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Provenance and Mass Fraction Purity of the Materials

Mass
Materials CAS Provenance
fraction
Shanghai Aladdin Bio-Chem Technology Co.,
2-Hydroxybenzaldehyde 0.98 90-02-8
Ltd.
Shanghai Aladdin Bio-Chem Technology Co.,
Paraformaldehyde AR 30525-89-4
Ltd.
Hydrochloric acid AR 7647-01-0 Sinopharm Chemical Reagent Co., Ltd
Hydrogen bromide AR 10035-10-6 Sinopharm Chemical Reagent Co., Ltd
Hydriodic acid AR 10034-85-2 Beijing J&K Scientific Ltd.
1-Methylimidazole 0.98 616-47-7 Shanghai Darui Finechemical Co., Ltd.
1-Ethylimidazole 0.98 7098-07-9 Shanghai TCI Development Co., Ltd.
1-Butylimidazole 0.99 4316-42-1 Beijing J&K Scientific Ltd.
2-Aminophenol 0.98 95-55-6 Shanghai Darui Finechemical Co., Ltd.
Ethanol AR 64-17-5 Sinopharm Chemical Reagent Co., Ltd
Niobium chloride 0.99 10026-12-7 USA Strem Chemicals, Inc.
Epichlorohydrin 0.99 106-89-8 Beijing J&K Scientific., Ltd.
Glycidyl isopropyl ether 0.99 4016-14-2 Shanghai TCI Development Co., Ltd.
Styrene oxide 0.98 96-09-3 Shanghai Darui FinechemicalCo., Ltd.
1,2-Epoxyhexane 0.96 1436-34-6 Shanghai TCI Development Co., Ltd.
Cyclohexene oxide 0.98 286-20-4 Shanghai Darui FinechemicalCo., Ltd.




Isobutylene oxide 0.98 558-30-5 Beijing J&K Scientific., Ltd.
Ethylene glycol diglycidyl ether 0.99 2224-15-9 Beijing J&K Scientific., Ltd.
1,4-Butanediol diglycidyl ether 0.99 2425-79-8 Shanghai Darui FinechemicalCo., Ltd.

Butyl glycidyl ether 0.98 2426-08-6 Shanghai Darui FinechemicalCo., Ltd.
Tert-butyl glycidyl erher 0.96 7665-72-7 Beijing J&K Scientific., Ltd.
2-(2-phenoxyethyl)oxirane 0.96 21746-93-0 Beijing J&K Scientific., Ltd.
2-isopropoxyoxirane 0.96 294210-20-1 Beijing J&K Scientific., Ltd.




Characterization of intermediates
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Table S1 Characterization of intermediates

2.1.1 Synthesis of compounds 1

13.5 g of paraformaldehyde was weighed into a two-necked flask equipped with stir
bar and 150 mL of HX (Cl, Br, I) and 26 mL of salicylaldehyde were added under the
protection of N2 and stirred at room temperature for three days to produce a large
amount of pink solid. The pink solid was filtered under reduced pressure and washed
with a large amount of saturated sodium bicarbonate solution. After being dried under
vacuum, it was dissolved in dichloromethane and dried overnight with anhydrous
magnesium sulfate, filtered, and the dichloromethane was removed by spin evaporation,
then the crude product was recrystallized with petroleum ether and dried under vacuum
to give a white solid. The method has been reported in many papers, so only the 'H NMR
spectrum data are tested to confirm the structures of compounds (please refer to the
Supplementary Material).

1la: white solid, yield 60%, melting point 68-70 °C."H NMR (400 MHz, DMSO)  10.92
(s, 1H), 10.27 (d, ] =2.7 Hz, 1H), 7.72 (d, ] = 2.3 Hz, 1H), 7.58 (m, 1H), 7.01 (t, ] = 8.9 Hz,
1H), 4.75 (s 2H).

1b: white solid, yield 67%, melting point 70-72°C."H NMR (400 MHz, DMSO) © 10.92
(s, 1H), 10.26 (s, 1H), 7.60 (s, 1H), 7.48 - 7.43 (m, 1H), 6.97 (d, ] =8.5 Hz, 1H), 4.42 (s, 2H).

1c: white solid, yield 50%, melting point 94-96 °C.'H NMR (400 MHz, DMSO) d 11.24
(s, 1H), 10.26 (d, ] = 7.1 Hz, 1H), 7.60 (d, ] = 2.0 Hz, 1H), 7.52 - 7.42 (m, 1H), 6.97 (m, 1H),
4.43 (d, ] =8.2 Hz, 2H).

2.1.2 Synthesis of compound 2

Referring to literature [22], 0.025 mol of compound 1 was weighed, dissolved in 20
mL of tetrahydrofuran, and 0.0375 mol of imidazoles was slowly added dropwise at
room temperature and stirred for 2 h. The crude product obtained was recrystallized
with methanol and tetrahydrofuran to obtain purified compound 2.

