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Abstract: This article provides a literature review that details the development of inelastic constitutive
modeling as it relates to polycrystalline materials. This review distinguishes between inelastic con-
stitutive models that account for nonlinear behavior at the microstructural level, time-independent
classic plasticity models, and time-dependent unified models. Particular emphasis is placed on
understanding the underlying theoretical framework for unified viscoplasticity models where creep
and classical plasticity behavior are considered the result of applied boundary conditions instead
of separable rates representing distinct physical mechanisms. This article establishes a clear un-
derstanding of the advantages of the unified approach to improve material modeling. This review
also discusses recent topics in constitutive modeling that offer new techniques that bridge the gap
between the microstructure and the continuum.

Keywords: continuum mechanics; constitutive modeling; time dependent behavior; inelastic
deformations

1. Introduction

Nonlinear hereditary inelastic deformation behavior can occur in many materials utilized
at elevated service temperatures. This behavior can include creep, rate sensitivity, and
plasticity. Accurate assessments of nonlinear stress and deformation behavior are important
in predicting the operational life and overall performance of critical engineering systems.
Inelastic constitutive models have been developed and deployed to meet these assessment
needs. The models must predict nonlinear behavior under complex thermomechanical load
paths. This includes capturing phenomena such as Bauschinger’s effect, cyclic softening and
hardening, stress relaxation, and ratcheting when present in high-temperature applications.

In this article, focus is given to theoretical concepts that historically supported the
development of unified inelastic constitutive models. The field is rich, and because of this,
there will be some oversights here, and apologies are offered a priori. The discussion begins
by mentioning the work of Andrade [1,2] with soft metals (e.g., lead). Andrade modeled
transient creep strain by assuming it is proportional to the cubic root of time. Expressions
for different stages of creep (primary, steady state, but not tertiary) have been offered by
Norton [3] and Bailey [4]. The generalization of Norton’s power law to multiaxial states
of stress using a potential function is highlighted later in the viscoplasticity section of this
paper. Odqvist [5] published a multiaxial formulation for steady-state (secondary) creep
prior to the modern-day work on unified viscoplasticity models, and he later extended the
model to include primary creep [6]. However, as indicated later, experimental evidence
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supports the use of unified models in modeling the first two stages of creep as opposed
to a piecemeal approach. In addition, the interaction between creep and plasticity must
be addressed in a unified fashion. Nonetheless, some attention has been given here to
certain material science models that explain nonlinear behavior at the microstructural
level. An understanding of material microstructure is always necessary to develop mul-
tiaxial continuum-level constitutive models. Reaction-rate and power-law formulations
for microstructural constitutive relationships are discussed. The work in developing rhe-
ological viscoelastic constitutive models by Schapery [7] and Findley et al. [8] is briefly
presented since they point the way to the endochronic viscoplastic models that appear
later. The objective of this article is to highlight the genesis of unified time-dependent
viscoplastic models.

Early work by Besseling [9] suggested separate strain rates for plasticity and creep that
were based on partitioning a total strain rate. Specifically, he proposed a one-dimensional
model where the total strain rate could be partitioned as follows:

dεT

dt
=

dεE

dt
+

dεC

dt
+

dεP

dt
(1)

where
εT—Total strain
εE—Elastic strain
εC—Creep strain
εP—Plastic strain
The inelastic components of this expression are as follows:

dεI

dt = Inelastic Strain Rate
= dεC

dt + dεP

dt

=
.
ε

I(
εC, εP, t

) (2)

where the two rates representing creep and plasticity are identified as separate and distinct
deformation mechanisms.

The equations above are associated with microstructural creep mechanisms that are
thermally activated. For materials utilized in fabricating nuclear reactor components that
function as moderators, e.g., graphite, additional creep mechanisms arise that are activated
by irradiation. As Onimus et al. [10] point out, Equation (2) should be modified as follows:

dεI

dt = Inelastic Strain Rate
= dεP

dt + dεthermal−creep

dt + dεirradiation−creep

dt + dεswelling/growth

dt

=
.
ε

I
(

εP, εthermal−creep , εirradiation−creep , εswelling/growh , t
) (3)

Expressions for creep strain rates are identified as εthermal-creep, εirradiation-creep, and
εswelling/growth in publications cited above or based on models established through material
science concepts. The forms for creep strain rates based on material science are dependent
on various facets of a material microstructure. For example, dislocation mechanics include
models for dislocation glide, dislocation creep, and diffusional flow. These mechanisms
and the attending creep strain models are discussed in the following section.

For the plasticity component of Equation (2), incremental theories are deployed. Clas-
sic plasticity theory poses a constitutive relationship that is independent of the rate of
loading. However, plasticity is path-dependent, and load sequences are often represented
as a process evolving in time. Hence, classical plasticity theories are posed on an incremen-
tal basis, and Equation (2) would be better stated in a differential format:

dεI = dεP + dεthermal−creep + dεirradiation−creep + dεswelling/growth (4)
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Equation (4) can be easily integrated with respect to time provided that the load path
considered can be expressed as increments of time. Details associated with incremental
plasticity models are presented in a later section.

The modeling of plasticity and creep can be accomplished separately, or represented
as a single rate, i.e., as a unified model. Nonunified models allow creep strain to be rate-
dependent, but plastic strains on the other hand are rate-independent. Alternatively, in
unified constitutive models, creep and plastic strains are represented by a single inelastic
strain measure that is considered inherently rate-dependent. Nonunified models lack
the ability to predict interactions between creep and plasticity, e.g., ratcheting (cyclic
creep) and stress relaxation. Experimental evidence such as accumulated creep strain
affecting the size of the threshold (yield) surface and limited creep strain recovery during
the unloaded periods accompanied by significant reductions in the resistance to creep
upon subsequent reloading have been observed that cannot be captured by nonunified
models. Jaske et al. [11] as well as Pugh and Robinson [12] have pointed out that the
behavior of metallic alloys under cyclic load at elevated service temperatures is indicative
of an interaction going on between the creep and plasticity components of Equation (2).
Many authors, including Robinson [13–21] have pointed out that separating creep and
plasticity into distinct strain rates as is performed in nonunified models leads to an inability
to capture the interactive behavior exhibited experimentally. Phenomenologically based
unified creep–plasticity interaction models were developed from theoretical frameworks
based on a single inelastic rate

.
ε

I . The unified manner of representing a constitutive
relationship enables a comparison of various aspects of the model to nonlinear behaviors.
The details of a number of these unified models are presented later.

The dichotomy between classical mechanisms (plasticity and material science creep) as-
sociated with Equation (2) and unified modeling approaches is presented in Figure 1. In that
overview figure, inelastic constitutive models are first segregated into three sub-categories:
models that explain nonlinear behavior at the microstructural level, time independent
classic plasticity models, and time-dependent unified models. The models where the time-
dependent inelastic strain is derived from a single potential or a single integral function are
classified as unified models.
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Plasticity, as well as thermally activated material science creep models, and creep mod-
els based on mechanism activated by irradiation are discussed separately in the following
two sections for historical completeness. The remainder of the article primarily focuses on
unified viscoplasticity models where creep and classical plasticity behavior are considered
the result of applied boundary conditions instead of separable rates representing distinct
physical mechanisms. The existing models for a unified strain rate (e.g., Robinson et al. [13–21],
Chaboche et al. [22–24], Bodner et al. [25–35], Miller et al. [36–48] and Walker et al. [49–51])
are based on constructs involving internal state variables that capture several inelastic hard-
ening behaviors. Chan et al. [52], as well as Allen and Harris [53], provide overviews of the
viscoplastic models just mentioned.

There are micromechanics models for polymer composite material systems such as the
models proposed by Chamis [54]. Here, each component of the microstructure is treated as
a continuum. These models are discussed elsewhere, and the rest of the article focuses on
models that capture the macro-level response of materials exhibiting inelastic behavior.

