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Abstract: Single-molecule magnets (SMMs) have attracted much attention due to their potential
applications in molecular spintronic devices. Rare earth SMMs are considered to be the most
promising for application owing to their large magnetic moment and strong magnetic anisotropy.
In this review, the recent progress in rare earth SMMs represented by mononuclear and dinuclear
complexes is highlighted, especially for the modulation of magnetic anisotropy, effective energy
barrier (Ueff) and blocking temperature (TB). The terbium- and dysprosium-based SMMs have a Ueff

of 1541 cm−1 and an increased TB of 80 K. They break the boiling point temperature of liquid nitrogen.
The development of the preparation technology of rare earth element SMMs is also summarized
in an overview. This review has important implications and insights for the design and research
of Ln-SMMs.
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1. Introduction

Single-molecule magnets (SMMs), with the slow relaxation of magnetization and quan-
tum tunneling [1–3], are considered a significant discovery in the field of nanomagnetism [4].
SMMs are often used to fabricate nanoscale devices and high-density data storage media [5–9].
Notably, Mn12 [1] and Fe cluster [10] are the earlier discovered SMMs, which belong to
3d SMMs.

Since 2003, the introduction of lanthanide rare earth ions has allowed SMMs to enter a
new stage. Rare earth SMMs exhibit magnetic bistability at a higher blocking temperature
(TB) than 3d SMMs because lanthanide ions are f -orbital-based elemental ions with unparal-
leled single-ion anisotropy, TB is a key performance parameter of an SMM, one description
of which refers the maximum temperature at which it is possible to observe hysteresis in
the field-dependence of the magnetization, subject to the field sweep rate. Meanwhile,
phthalocyanines (Pcs) are large rings with 18π electron conjugation and have a wide range
of applications in spintronics. Therefore, LnPc2 SMMs have shown great potential for
spintronics and device applications. The first example of the [TbPc2]− effective energy
barrier (Ueff, that is the potential energy required for molecular magnetization (or magnetic
moment) reversal) of 331 cm−1 broke the record of Ueff for multinuclear 3d SMMs [11].
Subsequently, scientists have shown great interest in studying not only mononuclear rare
earth SMMs but also binuclear rare earth SMMs and multinuclear rare earth SMMs [12,13].

This paper reviews the main progress of rare earth SMM research in the last 20 years,
especially Tb/Dy-Pc2 SMMs. At the same time, we elaborate on the techniques of SMM
preparation and how to regulate their properties.
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2. Phthalocyanine Single-Molecule Magnets

SMMs are nanosized molecules with a stable magnetization intensity coming from
within a single molecule and therefore can be used as independent magnetic functional
units. In essence, a maximum value of the imaginary part of the magnetization related to
the external field frequency occurs when Alternating Current magnetization rate tests are
performed at low temperatures [1,14]. The development stages of monomolecular magnets
are as follows. First, are transition metal monomolecular SMMs (Mn12 and Fe clusters); then
are rare earth single-molecule magnets, mainly lanthanide-based metal SMMs. Therefore,
the use of rare earth metal ions, especially Tb and Dy ions, to construct SMMs is still an
effective method to improve the performance of SMMs [15].

The 4f orbitals of lanthanide ions are inner orbitals and thus have strong spin-orbit
coupling, which allows the crystal field interaction to be regarded as perturbative. There-
fore, Ln-SMMs (Ln = Tb, Dy) have become an important part of the field of SMMs, are
widely favored by researchers and have been reported far more than other metallic SMMs,
occupying half of the field of molecular magnets.

From Figure 1, we can see that the scanning tunneling microscopy (STM) images of
LnPc2 (Ln = Tb, Dy) molecules observed by the experiment have the shape of eight lobes.
However, DyPc2 is more regular than TbPc2 [16,17].
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2.1. Structure and Category

Pc is an organic semiconductor with 18π electrons, and it has been demonstrated that
Ln-Pc double- and triple-decker complexes are capable of forming [18–29]. The structures
are shown in Figure 2 [30].
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Figure 2. Structures of (a) double- decker metal Pcs, consisting of a metal ion sandwiched between
two Pc ligands and (b) triple-decker metal Pcs, metal ions are stacked between sandwich-type Pc
oligomers [30].

