatively good yields were obtained within
24 h (Table 2, entries 2–4). However, for epoxides with high steric hindrance, yields were
still poor even after 24 h reaction (entry 5). For the diepoxy alkane compounds, on the
other hand, moderate or even excellent yields could be achieved under reaction conditions
(entries 7–8). For glycidyl ether compounds, except for phenyl glycidyl ether, excellent
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yields can be achieved within 11 h. All other glycidyl ethers required longer reaction times
to achieve excellent yields (entries 9–12).

In summary, the catalytic system has good substrate suitability and can catalyze the
reaction of a variety of epoxides with CO2 to form the corresponding cyclic carbonates
under both high pressure and atmospheric conditions with satisfactory results.

3.3. Kinetic Study

The kinetics of the carbon dioxide cycloaddition reaction catalyzed by bifunctional
niobium complexes was also investigated in detail. The cycloaddition of n-butyl glycidyl
ether (BGE) and CO2 was selected as model reaction at atmospheric pressure, and the
kinetic behavior of bifunctional niobium complexes containing different halogen ions was
studied in the temperature range of 353–413 K and the reaction time range of 2–8 h (please
refer to the Supplementary Materials). The apparent activation energy Ea of the bifunctional
niobium complexes with different halogen ions are shown in Figure 3. The order of apparent
activation energy Ea is 3a (96.2 kJ/mol) > 3b (68.2 kJ/mol) >3c (37.4 kJ/mol) (Figure 3),
which is consistent with the yields of 96%, 97% and 99% of cyclic carbonate formation from
PC and CO2 catalyzed by 3a, 3b, and 3c, respectively. This is attributed to the leaving ability
of the contained halogen ions (Cl− < Br− < I−).
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Figure 3. The apparent activation energy Ea of the reaction between carbon dioxide and n-butyl
glycidyl ether catalyzed by the bifunctional niobium complexes with different halogen ions.

3.4. Reusability of Catalyst

The recyclability of the catalyst was investigated using propylene oxide as a template
reaction with CO2 under optimal reaction conditions. After each cycle of reaction, acetone
was added to the reaction system to precipitate the catalyst out of the mixture. After
filtration and drying under vacuum, the catalyst was reused. The catalyst can be reused
at least for five times without obvious loss of catalytic activity and selectivity (Figure 4).
The fresh catalyst and the catalyst after five reactions were selected for IR characterization
and the results are shown in Figure 5. The IR spectra indicate that the catalyst was
stable even after five cycles. As shown in Figure 5, the typical peaks for the imidazole
functionalized complex 3a are visualized clearly and all of them show no significant change
before and after five reaction cycles: the peak of 1604 cm−1 is the absorption peak of C=N
of Schiff base, the peak of 1601 cm−1 belongs to benzene ring skeleton, and the absorption
peaks of 3092 cm−1and 1172 cm−1 are attributed to the C-H stretching vibration on the
imidazole cation and the stretching vibration peak of the imidazole ring, respectively.
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3.5. Possible Reaction Mechanisms

Based on previously reported literature and experimental results [33–36], a possible
reaction mechanism was proposed. As shown in Figure 6, firstly the metal center in the
bifunctional catalyst activates the oxygen in the epoxide, then the halogen ion attacks
nucleophilically the less site-resistant carbon of the epoxide, prompting ring opening of the
epoxide to form a metal alcoholic salt intermediate, at which point carbon dioxide is inserted
into the metal alcohol salt intermediate to form a metal carboxylate intermediate, and
finally the product cyclic carbonate is generated through intramolecular cyclization. This
mechanism suggests that the Lewis acid centers and Lewis base centers play a synergistic
role in the cycloaddition reaction and are therefore essential in the catalytic system.
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4. Conclusions

In this study, a series of bifunctional niobium complexes were synthesized and charac-
terized by NMR, FTIR spectroscopy and elemental analysis. These catalysts can catalyze the
formation of cyclic carbonates from epoxides and CO2 with high efficiency and selectivity
in the absence of solvents and without co-catalysts. By systematic investigation, the opti-
mum reaction conditions were screened as: reaction temperature of 100 ◦C, carbon dioxide
pressure of 1 MPa, reaction time of 2 h and catalyst to epoxide ratio of 1:100. The substrate
suitability of the catalysts was studied and the results showed that the catalysts were able
to catalyze the cycloaddition of a wide range of epoxides with CO2 under both high and
atmospheric conditions with high selectivity and good to excellent yields. Furthermore,
the catalysts showed good recyclability via simple filtration and can be reused for at least
five times without obvious loss of catalytic activity and selectivity. A kinetic study of
bifunctional niobium complexes containing different halogen ions (3a(Cl−), 3b(Br−), 3c(I−))
was carried out and the order of apparent activation energies is 3a (96.2 kJ/mol) > 3b
(68.2 kJ/mol) > 3c (37.4 kJ/mol). Finally, a proposed mechanism was given out based on
kinetic study and the literature.

Supplementary Materials: The following supplementary materials can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16093531/s1, Table S1: Characterization of intermedi-
ates. Table S2.1: The relationship between the yield and time of the reaction of CO2 and n-butyl
glycidyl ether catalyzed by compound 3a under 353 K atmospheric conditions. Table S2.2: The
relationship between the yield and time of the reaction of CO2 and n-butyl glycidyl ether catalyzed
by compound 3a under 373 K atmospheric conditions. Table S2.3: The relationship between the
yield and time of the reaction of CO2 and n-butyl glycidyl ether catalyzed by compound 3a under
393 K atmospheric conditions. Table S2.4: The relationship between the yield and time of the reaction
of CO2 and n-butyl glycidyl ether catalyzed by compound 3a under 413 K atmospheric conditions.
Figure S1: NMR spectra of the substances synthesized in this work. Figure S2.1: The relationship
between the ln(1 − x) and time t of the bifunctional niobium complex 3a catalyzed by the cycloaddi-
tion reaction at 353 K-413 K. Table S2.5: The relationship between the yield and time of the reaction
of CO2 and n-butyl glycidyl ether catalyzed by compound 3b under 353 K atmospheric conditions.
Table S2.6: The relationship between the yield and time of the reaction of CO2 and n-butyl glycidyl
ether catalyzed by compound 3b under 373 K atmospheric conditions. Table S2.7: The relationship
between the yield and time of the reaction of CO2 and n-butyl glycidyl ether catalyzed by compound
3b under 393 K atmospheric conditions. Table S2.8: The relationship between the yield and time of
the reaction of CO2 and n-butyl glycidyl ether catalyzed by compound 3b under 413 K atmospheric
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conditions. Figure S2.2: The relationship between the ln(1 − x) and time t of the bifunctional niobium
complex 3b catalyzed by the cycloaddition reaction at 353 K–413 K. Table S2.9: The relationship
between the yield and time of the reaction of CO2 and n-butyl glycidyl ether catalyzed by compound
3c under 353 K atmospheric conditions. Table S2.10: The relationship between the yield and time of
the reaction of CO2 and n-butyl glycidyl ether catalyzed by compound 3c under 373 K atmospheric
conditions. Table S2.11: The relationship between the yield and time of the reaction of CO2 and
n-butyl glycidyl ether catalyzed by compound 3c under 393 K atmospheric conditions. Figure S2.3:
The relationship between the ln(1 − x) and time t of the bifunctional niobium complex 3c catalyzed by
the cycloaddition reaction at 353 K–393 K. Figure S2.4: Arrhenius linear relationship between carbon
dioxide and n-butyl glycidyl ether catalyzed by different halogen bifunctional niobium complexes.
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