2. Early Efforts in Modeling Creep Behavior

The Norton–Bailey [3,4] creep model mentioned earlier is a power law formulation
that is not associated with a specific microstructural mechanism. In this effort, the Norton–
Bailey [3,4] model is categorized as a material science model and is included with other
microstructural creep strain models since the model is deployed both at the microstructural
level and the continuum level (although the model is one-dimensional). The model was
derived predicated on the assumption that creep strain is functionally dependent on stress,
time, and temperature. The functional form for the Norton–Bailey [3,4] creep model is
based on the following separable formulation

εC = F1(σ)F2(t)F3(T) (5)

Several forms for F1 can be utilized, including Norton’s [3] model

F1(σ) = Aσm (6)

an exponential format

F1(σ) = Cexp[
σ

σ0
] (7)

and a hyperbolic sine format

F1(σ) = sinhm[
σ

σ0
] (8)

The hyperbolic function is convenient since at the limits for low-stress values, the func-
tion approaches values given by the power law, and at high-stress values, the hyperbolic
takes on values nearly equal to the exponential function.

The time function F2(t) is also formulated as a power law in time

F2(t) = atn (9)

Equation (9) is attributable to Bailey [4]. Finally, the temperature function is stipu-
lated as

F3(T) = F3[exp(
−Q
RT

)] (10)

In this expression,
Q = activation energy
R = Boltzmann’s constant
Functions F2 and F3 are combined such that

F4(t, T) = α[t exp(
−Q
RT

)] (11)
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and
εC = Aσm[t exp(

−Q
RT

)]n (12)

Under isothermal conditions (T = constant),

εC = Aσmtn (13)

Under the assumption that the length of exposure time to temperature and stress level
are the major factors affecting the creep strain rate,

εC = F1(σ)F2(t)
= {Aσm}{αtn}
= αAσmtn

(14)

Taking a time derivative of Equation (14) leads to a rate formulation of the Norton
creep law

dεC

dt
=
∼
Aσmt

∼
n (15)

Note that the constants
∼
A = αAn (16)

and
∼
n = n− 1 (17)

are assumed to be temperature-dependent.

3. Creep Strain Models Based on Microstructural Mechanisms

When considering continuum-level deformation for polycrystalline materials, it is
important to be cognizant of the microstructural mechanisms driving the deformation
processes. There are two primary mechanisms that drive creep strain rates. The first
mechanism is diffusional creep (Coble creep [55], as well as Nabarro [56] and Herring [57]
creep) where vacancies are driven through the crystal lattice of the material. The second
process involves the translation of dislocations through the atomic matrix of the material
(see Weertman [58]). For either mechanism, the overall stiffness of the material decreases
with time. Stress–strain curves that are initially linear in the elastic range bend over as
total strains accumulate. The decrease in stress represents the hardening of the material
when subjected to monotonic loads. The decrease in strain rate to a steady-state value in
a material subject to a constant load represents two material mechanisms competing and
eventually balance a hardening response with a recovery response.

Figure 2 represents a generic deformation mechanism map. In this figure, dominant
microstructural mechanisms are mapped to various load and temperature regimes. At low
homologous temperatures, i.e., <(0.5) T/Tm, where T is the service temperature and Tm
is the material melting temperature, deformations are primarily elastic until high-stress
regimes are attained. At moderate temperatures and high stress, dislocations tend to glide
on slip planes. Contrasted with other diffusional creep mechanisms, Coble creep [55] is
similar to Nabarro–Herring creep [56,57] in that both are dominant at lower stress levels
and higher temperatures. Dislocation glide mechanisms occur at higher strength levels at
all temperatures. Coble creep [55] occurs through the diffusion of atoms in a polycrystalline
material along grain boundaries. At elevated temperatures, dislocation mechanisms are
aided by vacancy diffusion. Vacancy diffusion also causes deformations without any
dislocation movement involved.
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Models exist that attempt to bridge the gap between microstructural-level modeling
and continuum-level modeling. These include the rate-dependent deformation models of
Ponter and Leckie [59]. Here, a simple constitutive framework incorporates hardening and
recovery mechanisms associated with dislocation motion. Similarly, Rice [60] models dislo-
cation motion using the normality structure which has served many times as a fundamental
principle in continuum-level macroscopic constitutive laws. In Rice’s [60] model the local
microstructural rearrangements proceed at a rate governed by a thermodynamic force.

4. Irradiation-Induced Creep

Another form of plastic deformation is irradiation-induced creep, which occurs in
materials exposed to radiation under applied stress. Irradiation-induced creep occurs
at temperatures well below 50% of the melting temperature of a material because the
collisions of the radiation with the lattice atoms produce the defects (self-interstitials
and lattice vacancies) that allow creep to occur rather than relying on thermal lattice
vibrations to produce the creep. The mechanisms of diffusional creep (i.e., Coble creep [55]
and Nabarro–Herring creep [56,57]) are not enhanced by irradiation [61,62]. Instead,
the primary mechanisms of irradiation creep are the motion of dislocations, i.e., either
enhanced climb or climb and glide of dislocations, and the preferential formation of loops.
Stress-induced preferential absorption (SIPA) occurs when the climb of dislocations is
accelerated by preferential absorption generally of interstitials. Stress-induced climb and
glide (SICG) occurs when irradiation defects allow dislocations to climb over pinning
points and the subsequent glide is the source of the creep strain. When the applied stress
affects the climb velocity (i.e., SIPA with SICG), the resulting behavior is referred to as
the preferred absorption glide (PAG). Stress-induced preferential nucleation (SIPN) occurs
when dislocation loops nucleate in the crystal structure with a preferred orientation.

Creep of alpha-uranium was observed in the 1950s [63]. The mechanism proposed
was that internal stresses due to anisotropic growth of the crystals, when combined with
externally applied stress, can overcome the yield strength, thereby causing plastic de-
formation. However, Hesketh [64] instead proposed a mechanism that depends on the
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anisotropic growth of crystals, the SIPN of dislocation loops, and the climb of the SIPN
loops. In austenitic stainless steels and nickel-based alloys, primary creep is mainly due
to dislocation slip (SICG) that is reduced as the material hardens (increased pinning point
density as fluence increases), while steady-state creep is thought to be primarily due to
SICG and SIPA, but the mechanism can change as experimental parameters change [62].
Ferritic–Martensitic steels undergo creep, but SIPA and PAG are not sufficient to describe
the total creep, so it is accepted that SIPN is also an active mechanism [62]. In zirco-
nium alloys, irradiation creep is thought to be due to both thermal dislocation slip with
irradiation-enhanced climb and SIPA. Cubic silicon carbide (3C-SiC) irradiation creep has a
stress exponent near one, indicating a SIPA mechanism, but microscopic studies have also
observed an increase in the number of loops in the {111} planes, indicating some influence
of SIPN [65].

Irradiation creep in graphite has been studied quite heavily, yet there is still only
limited agreement on the microstructural mechanisms. Primary creep in graphite is satu-
rated around one elastic strain unit, defined as applied stress divided by Young’s modulus
and is primarily thought to be driven by dislocation bowing [66–68] and interactions with
pinning points. The secondary creep (i.e., steady state) mechanism was originally proposed
to be driven by anisotropic grain growth, but that was shown to not be the case when
boron additions changed the rate of grain growth but did not change the creep rate [69].
The long-accepted mechanism is the pinning–unpinning mechanism proposed by Kelly
and Foreman [70]. Strain in this mechanism is driven by dislocation glide, and the rate is
controlled by the creation and destruction of 2-4 atom clusters that act as the dislocation
pinning points. With this being a glide-based mechanism (SICG), it should have a stress
dependence of two. Newer published irradiation creep results [66,71–73] suggest a SIPA
mechanism. Results from Kennedy in the 1960s [66] showed that changing stress during
irradiation did not affect the primary creep strain, which provides additional results that
disagree with the pinning–unpinning mechanism and instead support a SIPA model.

5. Time-Independent Models Based on Continuum Principles: Plasticity

Historically, the classic plasticity models with flow theories and hardening laws
have been proposed to model material time-independent inelastic behavior, i.e., plasticity.
The theoretical basis for yielding under complex states of stress at a continuum level
stretches back to Coulomb’s [74] effort in defining failure using his nascent concepts in soil
mechanics. Yielding in the classic plasticity sense had its origins in the nineteenth century
when Tresca [75] conducted a series of punching and extrusion experiments that led him
to postulate that yielding occurred when the maximum shear stress at a point reached a
critical value.