Compared to conventional magnetic particles composed of metals, metal alloys, or
metal oxides at the nanoscale, SMMs have many important advantages: (1) SMMs consist of
relatively independent molecular units, so they have a single size and a fixed structure [31].
(2) SMMs are generally soluble in organic solvents, which makes it possible to obtain
magnetic materials that were previously available only under special conditions in chemical
solutions under ordinary conditions. (3) The magnetic characteristics of SMMs can be
refined through metal ions and Pcs and by improving the synthesis methods [32].

SMMs generally consist of an intrinsic metal nucleus surrounded by an organic ligand
shell. Lanthanide elemental metal ions with a high spin ground state are good choices for
the preparation of molecular materials with SMMs. However, designing the SMMs of such
ions requires care to optimize the spatial distribution of ligand electrons with respect to
the ion.

2.2. Double-Decker Pc of Tb/Dy

To date, more than one hundred Ln-SMMs have been discovered and studied. Ow-
ing to their excellent physical properties, Ln-Pcs (Ln = Tb, Dy) are widely favored by
researchers [33–37]. The model of Ln-Pcs is shown in Figure 3a,b, the Ln3+ (Ln = Tb, Dy)
ion is located in the center of the molecule with two parallel Pc rings to form a sandwich
structure molecule. The double-decker Ln-Pcs (Ln = Tb, Dy) has D4d symmetry [33,34,38].
DyPc2 is similar in properties to TbPc2, which possesses an anisotropic Ueff of 410 cm−1

and a spin-orbit coupling quantum number of J = 6 [39].
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Rare earth Pcs were discovered by Kirin and Moskalev. Notably, double-decker Ln-Pcs
could also be achieved at that time [40,41]. The crystal structure data of LnPc2 (Ln = Tb,
Dy) are shown in Table 1 [16]. TbPc2 belongs to the same P212121 space group as DyPc2,
and the crystal parameters are close in size.

Table 1. Crystal structure data of LnPc2 (Ln = Tb, Dy) [16].

TbPc2 DyPc2

Formula C64H32N16Tb C64H32N16Dy
Formula weight 1183.99 1113.97
Crystal system Orthorhombic Orthorhombic

Space group P212121(#19) P212121(#19)
a (nm) 0.88 0.89
b (nm) 1.06 1.06
c (nm) 5.08 5.08

V (nm3) 4.76 4.76
Z 4.00 4.00

F(000) 2372.00 2268.00

Dy ion-containing materials (such as magnetic resonance imaging, magnetostriction,
and SMMs) have a wide range of promising applications in the magnetic field [42–45]. In
SMMs, magnetic exchange interactions are important factors affecting the performance
of SMMs, and early studies have shown that even very weak intermolecular magnetic
exchange interactions can effectively suppress quantum tunneling effects and enhance the
performance of SMMs [46,47]. Although the 4f electrons of rare earth ions are subject to
the shielding effect of the outer electrons and the magnetic exchange between metal ions is
relatively weak, this effect still has a significant impact on the properties of their SMMs.

Martínez-Flores et al. studied the geometries and electronic properties of LnPc2, as
shown in Figure 4. They reported that unpaired electrons are transferred to Pc ligands [48],
and the strong π-π interaction between intramolecular Pc rings becomes important for or-
ganic field effect transistors as intrinsic semiconductors compared to their monolayer analogs.
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Figure 4. The structures of LnPc2 (Ln = Tb, Dy) compounds from X-ray diffraction (XRD) mea-
surement (left) and density functional theory (DFT) calculation (right). In the DFT calculation, the
PBE GGA correlation functional by Perdew-Burke-Ernzerhof (PBE) was the functional of choice,
complemented by the empirical dispersion correction developed by Grimme [48].