2a: pale yellow solid, yield 65%, melting point 81-85 °C.H NMR (400 MHz, D20) d
9.91 (d, ] =10.0 Hz, 1H), 8.72 (s, 1H), 7.71 (d, ] = 3.4 Hz, 1H), 7.54 (d, ] = 8.7 Hz, 1H), 7.41
(d,J=7.3 Hz, 2H). 6.98 (d, ] = 8.6 Hz, 1H), 5.39 (d, ] = 18.2 Hz, 2H), 3.86 (s, 3H).



2b: pale yellow solid, yield 42%, melting point 95-99 °C.1H NMR (400 MHz, D20) d
9.64 (d, ] =9.7 Hz, 1H), 8.32 (s, 1H), 7.41 (d, ] =4.2 Hz, 1H), 7.21 (d, ] = 9.5 Hz, 1H), 7.06 (d,
J=5.4Hz, 2H). 6.65 (d, ] = 7.5 Hz, 1H), 5.07 (d, ] = 19.6 Hz, 2H), 3.46 (s, 3H).

2c: pale yellow solid, 29% yield, melting point 96-100°C."H NMR (400 MHz, D20) d
9.44 (d, ] = 8.6 Hz, 1H), 8.01 (s, 1H), 7.15 (d, ] = 2.8 Hz, 1H), 6.93 (d, ] = 7.8 Hz, 1H), 6.82 (d,
J=49Hz, 2H). 6.74 (d, ] =7.9 Hz, 1H), 4.86 (d, ] = 17.8 Hz, 2H), 3.25 (s, 3H).

2d: pale yellow solid, 27% yield, melting point 103-107 °C.'"H NMR (400 MHz,
DMSO) & 12.31 (s, 1H), 10.56 (s, 1H), 7.87 - 7.64 (m, 3H), 7.57 (d, ] = 7.3, 1.8 Hz, 1H), 7.35
(d, J=9.4 Hz, 1H), 5.49 (s, 2H), 3.94 - 3.83 (m, 2H), 2.63 - 2.42 (m, 3H).

2e: pale yellow solid, yield 21%, melting point 105-109 °C.'H NMR (400 MHz, CDCls)
0 11.36 - 11.18 (m, 1H), 10.24 (s, 1H), 9.76 (s, 1H), 7.81 (s, 1H), 7.67 (s, 1H), 7.51 (d, ] =7 .4,
2.4 Hz, 1H), 7.18 (s, 1H), 6.85 (d, ] = 7.1 Hz, 1H), 5.46 (d, ] = 4.7 Hz, 2H), 4.07 (d, ] = 15.6,
7.3 Hz, 2H), 1.71 - 1.43 (m, 2H), 1.21 - 1.04 (m, 2H), 0.52 (t, ] = 6.1 Hz, 3H).



Reaction kinetics study

We have also studied the kinetics of the bifunctional niobium complex catalyzed by
the cycloaddition reaction of carbon dioxide. The model reaction is the reaction of
n-butyl glycidyl ether (BGE) and CO2 under normal pressure. The kinetic behavior of the
bifunctional niobium complex containing different halogen ions in the reaction time
interval of 2 h to 8 h. Because the iodine catalyst is too active, the reaction is close to
completion in 2 h at 413K. Data, so this interval is omitted. Known in the literature [27],
the general rate formula is shown in formula (2.1), which represents the cycloaddition
reaction of COz and BGE. In this formula, because of the large amount of CO: in the
reaction process, the concentration of the catalyst can be used as a fixed value, so the
formula (2.1) is simplified to obtain the formula (2.2). Assuming that the reaction is a
first-order reaction, a =1, the yield of the cyclic carbonate produced by the reaction time t
is x, and then the equivalent transformation equation (2.2) can be transformed into
equations (2.3) and (2.4). The experimental results are consistent with the formula (2.4),
which shows that the reaction rate and the concentration of BGE have a realizable
relationship, and further shows that the reaction rate in this reaction is a first-order
reaction to the concentration of BGE. The following figure S2.4 shows the linear
relationship of the bifunctional niobium complex containing different halogen ions.
According to the Arrhenius empirical formula, the activation energy of the reaction is
calculated from the formula (2.5). The activation energy sequence is 3a > 3b > 3c is
consistent with the conclusion: the greater the catalyst activity, the smaller the activation
energy is. The results are agreement with the leaving ability of the contained halogen
ions, ClI-<Br <T.

» = dx/ dt = k" [BGE]*[CO,)*[Cat) (52.1)
r = dx/ dt = K[BGE]* (S2.2)
r = dx/ dt = {BGE] = k(1-x) (52.3)
In(1-x)=—kt+C (S2.4)

Ink=-E,/RT +C (52.5)

Table S2.1 The relationship between the yield and time of the reaction of CO:z and n-butyl
glycidyl ether catalyzed by compound 3a under 353 K atmospheric conditions

Entry Time (h) Yield (% Selectivity (%)°
1 2 1.0 >99
2 4 22 >99
3 6 3.3 > 99
4 8 4.3 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 80 °C, CO: pressure:
0.1 MPa.
b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).