Von Mises [76] developed a mathematically based yield criterion, which was later
explained by Henry [77] as plastic yield when the elastic shear strain energy at a point
reached a critical value. Von Mises [76] separately published equations for rigid-perfectly
plastic materials, which resembled Levy’s [78] work. In 1913, Von Mises [76] proposed his
widely accepted J2 yield criterion that stipulated that yielding took place when critical shear
values were attained on octahedral planes (see Nadai’s work [79]). Huber [80] had earlier
published essentially the same criterion. In 1948, Hill [81] proposed the first anisotropic
yield criterion. Duwez [82] established a stress–strain relationship for plasticity in single-
crystal materials at the microstructural level. In that work, the existence of a “secondary
structure” in crystals was adopted, where the material is assumed to be composed of N
parallel sub-elements. This model was later modified by Besseling [9].

In Figure 1, time-independent plasticity theories are loosely grouped into models
based on flow theories and endochronic theories. Plastic flow theories [83–85] laid the
foundation for the formulation of constitutive equations for plasticity modeling. The 1940s
saw the advent of the classical theory; Hill [81], Koiter [83], Prager [84], and Drucker [85],
among others, brought together many fundamental aspects of the theory into a single focus.
The endochronic theory of plasticity, an intrinsic time theory proposed by Valanis [86–89]
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without a yield surface, was able to capture the phenomena of cyclic hardening, initial
strain problems, and cross-hardening, unlike classical plasticity. Here, the same constitutive
equation is applied for loading and unloading processes; Bazant and Bhat [90] showed that
endochronic theories can capture inelasticity and failure in concrete.

Models formulated at a continuum level in a multiaxial setting are useful to engineers
designing components in high-temperature applications (nuclear reactors, combustor sec-
tions of jet engines, etc.). In continuum theories, stress, strain, and other field quantities are
posed at a mathematical point. In applying constitutive models to structural components
with internal microstructures, a continuum point must be reinterpreted as a continuum
element of finite dimension. The continuum element must be small enough to be nearly
homogenous in the presence of stress and strain, as well as temperature gradients, but
large enough relative to the microstructure being homogenized. Based on these concepts
and well-chosen phenomenological experiments, a system of constitutive relationships
can be formulated in support of conducting structural analyses for engineering design.
Thus, in this section and succeeding sections, constitutive models have been reviewed that
help design components, not the material. Microstructural constitutive models focus more
on designing the material. At the continuum level, one designs with the material. At the
microstructural level, one designs the material.

Deformation analyses proceed on an incremental basis in classic theories of time-
independent plasticity. One calculates increments in plastic strain (dεP

ij). There are three
essential elements to a work hardening-based incremental inelastic constitutive law. First is
the existence of a threshold function delineating elastic states of stress—a yield criterion.
The threshold function typically serves as a potential function. Consider the yield criterion
attributed to Tresca [75], von Mises [76], and Hill [81], all of which are stipulated at the
continuum level. The second element is a hardening rule, also referred to as an evolutionary
law. A hardening rule mathematically describes the evolution of a potential function
(i.e., how a material “hardens”) to accommodate the effects of inelastic deformation. The
third element is the flow rule. Mendelsohn [91] as well as Chen and Han [92] describe
the link between incremental plastic strain and incremental changes in the state of stress
captured by the flow rule. Inelastic modeling is primarily based on two types of flow rules.
The first is referred to as the associated flow rule, where the threshold function behaves
like a potential function. Historically constitutive models for ductile metals are modeled
based on this associated flow rule (see Equation (18) below).

The second type is known as a non-associated flow rule, where the inelastic strain rate
vector is not normal to the threshold surface. Associated flow rules are more prevalent, so
this type of constitutive model will be focused on.

Since classical time-independent incremental plasticity models assume that increments
in plastic strains (dεP

ij) are normal to a yield surface. Flow rules, often referred to as
normality rules, take the following form:

dεP
ij = λ

(
∂ f

∂σij

)
λ > 0 (18)

Thus, an increment in plastic strain is coincident with the gradient of the scalar-valued
flow potential function, f. Here, f represents the yield function that is dependent on the
stress tensor σij such that

f = f (σij, Hα) (19)

and it incorporates a state variable vector Hα. This vector can contain a single state variable,
i.e., K, for isotropic hardening; six state variables associated with kinematic hardening and
represented by the symmetric tensor αij; or seven if both isotropic hardening and kinematic
hardening are present, i.e.,

Hα= 1, · · · , 6 = H (K, αij) (20)



Materials 2023, 16, 3564 9 of 30

A loading rule must be established before inelastic (plastic) strains can be quantified.
The loading rule determines whether inelastic (plastic) strains occur along an incremental
load path. Since the yield (threshold) function identifies elastic states of stress, stress states
outside of the surface of the threshold function are mathematically inaccessible. States of
stress within the threshold surface represent elastic states of stress. The inaccessible states
of stress outside the boundary of the yield function can be subsequently absorbed within
the surface by evolving the boundary of the threshold function as plastic strains accumulate.
This evolution process eventually migrates to the functional boundary sufficiently so that
stress states beyond the boundary are subsumed. The threshold-potential function therefore
must be dependent on stress, as well as the appropriate internal state variables.

A change in the stress state that does not change the inelastic state variable vector Hα

corresponds to unloading into or around (tangent to) the elastic stress region. As unloading
takes place,

df < 0 (21)

and the value of the components of the inelastic state variable vector scalar does not change.
When a material is loaded such that a state of stress is on the inelastic threshold surface
(f = 0) and an increment in stress, dσij, is applied such that(

∂ f
∂σij

)
dσij > 0 (22)

then the increment in stress gives rise to an increment in inelastic strain and a corresponding
change in the inelastic state of the material, i.e.,

dHα 6= 0 (23)

This change in inelastic state corresponds to the material hardening and in turn
impacts the stress–strain curve. The presence of inelastic strains can be detected through
the nonlinear behavior of the stress–strain curve or by unloading the material and noting
the permanent strains. In general, the change in an inelastic state variable follows the
following tensor expression

dHα = Gijα dεP
ij (24)

The incremental stress dσij evolves the threshold function. The inelastic behavior of a
material is best described mathematically by

dε
p
ij 6= 0

dHα 6= 0


f
(
σij, Hα

)
= 0

and(
∂ f

∂σij

)
dσij > 0

(25)

or

dε
p
ij = 0

dHα = 0



f
(
σij + dσij, Hα

)
< 0

or
f
(
σij, Hα

)
= 0

and(
∂ f

∂σij

)
dσij < 0

(26)

Specific forms for dεP
ij and dHα depend on the potential function adopted and the

hardening laws assumed for the material as inelastic deformations take place. Note that
the form of the inelastic potential function can be utilized to extract different types of
anisotropic behavior from a plasticity model, as well as different behavior in tension
and compression (see Green and Mkrtichian [93]). The theoretical framework for classic
plasticity provided above serves as a frame of reference for the time-dependent viscoplastic
models discussed next.
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6. Time-Dependent Isotropic Unified Models: Viscoplasticity

Predicting time-dependent stress depends not only on the current strain state but also
on the previously accrued strains, i.e., the material strain history. Two approaches can be
taken in characterizing nonlinear hereditary stress–strain behavior. They involve solving
either a system of differential equations or a system of integrals. The first, discussed in detail
here, is referred to as internal-state variable representation. Horstemeyer and Bamman [94]
provide an excellent historical overview of the internal state variable approach to modeling
constitutive behavior. The state variable method develops a system of differential equations
that quantify an inelastic strain rate as well as differential equations that govern the
evolution of the state of the material during deformation. The viscoplastic model based
on a system of differential equations requires a flow rule, an evolutionary law to allow for
changes in the state variables adopted, and thermodynamic stability constructs. Adopting
a state variable representation is a convenient and flexible thermodynamic format for the
description of nonlinear hereditary behavior. The second approach develops a system
of integrals to account for stress–strain history. The integral approach, or endochronic
theory, represents the inelastic behavior of materials using the notion of intrinsic time.
The formulation of a flow rule in endochronic models is not predicated on the use of flow
potentials. A third approach is a hybrid approach based on characterizing specific changes
in a material’s microstructure during the deformation process. Finite element analysis is
employed to develop a representative volume element (RVE) at the microstructural level.
Models based on these RVEs can then be used to analyze components at the continuum
level once the RVE model is constructed. However, the microstructural models tend to
ignore recovery mechanisms that appear explicitly in continuum-level modeling. With the
RVE approach, an Arrhenius function and reaction rate theory is applied to a slip process of
choice to quantify a strain rate. This third approach will be addressed later in the discussion
on how to bridge microstructural concepts and continuum concepts.