The magnetic coupling of TbPc2 molecules was reported by Corradini and coworkers.
They placed TbPc2, single-layer graphene, and an Au single-layer on top of a Ni(111)
magnetic substrate. They found that the superexchange coupling leads to a change in the
antiferromagnetic signal [49].
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2.3. Multi-Decker Pc of Tb/Dy

Ln2-SMMs are SMMs containing two lanthanide element ions forming a large collec-
tion, and double-nuclear Pcs SMMs containing Dy and Tb are more common. The radially
contracted nature of the 4f orbitals of rare earth ions tends to lead to extraordinarily weak
intramolecular exchange coupling in multinuclear lanthanide complexes. Therefore, for
most multinuclear Ln2-SMMs, the magnetic origin is mainly a single-ion effect.

There is another class of double nuclear Ln2-SMMs that are trilayer structured Pc
SMMs, and the chemical general formula of these molecules is [PcLn(µ-Pc2)Ln(Pc3)] when
the ligand Pc can be heterocyclic. The spacing between the Ln ions in the molecule is
approximately 0.36 nm, which makes it possible to study the effect of intramolecular f-f
interactions on the dynamic magnetic properties, and the lanthanide ions have a significant
role in the physical properties of triple-decker Pc compounds [50].

Hellerstedt et al. reported a method to form Tb2Pc3 from TbPc2. The structures are
shown in Figure 5a,b. The different colors (yellow and blue) of the densities represent the
charge redistribution. The formation of Tb2Pc3 provides a novel way to investigate and
control magnetic interactions [34].
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Figure 5. Calculated charge transfer between (a) Tb2Pc3 and (b) TbPc2 molecules and the Ag(111) sur-
face obtained from DFT calculations. It used exchange correlation functional PBE + U with U = 5 eV
for f -electrons of Tb and van der Waals interaction was approximated by the Tkatchenko-Scheffler
dispersion correction method. The yellow and blue colors represent the accumulation and loss of
density, respectively. The presence of blue density on the upper surface layer indicates substantial
charge transfer from the metallic surface toward the molecule [34].

Ln3-SMMs can be divided into two main categories according to the structural arrange-
ment of the metal ions: triangular and chain-like metal ion arrangements. Multinuclear
Ln-SMMs are relatively rare in most rare earth elements because they are not easily synthe-
sized due to their high nucleus numbers. Of course, Dy is the exception; the vast majority
of rare earth SMMs with high nucleation numbers contain Dy, and the number of nuclei in
Dy-SMMs can be as high as 50. However, in general, ligands for multinuclear Dy systems
are not limited to Pcs.

This section focuses on the double-decker Pc of Tb/Dy and the multi-decker Pc
of Tb/Dy, including its structure and the work of its predecessors. As expected, that
was previously made, the discovery that Ln-SMMs can exhibit slow relaxation of the
magnetization has initiated intensive interest in the SMMs containing lanthanide metals
(4f ). Herein, the Dy/Tb ion seems to be especially useful in this respect. Dy/Tb-radical
family was considered and used over the last years as a bench for understanding the
magnetism of the lanthanide ions and has given rise to many groundbreaking results in
SMMs in recent years.
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As will be further discussed in the next section, the Dy/Tb-Pcs are more common in
the single-nuclear and bi-nuclear form, however, it is still necessary to study multi-nuclear
Dy/Tb-SMMs.

3. Other Single-Molecule Magnets

In 2020, Wang et al. reported the synthesis of [Ln4(acac)4(µ2-L)6(µ3-OH)2]·2C2H5OH
(Ln = Tb and Dy). Its structure is shown in Figure 6a. They found that significant slow
magnetic relaxation behavior occurred for [Dy4(acac)4(µ2-L)6(µ3-OH)2]·2C2H5OH with an
anisotropic barrier of 82.1 K, as shown in Figure 6b,c [51]. For [Dy4(acac)4(µ2-L)6(µ3-OH)2]·2C2H5OH,
below 15 K, both in-phase and out-of-phase become frequency dependent, and two distinct
peaks for the out-of-phase ac signals are evident during the frequency range 311–3111 Hz,
indicating the possible multiple relaxation processes existing in it.
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In 2021, Wang et al. synthesized the {Dy4(acac)4L4} compounds. Through studying the
relationship between ln (τ) and T−1, and combining the Arrhenius law ln(τ) = ln(τ0) + (∆Eeff
/kB)T−1, they obtained that Ueff reaches 34.1 cm−1 and the preexponential factor reaches
6.92 × 10−6 s [52].