Table S2.2 The relationship between the yield and time of the reaction of CO:z and n-butyl



glycidyl ether catalyzed by compound 3a under 373 K atmospheric conditions

Entry Time (h) Yield (%)~ Selectivity (%)°
1 2 0 > 99
2 4 1.0 >99
3 6 4.4 >99
4 8 10.9 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 100 °C, CO: pressure:
0.1 MPa.

b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).

Table S2.3 The relationship between the yield and time of the reaction of CO:2 and n-butyl
glycidyl ether catalyzed by compound 3a under 393 K atmospheric conditions

Entry Time (h) Yield (%)~ Selectivity (%)
1 2 11.1 > 99
2 4 31.7 >99
3 6 48.9 >99
4 8 65.0 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 120 °C, CO: pressure:
0.1 MPa.
b: Yield and selectivity of the products were examined by 1H NMR (CDCls, 400 MHz).

Table S2.4 The relationship between the yield and time of the reaction of CO:z and n-butyl
glycidyl ether catalyzed by compound 3a under 413 K atmospheric conditions

Entry Time (h) Yield (%)~ Selectivity (%)"
1 2 37.4 >99
2 4 71.2 >99
3 6 92.9 >99
4 8 97.2 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 140 °C, CO: pressure:
0.1 MPa.

b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).
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Figure S2.1 The relationship between the In(1-x) and time ¢ of the bifunctional niobium
complex 3a catalyzed by the cycloaddition reaction at 353 K-413 K

Table S2.5 The relationship between the yield and time of the reaction of COz and n-butyl
glycidyl ether catalyzed by compound 3b under 353 K atmospheric conditions

Entry Time (h) Yield (%)~ Selectivity (%)°
1 2 0 >99
2 4 0 >99
3 6 37 >99
4 8 94 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 80 °C, CO: pressure:
0.1 MPa.

b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).

Table S2.6 The relationship between the yield and time of the reaction of CO:2 and n-butyl
glycidyl ether catalyzed by compound 3b under 373 K atmospheric conditions

Entry Time (h) Yield (%)t Selectivity (%)
1 2 8.4 >99
2 4 13.0 >99
3 6 38.0 >99
4 8 50.0 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 100 °C, CO: pressure:
0.1 MPa.

b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).



Table S2.7 The relationship between the yield and time of the reaction of CO:z and n-butyl

glycidyl ether catalyzed by compound 3b under 393 K atmospheric conditions

Entry Time (h) Yield (%)~ Selectivity (%)*
1 2 56.2 >99
2 4 77.1 >99
3 6 83.3 >99
4 8 92.0 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 120 °C, CO:z pressure:
0.1 MPa.

b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).

Table S2.8 The relationship between the yield and time of the reaction of CO:2 and n-butyl

glycidyl ether catalyzed by compound 3b under 413 K atmospheric conditions

Entry Time (h) Yield (%)~ Selectivity (%)
1 2 80.0 >99
2 4 91.0 >99
3 6 97.0 > 99
4 8 99.0 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 140 °C, CO: pressure:

0.1 MPa.

b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).
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Figure S2.2 The relationship between the In(1-x) and time t of the bifunctional niobium
complex 3b catalyzed by the cycloaddition reaction at 353 K-413 K



Table S2.9 The relationship between the yield and time of the reaction of CO2 and n-butyl
glycidyl ether catalyzed by compound 3c under 353 K atmospheric conditions

Entry Time (h) Yield (%)~ Selectivity (%)
1 2 55 >99
2 4 26.4 >99
3 6 50.4 >99
4 8 63.6 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 80 °C, COz pressure:
0.1 MPa.
b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).

Table S2.10 The relationship between the yield and time of the reaction of CO2 and
n-butyl glycidyl ether catalyzed by compound 3c under 373 K atmospheric conditions

Entry Time (h) Yield (%) Selectivity (%)°
1 2 43.7 >99
2 4 82.5 >99
3 6 94.2 >99
4 8 96.6 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 100 °C, COz pressure:
0.1 MPa.
b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).

Table S2.11 The relationship between the yield and time of the reaction of CO2 and
n-butyl glycidyl ether catalyzed by compound 3c under 393 K atmospheric conditions

Entry Time (h) Yield (%)® Selectivity (%)°
1 2 61.1 >99
2 4 90.8 >99
3 6 96.6 >99

a: Reaction conditions: n-butyl glycidyl ether (5 mL) to catalyst dosage molar ratio 1:100, temperature: 120 °C, CO:z pressure:
0.1 MPa.
b: Yield and selectivity of the products were examined by 'H NMR (CDCls, 400 MHz).
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Figure S1 NMR spectra of the substances synthesized in this work.
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