As Ponter and Leckie [59] point out, the internal state variable method mirrors many
elements of classical plasticity presented in the previous section. They also indicate that
internal state variable models are a marriage of classical plasticity concepts with the
Norton [3] creep law outlined earlier. A flow law is required to quantify the inelastic
strain rates. Rice [60] outlined thermodynamic justification for the existence of a flow
potential from which inelastic strain rates are obtained. Ponter and Leckie [59] generalized
Norton’s [3] creep law to viscoplasticity for multiaxial states as

dεI
ij

dt
=

∂

∂σij

{
φn+1

n + 1

}
(27)

where the bracketed term represents Rice’s [60] scalar flow potential function, denoted
as Ω in the literature. An evolutionary law (see below) is needed to characterize the
change in the internal state variables used to characterize the material microstructure. A
third element of an internal state variable model is a criterion stipulating when inelastic
deformations will take place. Here, it will be referred to as a threshold function. The
threshold function delineates regions of elastic behavior and inelastic behavior in the
six-dimensional stress space. For viscoplastic constitutive models based on the internal-
state variable method, the threshold function can serve as a flow potential function in
Equation (27) above. Threshold functions are key in deriving growth laws that capture
various types of hardening mechanisms (e.g., isotropic, kinematic, irradiation) using the
internal state variables adopted for a particular model.

The governing differential equations of an internal state variable formulation for
viscoplasticity are associated with the normality structure of the threshold potential function
Ω. Consider the following the dependence for the threshold potential function suggested
by Ponter and Leckie [59]:

Ω = Ω (F, G) (28)



Materials 2023, 16, 3564 11 of 30

where F is dependent on both the stress state (σij) and the inelastic state variable (αij), i.e.,

F = F (σij, αij) (29)

The second function G
G = G (αij) (30)

is only dependent on inelastic state variables, which are represented by a second-order
tensor. Now

Ω = Ω (σij, αij) (31)

and the flow law according to Rice [60] is

.
ε

I
ij =

∂Ω

∂σij
(32)

Ponter and Leckie [59] stipulated

.
αij = −

1
h
(
αij
) ∂Ω

∂αij
(33)

where h is a scalar-valued function of the internal state variables only. Equations (32) and (33)
stipulate the normality structure of the inelastic strain rate and the rate of change in the
inelastic state variable with the threshold potential function Ω.

Based on the dislocation mechanics work of Orowan [95], creep is a competitive
process between work hardening, where dislocations in the microstructure interact and
local dislocation densities increase and dynamic recovery mechanisms reduce the density
of dislocations. Dynamic recovery is a thermally activated mechanism in which immobile
dislocations that have piled up are released and the stored energy in the microstructure is
diminished. This release corresponds to an obvious decrease in dislocation density. When
these two mechanisms balance, the result is a steady state condition. Mitra and McLean [96]
suggested how to verify Orowan’s [95] competing process concept experimentally. From a
uniaxial stress perspective consider

σ = σ (t, ε) (34)

Taking the differential of this relationship leads to

dσ =
(

∂σ
∂t

)
dt + h

(
∂σ
∂ε

)
dε

= −Rdt + Hdε
(35)

Here, R is the magnitude of the recovery rate and H is a work-hardening coefficient.
Note that stress is constant when the material undergoes steady state creep. Thus, for
steady state creep conditions,

dσ = 0 (36)

As a result, the following relationship can be obtained from Equation (35)

0 = −Rdt + Hdε(
∂ε
∂t

)
steady
state
creep

= R
H (37)

This relationship was originally proposed in Orowan [95]. It took several decades
of experimental work to produce the data that support the mathematical framework in
Equation (37). The reader is referred to the seminal efforts of Mitra and McLean [96] as
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well as others (identified in Gan’s [97] overview) for the experimental data supporting
Equation (37). In general, the experimental work carefully measured creep strain rates, the
rate of recovery (R), and the hardening coefficient (H) over a range of temperatures and
applied stress.

Observations are made in Walker [50] concerning the growth and recovery of the
internal state variables due to hardening in the presence and absence of inelastic defor-
mation, respectively. As the growth of the internal state variable due to hardening is
dependent on the presence of inelastic deformation, only recovery and annealing changes
in the internal state variable are possible during the elastic unloading phase of a thermo-
mechanical cycle. Freed and Robinson [98], Freed and Chaboche [99], and Arnold and
Saleeb [100] provide thermodynamic rationales as to the forms of the evolutionary laws
for internal state variables. The evolutionary models, along with the flow equations for
inelastic strain rate can be utilized to obtain accurate theoretical solutions for a wide variety
of time-dependent boundary value problems posed in elevated temperature environments.
A general multiaxial formulation for an internal state variable evolutionary law utilized in
unified viscoplastic theories takes the following form:

dαij

dt
= h

(
αij
)dεI

ij

dt
− r
(
αij
)
aij (38)

Given the relationships suggested by Rice [60] in Equation (32), and in Equation (33)
suggested by Ponter and Leckie [59], obtaining specific formulations for Equation (38) is
strictly dependent on the expression used to characterize the flow potential Ω. For each of
the viscoplastic models presented in the subsequent sections, the expression for Ω is identi-
fied. Viscoplastic models constructed based on flow potentials allow for the convenient
use of tensorial invariant theory to extend the models and capture a variety of mechanical
responses, e.g., anisotropic behavior and different behavior in tension and compression.

Just as in classical plasticity, the unified viscoplastic models reported on here satisfy
Drucker’s [85] postulates. In addition, viscoplastic models can satisfy Ponter’s inequali-
ties [101,102], which are stipulated for time-dependent constitutive models. The postulates
and inequalities relate to thermodynamic admissibility restrictions outlined in Arnold
and Saleeb [100].

7. Unified Viscoplasticity Models Based on Potential Functions

Fundamentally, the unified approach treats all aspects of inelastic deformation (plas-
ticity, creep, and stress relaxation) with a consistent set of flow equations and evolutionary
equations that track the time-dependent behavior of internal state variables. Viscoplastic-
ity models have been used in the nuclear industry to design reactor components. In the
aerospace industry, viscoplastic models are used to design combustor section components
and leading-edge technologies in hypersonic applications. This approach is robust and has
found widespread use.

Allen and Harris [53] point out that several of the viscoplastic constitutive theories
they surveyed had similar elements. The models utilize a set of internal state variables that
provide locally averaged representations of microstructure such as dislocation rearrange-
ment and grain boundary sliding. The following multiaxial models make the continuum
assumption. Unified constitutive equations can be characterized as mathematically “stiff”.
The system of coupled partial differential equations used to solve boundary value problems
with viscoplasticity models depends on variables that are susceptible to large changes over
small time increments of the independent variables. This “stiff” behavior occurs usually
with the onset of a significant amount of inelastic strain in the load step and is due primarily
to the nonlinear nature of the functional forms.

7.1. Robinson’s Model

Robinson’s model [12–21] is a unified viscoplastic model based on potential function.
This model has well-intended similarities to the structure of the classical plasticity model
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discussed earlier. The Robinson [15] model possesses a yield criterion (flow potential), and
it was originally proposed in a full multiaxial formulation. Under isothermal conditions,
the flow potential is dependent on stress, and if kinematic hardening is assumed, the state
variable is taken as a deviatoric second-order tensor, i.e., aij. For this model,

Ω = K2
[(

1
2µ

) ∫
f (F)dF +

(
R
H

) ∫
g(G)dG

]
(39)

where µ, R, H, and K are material constants. As the work of Bridgman [103] and others
indicates, inelastic deformation is essentially unaffected by the hydrostatic component of
the stress state. Robinson [15] originally took stress dependence in terms of the deviatoric
components of the applied stress

Sij = σij −
σkkδij

3
(40)

and similarly, the second order deviatoric state variable tensor mentioned is

aij = αij −
αkkδij

3
(41)

Robinson further identified an effective stress as

Σij = Sij − aij (42)

The dependence upon the deviatoric effective stress Sij and the deviatoric internal
state variable αij are introduced through the scalar function

F = F (Σij )
= F (J2)

(43)

where
J2 =

1
2 ∑

ij
∑
ji

(44)

Similarly,
G = G

(
aij
)

= G(J′2)
(45)

where
J′2 =

1
2

aijaji (46)