A new Dy4 cluster based on a polydentate Schiff base ligand was reported by Shi et al. [53].
They found that the Dy4 cluster has obvious SMM behavior. Figure 7 displays the synthesis
steps of the Dy4 cluster: Dy(acac)3·2H2O, H3L, CH3OH, CH3CN and CH2Cl2 were enclosed
in a glass vial and heated to 70 ◦C for about 48 h. Then it was dropped to room temperature
at a rate of about 5 ◦C/h, and the crystals Dy4 cluster was obtained.
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When the number of metal ions in rare earth SMMs becomes more numerous, a variety
of structural forms are produced, such as one-dimensional linear, sawtooth or polyhedral
shapes. In addition, their magnetic properties can vary widely depending on various
factors. The synthesis of multinuclear rare earth SMMs and research on magneto-structural
relationships are interesting. Due to the large number of metal ions inside multinuclear
rare earth SMMs, the complexity of the interactions between the metal ions increases
exponentially compared to that of binuclear ones, and the properties of the SMMs can
be affected.

In addition to the widely studied Pc ligands, H3L [54], LN5 and LN6 [55], LiL2 [56],
H2L [57], HL [58], Hdbm [59], H4Bmshp [60], H2hmp [61], are also hot spots of research.
Schematic diagrams of their structure are shown in Figure 8.
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Blagg et al. [62] reported a case of isopropanol-bridged Dy5-SMMs: [Dy5(µ5-O)(µ3-
OiPr)4(µ-OiPr)4(OiPr)5], in which all the Dy3+ in the complex are hexa-coordinated and
five Dy3+ form a positive tetragonal cone. The results show that the complex has the
properties of SMMs below 50 K, and the flip Ueff is as high as 367 cm−1, which sets
a new record for the flip Ueff of multinuclear SMMs at that time. Subsequently, Blagg
et al. [63] reported another example of a tetranuclear rare earth SMM [Dy4K2O(Obi)12]
and discovered a relaxation process involving the second excited state. [Dy4K2] forms an
octahedron with two K ions in the cis position, and Dy3+ is six-coordinated, showing a
deformed octahedral structure. It is found that [Dy4K2] has a two-step slow relaxation
behavior by AC magnetization with Ueff values of 692 cm−1 and 316 K, respectively, and
hysteresis lines can be observed below 5 K. Langley et al. [64] reported the first 4d-4f
multinuclear SMMs [Ru2Dy2(OMe)2(O2CPh)4(mdea)2(NO3)2], and its Ueff was 10.7 cm−1.
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The SMM with the largest number of nuclei is the polymetallic oxonate [Dy30Co8Ge12W108
O408(OH)42(OH2)30]56− reported by the Powell group [65], which is self-assembled by
six {W9Dy3W9} linkers and four {Co2Dy3} nodes with a very beautiful topology (Figure 9a).
The magnetic susceptibility of polyanion [Dy30Co8Ge12W108O408(OH)42(OH2)30]56− was
investigated. Figure 9b shows the relationship between χT and T. As the temperature
increases, χT rapidly increases in the early stage and slowly increases in the later stage. The
curve trend of the field dependence of magnetization is indicative of significant anisotropy
of [Dy30Co8Ge12W108O408(OH)42(OH2)30]56− (Figure 9b, inset).
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Figure 9. The schematic image: (a) Model of [Dy30Co8Ge12W108O408(OH)42(OH2)30]56−. (b) The
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On the one hand, the regulation of Ln-SMMs helps to explore the relationship between
structure and magnetism, which leads to a deeper understanding of the slow magnetic
chirality mechanism of SMMs; on the other hand, the theory guides the experiment and
the theory as a means to guide us to research compounds with better performance. For
example, Long et al. gave qualitatively the intrinsic relationship between the rare-earth
ion energy levels and the surrounding ligand field by studying the characteristics of the 4f
charge density distribution corresponding to the ground state and different excited states
of rare-earth single ions [66] to determine the ground state of the lanthanide ions with high
magnetic anisotropy. Later, several researchers proposed and refined the use of electrostatic
field models to predict the quantum axis of rare earth ions [67,68]. These works provide
important theoretical guidance for the design of Ln-SMMs. In addition, in order to give an
insight into especially ‘experimentally difficult’ systems recourse to theoretical tools is a
very common and fruitful approach [48].