Finally, for the isotropic version of Robinson’s model, the function F takes the follow-
ing form

F =
J2

K2
− 1 (47)

and

G =
J′2
K2 (48)

F serves as a threshold function. Inelastic strains occur only for states of stress where F
is greater than zero. The threshold stress K is generally a scalar state variable and accounts
for isotropic hardening (or softening). Note that the concept of a threshold function was
introduced by Bingham [104] and later generalized by Hohenemser and Prager [105]. The
threshold function is also referred to as the Bingham–Prager threshold function.
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Taking the partial derivative of Ω with respect to σij as indicated in Equation (32) with
the integral definition of Ω identified in Equation (39) leads to

2µ
dεI

ij

dt
= f (F)∑

ij
(49)

Robinson [15] then specialized f (F) as a power law function

f (F) = Fn (50)

where n is an additional material constant. Thus,

2µ
dεI

ij

dt
= Fn ∑

ij
(51)

Similarly, taking the partial derivative of Ω with respect to the internal state variable
aij as indicated in Equation (49), the following evolutionary law is obtained for the change
in state

daij

dt
= h(G)

dεI
ij

dt
−
(

R
H

)
h(G)g(G)aij (52)

Robinson [15] then specialized h(G) as

h(G) =
H
Gβ

(53)

and

g (G) = Gm (54)

Thus
daij

dt
=

(
H
Gβ

)dεI
ij

dt
−
(

R
H

)(
H
Gβ

)
Gmaij (55)

Equation (55) is consistent with the physically based and well-accepted Bailey–Orowan
theory [95,106]. The equation suggests that two competing mechanisms are present that
control the evolution of the inelastic state. The first term represents a work-hardening
mechanism that proceeds with inelastic strain. The second term represents a recovery
process causing a softening that competes with the hardening term. When these two terms
balance, the material attains a steady inelastic state.

Equations (51) and (55) comprise the multiaxial statement of the isotropic version of
the Robinson viscoplastic constitutive model. The form of the flow potential function above
is specialized to a J2 material. Several modifications, generalizations, and improvements of
the original Robinson approach have been developed over the years, including the works
by Duffy [107] and Saleeb et al. [108].

7.2. Chaboche’s Model

The Chaboche [22–24] model is a unified viscoplastic model also based on a potential
function. This model includes isotropic and kinematic hardening state variables to capture
the Bauschinger effect and cyclic hardening. Here, there are three internal state variables: a
second-order tensorial back stress αij to account for kinematic hardening and the other two,
yield strength Y and drag stress K, to account for isotropic hardening.

f =

√
3
2
(
Sij − αij

)(
Sij − αij

)
− R− K (56)
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Note that K represents the yield stress, R is an isotropic hardening state variable, and aij
is a back stress (the kinematic state variable). As Chaboche [23] points out, there is a choice
in the formulation of the viscoplastic potential Ω through this function f. Equation (56) is a
J2 for f. Other tensorial invariants can be used to elicit different responses out of the model
(see Duffy [107] and Saleeb et al. [108]). In general, the Chaboche [23] model is presented
in a Norton [3] power law formulation as follows:

Ω =

(
K

n + 1

)(
f
K

)n+1
(57)

Along with the deviatoric Cauchy stress introduced in the previous section, Chaboche [109]
utilizes a deviatoric back stress

aij = αij −
αkkδij

3
(58)

The inelastic strain rate is obtained from a viscoplastic potential function as follows:

dεI
ij

dt = ∂Ω
∂σij

= ∂Ω
∂ f

∂ f
∂σij

= λ
∂ f

∂σij

(59)

where the partial derivative of f with respect to σij is a gradient to the inelastic flow surface
defined by f. The last form is recognized as a Prandtl–Reuss equation [110,111], where the
multiplier λ is the magnitude of the inelastic strain rate vector. The direction of the gradient
vector and the associated magnitude of the gradient vector are directly dependent on the
choice of the formulation for Ω and f. Given the Norton power law formulation for Ω and
a J2 yield function, the flow law takes the form

dεI
ij

dt
=

K2

2µ


√

3
2
(
Sij − αij

)(
Sij − αij

)
− R− K

K


n

3
2
(
Sij − αij

)√
2
3
[ 3

2
(
Sij − αij

)][ 3
2
(
Sij − αij

)] (60)

All three inelastic state variables evolve through competitive processes that include
work hardening, deformation-induced dynamic recovery, and thermally induced state
recovery. The evolution of the internal state can also include terms that vary linearly with
the external variable rates. For isotropic hardening, the evolutionary law for the single-state
variable (K) is

dK
dt

= b
.
p(Q− R) (61)

where
.
p =

√(
2
3

)dεI
ij

dt

dεI
ij

dt
(62)

where Q and b are, respectively, the hardening saturation state and the rate of convergence
to this state. These are parameters used to define the application of Chaboche’s model to
strain range partitioning in fatigue.

For non-isothermal kinematic hardening,

daij

dt
=

(
2
3

)
C

(
dεI

ij

dt

)
− γaij

.
p− γ

τ(T)

(√aijaij

M

)m−1

aij (63)

For isothermal kinematic hardening,

daij

dt
=

(
2
3

)
C

(
dεI

ij

dt

)
− γaij

.
p (64)
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This is a formulation of an evolutionary law for a tensorial state variable that is similar
to Robinson’s [15] given in Equation (52).

8. Viscoplastic Constitutive Models Not Based on Potential Functions

For models described in this subsection, the original formulations for the model were
not presented as a derivation from a viscoplastic flow potential function. Subsequent
presentations have included flow potentials for some of the models (see, for example,
Kim and Oden [112]). Although functions are used to delineate elastic regions of the
stress space from inelastic regions, the functions were not utilized to express a potential
normality feature.

8.1. Bodner’s Model

Starting with Bodner’s early work [25], a major emphasis in the 1980s focused on
combining the materials science flow rules for creep (specifically Norton’s [3]) with flow
rules from plasticity. This effort forced different modeling approaches together, and internal
state variable theory would join the concepts. Internal state variable theory gained influence
as researchers embraced unified-creep-plasticity theories.

Bodner and Partom [26] proposed a flow rule with roots in classical plasticity and
influenced by phenomenological observations, but which does not involve the specification
of a yield surface. This theory is offered as a means of characterizing the isotropic hardening
of certain materials. As in Chaboche’s model [109], where an invariant of the inelastic strain
rate is utilized, Bodner et al. [32] adopt a Prandtl–Reuss [110,111] type of flow law:

dεI
ij

dt
= λSij (65)

Squaring both sides of Equation (29) leads to

dεI
ij

dt
dεI

ij
dt = DI

2
= λ2 J2

(66)

or the second invariant of inelastic strain rate is equal to the second invariant of deviatoric
stress multiplied by the constant λ2, i.e.,

DI
2 = λ2 J2
= F(J2, T, Zk)

(67)

Here, T is temperature and Zk is a vector of inelastic state variables. One of the earliest
forms for the flow law was based on a single state variable, Z, and was intended to capture
isotropic hardening behavior. Specifically,

DI
2 = D0exp

[
−
(

Z2

3J2

)n(n + 1
n

)]
(68)

where D0 is a limiting inelastic strain rate in shear and n impacts strain rate sensitivity, as it
does in all models rooted in Norton’s [3] creep law.

Bodner and Partom [27] postulated that the rate of change in a scalar-state variable
was a function of inelastic work. For steady-state creep, there must be two competing state
variables. Bodner’s model [113] is one of the earliest unified models that captures isotropic
hardening through a nonrecoverable isotropic scalar state variable ZI and a directional
second-order state variable for kinematic (directional) hardening ZD. These state variables
combine linearly:

Z = ZI + ZD (69)
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The evolutionary law for the isotropic state variable is

dZI

dt
= m1

[
Z1 − ZI(t)

]d
.

W I
dt
− A1Z1

[
ZI(t)− Z2

Z1

]r1

(70)

Here, m1 is a hardening rate, and

dWI
dt

= σij

(
dεI

ij

dt

)
(71)

is the inelastic work rate and is a measure of work hardening. The negative part of
Equation (69), representing the first state variable, can be interpreted as dynamic recovery.
It is a thermal or “static” recovery of hardening where Z2 is the stable (minimum) value of
ZI at a given temperature and A1 and r1 are temperature-dependent material constants.

Kinematic (directional) hardening is represented by a second-order symmetric tensor
βij and a second order tensor of direction cosines from the current state of stress, i.e., ZD

takes the form

ZD (t) = βij (t) dij (t) (72)

8.2. Walker’s Model

The Walker model [50] was originally developed in an integral form by modifying
the constitutive relation for a three-parameter viscoelastic solid. Walker [50] points out
that later a differential form of the model was proposed, and this differential format is
presented here. Two state variables ωij and K were introduced into the viscoelastic model
to account for kinematic (directional) and isotropic hardening. The back stress ωij accounts
for kinematic hardening and Bauschinger effects. The isotropic state variable K affects
cyclic hardening or softening in a material undergoing repeated loads.

The Walker model [50] is composed of four rate equations and an exponential function.
The formulation for the inelastic strain rate depends on the applied deviatoric stress tensor,
Sij, and the two state variables ωij and K in the following manner

dεI
ij

dt
=


√

2
3

(
3Sij

2 −ωij

)(
3Sij

2 −ωij

)
K


n

3Sij
2 −ωij√

2
3

(
3Sij

2 −ωij

)(
3Sij

2 −ωij

) (73)

The evolutionary law for the back stress state variable is stipulated as

dωij

dt
=

[
(n1 + n2) +

∂n1

∂θ

∂θ

∂t

]dεI
ij

dt
−
(

ωij −
∼
ωij − n1εI

ij

)[dG
dt
− 1

n2

∂n2

∂θ

∂θ

∂t

]
(74)

where n1, n2, and
∼

ωij are material constants. Here, Θ represents temperature, and G is a
recovery function. Although not given as a rate equation, the current value of the state
variable K depends on the norm of the inelastic strain rate

dR
dt

=

√
2
3

dεI
ij

dt

dεI
ij

dt
(75)

as follows
K = K1 − K2 exp(−n3R) (76)
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In Equation (74), the time rate of the change in the recovery function G is

dG
dt

=

{
n4 + n5[exp(−n6R)]

dR
dt

}
+ n7

(
2ωijωij

3

)m−1
2

(77)

The model parameters n3, n4, n5, n6, n7, K1, K2, and m are material constants. All
material constants in this model are considered temperature-dependent. See Cassenti [114]
for details regarding temperature effects impacting the constants in the Walker model [50],
the Miller model [36], and the Krieg, Swearengen, and Rhode model [115].

8.3. Miller’s Model

The Miller [36–48] viscoplastic model captures a wide range of physical phenomena,
e.g., cyclic hardening, softening, and saturation behavior. Walker [50], Allen and Harris [53],
and Cassenti [114] point out that in the original Miller model, the inelastic strain rate was
formulated as

dεI
ij

dt
= Bθ′

sinh


√

3J′2
K


3
2


n (

3Sij
2 −ωij

)
√

3J′2
(78)

and the rate of change for the kinematic state variable is

dωij

dt
= H1

dεI
ij

dt
− H1Bθ1

{[
A1

√
2ωijωij

3

]n}
ωij√
2ωijωij

3

(79)

In these two expressions, B, A1, and H1 are material constants. The rate of change in
the scalar state variable is

dK
dt

= H2
dR
dt

{[
C2 +

√
2ωijωij

3
−
(

A2

A1

)
K

]n}
− H2C2Bθ′

[
sinh

(
A2K3

)]n
(80)

In this last expression, A2, C2, and H2, are material constants, and

θ′ = exp
(
−Q∗

kT

)
f or T ≥ 0.6Tm

θ′ = exp
(
−Q∗

kT

)
ln
[
1 + 0.6Tm

T

]
f or T < 0.6Tm

(81)

just as in the Walker [50] model,

dR
dt

=

√
2
3

dεI
ij

dt

dεI
ij

dt
(82)

The hyperbolic sine function was adopted in this model to capture the creep responses
more accurately in a material. Hence, the hyperbolic sine formulation is maintained in the
derivation of the thermal-recovery variables of back-stress and drag-stress evolution laws.
This particular unified model possesses the ability to predict the Bauschinger effect, history
dependence, temperature dependence, anelasticity, and multiaxial response phenomena.
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8.4. Krieg, Swearengen, and Rhode’s Model

The model developed by Krieg et al. [115] is one of the first to incorporate both a drag-
stress and a back-stress term in a viscoplastic model. The inelastic strain rate is identical to
the expression in Walker’s model [50], i.e.,

dεI
ij

dt
=


√

2
3

(
3Sij

2 −ωij

)(
3Sij

2 −ωij

)
K


n

3Sij
2 −ωij√

2
3

(
3Sij

2 −ωij

)(
3Sij

2 −ωij

) (83)

However, the evolutionary law for the kinematic state variable is different:

dωij

dt
= A1

dεI
ij

dt
− A2ωij

√
2ωpqωpq

3

[
exp
(

2A3ωpqωpq

3
− 1
)]

(84)

The current value of the isotropic state variable K is given by the expression

K = A4
dR
dt
− A5(K− K0)

n (85)

The value for K depends on the norm of the inelastic strain rate as follows:

dR
dt

=

√
2
3

dεI
ij

dt

dεI
ij

dt
(86)

No explicit provision exists to model cyclic hardening in either of the state variables.
The constants A1 through A5 appearing in the growth laws for the inelastic strain rate
and the evolutionary laws for the internal state variables do not explicitly depend on the
cumulative inelastic deformation. The linear hardening terms and the recovery term in the
state variable evolutionary equation yield stress–strain curves and hysteresis loops that
exhibit the same tri-linear character as Miller’s theory.

8.5. Hart’s Model

The Hart [116–118] viscoplastic model is one of the early unified creep-plasticity
models based on internal state variables. Hart [118] took a microstructural viewpoint
in developing his continuum model. He was intent on modeling creep behavior based
on experimental evidence of the existence of barriers to dislocations and suggested the
existence of a barrier where dislocations “piled up” and a resistance or friction opposing
dislocation movement within barriers. Here, the relation between the applied stress, the
internal stress, and the glide friction stress was derived as the internal stress was shown to
be linearly proportional to a stored anelastic strain. Hart’s model [118] is unique because
the isotropic state variable, typically represented as K in other viscoplastic models, is
constant. Since this parameter is a constant in the Hart [118] model, it cannot be considered
an internal state variable.

The inelastic strain rate is similar to the expression in Walker’s model [50], i.e.,

dεI
ij

dt
= a∗


√

2
3

(
3Sij

2 −ωij

)(
3Sij

2 −ωij

)
K


n

3Sij
2 −ωij√

2
3

(
3Sij

2 −ωij

)(
3Sij

2 −ωij

) (87)
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where Sij is the applied deviatoric stress tensor and ωij is a kinematic internal state variable.
The parameter a* is a material constant. The evolutionary law for the kinematic internal
state variable is

dωij

dt
= K


dεI

ij

dt
− f


(σ∗)mωij√

2ωpqωpq
3

[
ln

(
σ∗√

2ωpqωpq
3

)] 1
β




(88)

The variable σ* could be considered a secondary scalar state variable since it serves
only to modify the equilibrium stress state variable ωij. The rate of change of this scalar
variable is given by the following expression:

dσ∗

dt
=

C f (σ∗)m+1) σ∗, ωij)

ln( σ∗ωpqωpq√
2
3

)
1
β

(89)

Note that
)
(
σ∗, ωij

)
=
( γ

σ∗

)
(90)

although Delph [119] offered other forms for Equation (94). In the above expressions, λ, µ,
a*, K, n, f, σ0*, β, C, γ, and δ are material constants that depend on temperature. In addition,
σ0* is the initial value of σ*.

9. Integral-Based Viscoplastic Models

The previous viscoplastic models are examples of representing nonlinear constitutive
models using a differential equations format. Whereas differential representation is pre-
sented in the stress space, the integral representation of material behavior is conducted
in the strain/deformation space. As Walker [50] points out, several previous viscoplastic
models have both differential and integral formulations. The endochronic models focus on
the inelastic response of materials through the use of memory integrals known as memory
kernels. Early on, Bouc [120,121] investigated the mathematics of hysteresis, which led to
the study of a class of applicable functional operators. In structural engineering, the Bouc–
Wen [121,122] model of hysteresis is typically employed to describe nonlinear/inelastic
hysteretic systems. In the context of engineering mechanics and structural dynamics, the
Bouc–Wen [121,122] model is a phenomenological model that captures both the linear–
elastic and elasto-plastic restoring forces in systems that exhibit hysteretic phenomena.