3.1. Acetylacetone-Based SMMs

Acetylacetonate ligands belong to the 1,3-dicarbonyl group, and there are keto-enol
interchangeable structures within the molecule. Therefore, there are functional groups
such as hydroxyl and carbonyl groups within the ligand as well as active H atoms at the
α-position of unsaturated double bonds. In particular, the ligand removes an H atom to
form a stable bidentate chelate structure in an alkaline environment, which can form stable
complexes with metal ions. It is characterized by a simple synthesis route, high yield and
strong stability.

Jiang et al. [69] synthesized an example of a neutral mononuclear complex [Dy(acac)3(H2O)2]
using acetylacetone and determined its magnetic properties, which kicked off the study of
acetylacetone-based SMMs. As shown in Figure 10, the compound has a local symmetry
close to D4d, and the eight coordinated O atoms form a deformed tetragonal anti-prismatic
coordination configuration, in which the magnetic anisotropy of the Dy3+ is enhanced
under the crystal field.



Materials 2023, 16, 3568 9 of 30

Materials 2023, 16, x FOR PEER REVIEW 9 of 30 
 

 

Jiang et al. [69] synthesized an example of a neutral mononuclear complex 
[Dy(acac)3(H2O)2] using acetylacetone and determined its magnetic properties, which 
kicked off the study of acetylacetone-based SMMs. As shown in Figure 10, the compound 
has a local symmetry close to D4d, and the eight coordinated O atoms form a deformed 
tetragonal anti-prismatic coordination configuration, in which the magnetic anisotropy of 
the Dy3+ is enhanced under the crystal field. 

 

 
Figure 10. The schematic image: (a) Model of [Dy(acac)3(H2O)2]. (b) The relationship curves of tem-
perature and ac susceptibility at frequencies from 10 to 1488 Hz for the undiluted Dy compound. 
Dy green, H atoms and solvent molecules or ligands are omitted [69]. 

Gao et al. [70] reported Dy-(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octadione) 
complexes, named Dyfod3bpy (Dy1). Dy1 melts at 90 °C and evaporates at 269 °C to form 
Dyfod3phen (Dy2). They found that Dy2 maintains the SMM properties, but the relaxation 
barrier shifts from 87 K to 122 K. 

3.2. Polyacid-Based SMMs 
Polymetallic oxides (referred to as polyacids) are a class of inorganic oxygen-contain-

ing acids that can be used to assemble novel transition metal or rare earth metal com-
plexes. Polymetallic acids have oxygen-rich surfaces and high negative charges, and their 
absent sites can provide a suitable coordination environment for rare earth ions. Polyacids 
usually consist of antimagnetic vanadium, molybdenum, tungsten and niobium ions in 
the highest oxidation state. Therefore, these nanosized polyacids can be considered ideal 
antimagnetic shells for separating magnetic spin carrier components and can dilute mag-
netic units and effectively shield magnetic exchange between spin carriers. 

AlDamen et al. reported a series of lanthanide polyoxometalate compounds: 
[LnW10O36]9− (Ln = Tb, Dy, Ho, Er) (Figure 11) [71] and [Ln(β2-SiW11O39)2]13− (LnIII = Tb, Dy, 
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temperature and ac susceptibility at frequencies from 10 to 1488 Hz for the undiluted Dy compound.
Dy green, H atoms and solvent molecules or ligands are omitted [69].

Gao et al. [70] reported Dy-(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octadione) com-
plexes, named Dyfod3bpy (Dy1). Dy1 melts at 90 ◦C and evaporates at 269 ◦C to form
Dyfod3phen (Dy2). They found that Dy2 maintains the SMM properties, but the relaxation
barrier shifts from 87 K to 122 K.

3.2. Polyacid-Based SMMs

Polymetallic oxides (referred to as polyacids) are a class of inorganic oxygen-containing
acids that can be used to assemble novel transition metal or rare earth metal complexes.
Polymetallic acids have oxygen-rich surfaces and high negative charges, and their absent
sites can provide a suitable coordination environment for rare earth ions. Polyacids usually
consist of antimagnetic vanadium, molybdenum, tungsten and niobium ions in the highest
oxidation state. Therefore, these nanosized polyacids can be considered ideal antimagnetic
shells for separating magnetic spin carrier components and can dilute magnetic units and
effectively shield magnetic exchange between spin carriers.