The Bouc–Wen [121,122] model is widely employed for modeling the cyclic behavior
of structures in seismic engineering. Specifically, jointed connections dissipate energy
through friction over localized regions near the connection and are known to exhibit
history-dependent or hysteretic behavior. The Bouc–Wen [121,122] model and subsequent
variations are rate-independent hysteresis models. The hysteresis model proposed by
Valanis [87] is a rate-dependent hysteresis model. Both the Bouc–Wen [121,122] and Vala-
nis [87] models are grounded in the mechanical modeling concepts found in viscoelasticity.
Viscous damping can also be formulated by describing the damping force as a function of
the cumulative history of the system, i.e., memory effects. Endochronic models proposed
by Valanis [87] and the Bouc–Wen [121,122] are two important examples of hereditary
models in endochronic theory that are used in modeling nonlinear material behavior. The
Valanis [87] model and its extension to viscoplasticity behavior is focused on here.

Valanis Model

The main principle of a hysteretic model is known as intrinsic time, which relates
the deformation history to a deformation memory component. Initially, the endochronic
theory introduced by Valanis [87] described a nondecreasing function dependent on the
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strain tensor εij or the stress tensor σij. The original Valanis [87] endochronic model is built
on a single integrated framework and is independent of a yield surface. Resembling the
viscoelastic theory, the endochronic theory replaces real time with an auxiliary time variable,
referred to as intrinsic time. The constitutive theory developed on the endochronic theory
characterizes the hysteresis and strain-hardening behavior of some metals independent
of yield conditions, flow rule, or any hardening rules. The intrinsic time-dependent stress
evolution rule for the endochronic theory is derived by a convolution integral between the
strain tensor εij and the scalar function called a memory kernel. According to endochronic
theory, the time-dependent constitutive relationship is defined as

σij(t) = δij

(
λ +

2µ

3

)
εkk(t) +

∫ t

0
G[z(t)− z(ξ)]

{
∂εij

∂ξ
−

δij

3
∂εkk
∂ξ

}
d (91)

When the memory kernel G is an exponential function, an incremental form of en-
dochronic flow rules exists. The exponential formulation is commonly used in standard
deformation analyses and applications. In general,

G[z(t)− z(ξ)] = G1exp{−a1[z(t)− z(ξ)]}+ G2exp{−a2[z(t)− z(ξ)]} (92)

The function z(t) is defined by the following expression

z(t) =
1
β

ln(1− βR(t)) (93)

where

R(t) =
∫ t

0

[
∂θ

∂ξ
f
(

∂θ

∂ξ

)]
dξ (94)

and
∂θ

∂ξ
=

√
2
3

∂cij

∂ξ

∂cij

∂ξ
(95)

Finally,
∂cij

∂ξ
= ∂ijλ

∂εkk
∂ξ

+ 2µ
∂εij

∂ξ
− k

∂σij

∂ξ
0 < k < 1 (96)

And in the expression above, λ, µ, G1, G2, a1, a2, β, and k are material constants.
Several authors, including Bazant and Bhat [90], developed methods of extending

endochronic theory to concrete, clay, and sand using the Valanis [87] model as a point of
departure. This was carried out by introducing intrinsic time to the hydrostatic component
of the stress state and incorporating inelastic dilatancy by way of the shear strain. The
Valanis [86–89] approach to modeling is useful in predicting the nonlinear material behavior
of metal-forming crucibles obtained from a powder-metal-forming process. Locating a
threshold surface for a high-temperature powder metal can be difficult if the powder metal
material is not relatively close to being fully dense. The endochronic theories [123] can
be useful from the standpoint that a yield surface is not required to perform an analysis.
A subsequent version of the endochronic theory was developed by Valanis [124], where
the intrinsic time was redefined as the path length in the inelastic strain space. The
new endochronic model could predict a temporal stress response for several deformation
processes. Wu and Ho [125] introduced another functional form for the dependency
upon the intrinsic time scale to the equivalent deviatoric plastic strain rate and applied
endochronic theory to investigate the transient creep of material.

10. Design Scale

In the preceding discussions, modeling inelastic deformation behavior has been pre-
sented primarily at a continuum level with references to the physics at the microstruc-
tural/mesoscale. Historically, components have been designed at the continuum level,
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and that design viewpoint still dominates today. The continuum-level design approach is
taught to all undergraduate design engineers. However, the continuum-level models must
have a basis in physics and a connection to the mesoscale models that have been presented.
If that connection to physics is not there, then the continuum-level model is a curve fit.
Moreover, if the goal is to improve material performance, then one designs the material at
the microstructural level.

The different microstructures within a material (grain morphology, size distributions,
anisotropy, and crystallographic orientation; the presence of flaws and porosity; the physical
and chemical properties of the intergranular interfaces, etc.) directly influence the perfor-
mance properties of a material. A link between microstructure and continuum can provide
valuable insight into the design of components fabricated from high-performance materials.
It should be noted that the design perspective at which a material/component/system
is modeled strongly depends on the experimental information available. Internal state
variable (ISV) concepts have been formalized as a continuum-level parameter that accounts
for dislocation mechanics. This provides a link to the prediction of the movement of dislo-
cations through a microstructure. System-level parameters such as flexibility and stiffness
coefficients are based on continuum-level parameters and geometry.

Relative to time-dependent behavior, constitutive models are available at both levels
with convenient bridges identified by researchers over the years. In the next section, a
discussion is provided on those links to different design scales.

11. The Bridge from Microstructure to Continuum: Time-Dependent Behavior

ISVs account for local unified creep and plasticity mechanisms driving time-dependent
deformation behavior at the microstructural level. Coleman and Gurtin [126] connected the
behavior of a material under applied load at the microstructural level with the incorporation
of the internal state variables in the material model. Lubliner [127–129] also showed that a
material with a property of fading memory can be described with internal state variables.
The fading memory property refers to the hypothesis that the values of stress are dependent
on recent deformations when compared to the deformations incurred in the distant past.

To capture the damage in materials, Horstemeyer et al. [130] postulated an ISV theory
combining the hardening equations and porosity evolution equations. They pointed
out how a finite element model that explicitly incorporates ISVs can be used to capture
the structure–property relations in the realm of large deformations. A finite element
simulation accommodates different grain sizes, particle sizes, pore sizes, and volume
fractions within each element so that a material with a heterogeneous microstructure can be
represented within the whole mesh. Based on the plasticity/damage approach proposed by
Bamman et al. [131], Horstemeyer et al. [130] made improvements to the theory by adding
ISV equations that introduce grain particle size, particle volume fraction, grain size, pore
volume fraction, and nearest neighbor distances of the particles and pores. This allowed
the use of heterogeneous distributions of microstructures throughout a finite element
mesh. This multiscale modeling approach demonstrated that the standard assumption of
homogeneous distributions of microstructural features such as porosity (i.e., the classical
approach) can lead to erroneous results and conclusions. This is the benefit of using
microstructural property-based ISV theories in conjunction with finite element analysis.

The deformation process in a material generally involves nonuniform fields present at
the microstructural level. As noted earlier, Rice [132] examined the relationship between
inelastic strain and slip displacements. He concluded that the slip within individual grains
may be considered a deformation in the usual continuum sense and that each point of
the inelastic strain can be broken down into a finite set of simple shearing strains of the
respective slip planes and directions.

Thus, at the microstructural level, the material can be considered an ensemble of dis-
tinct entities, e.g., individual grains in polycrystalline metals. Many of the early continuum-
level viscoplastic models adopted the Rice [132] interpretation to make a connection be-
tween the continuum level and the microstructure.
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One must be cognizant of the material evolution caused by dislocation motion taking
place in the material microstructure, and this can be achieved by studying well-accepted
material science models. Blum and Eisenlohr [133] point out that insight obtained from
material science models relative to how dislocation structures and microstructural morphol-
ogy impact deformation behavior should be reflected in continuum-level models. However,
material science models tend to not paint a complete picture in the sense that primary creep
(the transient response) is captured in some material science models and ignored in other
models that focus on steady-state response. Material science models are typically not posed
relative to multiaxial stress states. Several schools of thought exist on the topic of repre-
senting material behavior in a fully three-dimensional setting with microstructural-level
information explicitly incorporated. Consider an approach that employs finite element anal-
ysis to develop a representative volume element (RVE) that captures microstructural level
features. Hill [134] first suggested how to construct models that can be constructed based
on these RVEs that analyze components at the continuum level in a fully three-dimensional
setting. The RVE approach has its merits in that the physics of dislocation mechanics is
captured. Modeling effort using the RVE approach requires an interpretation of boundary
conditions, as well as knowledge of initial dislocation densities.

The ability to observe, characterize, simulate, and then design components at the
mesoscale level requires advances in techniques. For example, to observe how the mi-
crostructure of the test specimen evolves, High Energy X-ray Diffraction Microscopy
(HEDM) is the frontrunner because of its ability to look at the mesoscale structure. This
ability to see with microscale resolution helps in characterizing the polycrystal orientation
and strain states under thermal and mechanicals loads. There is a need to characterize the
initial dislocation field in situ to model from the microstructural level up to the continuum
level. The challenge is in defining the right boundary conditions; in the case of a single
crystal with free surfaces, free boundaries (dislocations are free to vanish when they reach
the surface) are defined or closed boundaries (the dislocations can penetrate the surface)
are defined to capture the behavior of a polycrystal. At the microstructural level, the dislo-
cations used to define the initial dislocation density are randomly distributed with respect
to their length and number. These definitions, integrated over the simulated region, can be
used to derive the global quantities, e.g., the stress–strain curves, dislocation densities, and
local qualities calculated at every step of the simulation. In some regions, these stress states
must be allowed to vary, where the trajectories of the dislocation path and the glide plane
are tracked.

There is a need to bridge the two scales and master the art of assembling structural
and functional microstructural models into larger continuum models that allow for the
design of complex structural components. Polycrystalline materials are among the most
important due to their ability to distribute load via plastic deformation. The two main
mechanisms through which plastic strains are expressed are the flow of dislocations and
twinning, both of which are characterized as in-line defects in crystals. These mechanisms
are understood individually, but their interactions that affect the behavior at the mesoscale
level remain a challenge. For example, elastic moduli are calculated using first principles
but the computation for stress–strain curves, as required by engineers, is a challenge
because of the complicated dislocation mechanics at the atomistic level.

The phenomenological models discussed in earlier sections are continuum-level defor-
mation models. The phenomenological constitutive models based on dislocation theories
incorporate a temporal relationship between continuum level stress and strain. Currently
derived phenomenological models do not explicitly account for the interaction between
material microstructure and the continuum. However, well-thought-out phenomenological
models should in some fashion mirror the evolution of the material at the microstructural
level mathematically. Phenomenological models may not explicitly capture in detail the
material behavior within the microstructure. However, the question should be asked as to
what level should a component be designed at. Should one start the design of components
at the atomic/molecular level, or should one appeal to nanomechanics/micromechanics, or
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the mesomechanics continuum level? Historically, engineering design has been cognizant of
material behavior at the microstructural level, but component designs are executed at a con-
tinuum level. To begin a discussion on bridging these schools of thought, a brief overview
is provided regarding the details supporting representative volume elements (RVE).

There are always gaps between the modeling efforts at one level relative to the next
level. A prevalent philosophy has been that the design engineer designs components using
phenomenological models and continuum mechanics, while material scientists design the
material with microstructural models. The modeling at both levels should have a symbiotic
relationship. Bodner and Partom [27] attempted to bridge the gap between the material
microstructure and the continuum by including certain physical concepts supporting
dislocation mechanics. Others followed by similarly pointing to physical mechanisms that
their continuum models capture. Here, a transitional approach is discussed where the
physics of the microstructure can be captured by a representative volume element. Instead
of pointing to microstructural mechanisms and attempting to mirror the mechanics, the
intent is to explicitly incorporate the mechanisms via a discretized finite element mesh.
This approach evolved with the intent to develop a collaboration between material science
and engineering mechanics. Mesomechanics allows the adoption of a heterogeneous
medium with a distinct microstructure and micromechanics that evolve the microstructure
as opposed to a continuum with averaged properties. The limitations associated with
mesomechanics include the need for a precise description of the microstructure and the
inability to capture the complexities in the evolution of complex material structures.

Non-linear deformations and time-dependent material behavior based on the concept
of representative volume element were first adopted by Hill [134]. Since finite element
analysis is based on the continuum, mechanics and small deformations are typically used
under the assumption of linear deformations. To circumvent the limitations of heterogeneity
and linear processes, a few methods have been proposed in the form of asymptomatic
homogenization theory by Terada and Kikuchi [135] and Ghosh et al. [136,137] and volume
averaging by Smit et al. [138] and Feyel and Chaboche [139]. In contrast to assigning
homogenized constitutive behavior at integration points, the average behavior associated
with the microstructure is assigned at each integration point of the macromesh of the
representative volume element (RVE).

To achieve precise detail at the microstructural level and to better understand the link
between microstructure and continuum, a polycrystal plasticity finite element model was
proposed by Holm et al. [140]. The authors addressed the limitations of classical constitutive
models by allowing an atoms-up approach that also produces a continuum down the path.
Their model includes geometry for pores as well as the grain structure. The authors
use a paradigm where a combined computational and experimental assessment of the
microstructure leads to the homogenization of the material. The homogenized properties
are then utilized in continuum level engineering design. Digital image correlation coupled
with electron-backscatter diffraction microscopy provide strain maps that can validate
microstructure. Characteristic features and their distributions and trends are revealed
that validate simulation results, e.g., plastic strain bands that appear oriented at 45◦ in
components subjected to uniaxial loads.

A discrete element method proposed by Horner et al. [141], along with Iwashita and
Oda [142] in collaboration with Tordesillas [143], suggests the adoption of the smallest pos-
sible representative volume element (RVE) to ensure high resolution at the microstructural
level to capture the dynamics and kinematics of the particles to link to the evolution of the
microstructural mechanics.

The micromorphic continuum theory is outlined in Mindlin [144], where the material
is observed as a collection of deformable “points” used to model material parameters and
generate models at the nanoscale. This was accomplished by using numerous bridging scale
methods in conjunction with continuum, quantum, and molecular mechanics as demon-
strated in Liu et al. [144,145]. To further the application of these methods, a new theory
called the multiresolution continuum theory was proposed by Liu et al. [144,145] for het-
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erogeneous materials. Gao et al. [146] expanded the micromorphic theory by incorporating
geometric relevant material defects.

Finally, by incorporating damage mechanics at the microstructural level in the classical
continuum models also helps bridge the gap and capture the material behavior at several
sub-levels, as was proposed in the work of Holm [147], who continued the development
of future multiscale modeling theories by adopting various approaches. The upscaling
method and resolved-scale method are reviewed in Fish et al. [148]. Holm et al. [148]
state that understanding various processes of microstructural scale damage where the
interaction between the grain boundary with dislocations and twins is important and
critical in modeling damage mechanics. Continuum models fail to predict fracture. The
goal is that the microscale damage models can bridge this gap. Methods have been
developed to bridge the gap across length and time scales, as discussed in Fish et al. [149].

12. Concluding Remarks

For over a century, the materials community has been proposing methods to charac-
terize the nonlinear stress–strain behavior exhibited by materials. In this review article, a
collection of works is presented that depicts the development of inelastic constitutive mod-
els that have applications at the continuum level, a homogenized polycrystalline material.
The discussion begins with classical plasticity theories and that discussion carries through
to time-dependent viscoplastic models.

Focus has been given to material science models that physically explain nonlinear
behavior at the microstructural level. An understanding of material microstructure is
always necessary in developing accurate multiaxial continuum-level constitutive models
that characterize the responses of engineering components modeled with continuum-
level perspectives.

For further reading, attention is drawn to the work of Vladmir Buljak and Gianluca
Ranzi [149], which captures the distinction between various inelastic constitutive models
from a different perspective.

A bridge between microstructural concepts and continuum concepts is convenient.
This bridge is discussed in the context of time-dependent behavior constitutive models.

Many forms of inelastic constitutive models are presented that include differential
formulations as well as integral forms. Models are available that aid in the design of
components that function in high-temperature environments. This would be accomplished
by incorporating three-dimensional continuum-level inelastic models in finite element
analysis software. A discussion regarding that effort is available elsewhere.
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