AlDamen et al. reported a series of lanthanide polyoxometalate compounds: [LnW10O36]9−

(Ln = Tb, Dy, Ho, Er) (Figure 11) [71] and [Ln(β2-SiW11O39)2]13− (LnIII = Tb, Dy, Ho, Er,
Tm, and Yb) (Figure 12) [72]. Interestingly, [ErW10O36]9− is the first example of an Er-based
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heteropolyacid SMM. Ln can be seen to be in a ligand field with approximate D4d symmetry
but exhibits a completely different behavior from [LnPc2]− as an SMM.
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Cardona-Serra et al. [73] reported [LnP5W30O110]12− (Ln = Dy, Ho) with 5-fold sym-
metry. When Ln = Dy, Ho, it shows magnetic hysteresis at low temperatures and obviously
big off-diagonal anisotropy parameters A5

6. its structure is shown in Figure 13.
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3.3. SMMs in the Pentagonal Biconical Configuration

Both the different lanthanide centers and different ligand fields can significantly in-
fluence the magnetic anisotropy of SMMs [74]. The most common central metal ion in
multinuclear monomolecular magnets is Dy. In recent years, several cases of monomolecu-
lar magnets with pentagonal bipyramidal (PB) structures as confirmed by other researchers
or groups, all showing crystal fields with high axial symmetry of D5h [75–78]. In 2016, an
example of an SMM [Dy(OtBu)2(py)5][BPh4] [79] with a perfect pentagonal bipyramidal
configuration was reported by Zheng et al., whose Ueff can reach 1269.3 cm−1 and TB
of 14 K.

As shown in Figure 14, Chen et al. [80] took advantage of the local symmetry of
D5h to increase the magnetic TB of Dy single ion magnets to 20 K for the first time.
They synthesized the Ueff of [Dy(Cy3PO)2(H2O)5]Cl3·(Cy3PO)·H2O·EtOH is 472 cm−1
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and [Dy(Cy3PO)2 (H2O)5]Br3·2(Cy3PO)·2H2O·2EtOH (Cy3PO = tricyclohexylphosphine
oxide) at 543 cm−1.
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Figure 14. Crystal structures of (a) [Dy(Cy3PO)2(H2O)5]Cl3·(Cy3PO)·H2O·EtOH. (b) [Dy(Cy3PO)2

(H2O)5]Br3·2(Cy3PO)·2H2O·2EtOH (Cy3PO = tricyclohexylphosphine oxide). Coordination envi-
ronment (c) Corresponding to (a). (d) Corresponding to (b). H atoms of the ligands are omitted for
clarity. Red and blue dashed lines are the main anisotropy axes in the ground Kramers doublet and
the excited Kramers doublet, respectively [80].

The pentagonal biconical symmetric configuration of Dy SMMs has a high axial mag-
netic anisotropy, which gives it the potential to obtain higher Ueff. In 2020, Canaj et al. [55]
reported [DyIII(LN5)(Ph3SiO)2](BPh4)·CH2Cl2, which has an anisotropy barrier of 1108 cm−1.
Moreover, when five N atoms are replaced in the equatorial plane, Ueff increases.

Yuan et al. reported [Dy4L4(Ph2acac)2(OH)2(DMF)2] (H2L = (E)-2-(((2-hydroxyphenyl)
imino)methyl)-6-methoxyphenol; Ph2acacH = β-diketones dibenzoylmethane) and [Dy4L4
(acac)2(OH)2(DMF)2]·2CH3CN (acacH = acetylacetone). They derived that both of them
have SMM behavior. Their Ueff values are 50.1 cm−1 and 147.2 cm−1, respectively [81]. In
view of the outstanding performance for these Dy/Tb SMMs, in the last several years lots
of new structures have been reported. In this section, we introduced and summarized:
Acetylacetone-based SMMs, Polyacid-based SMMs, and SMMs in the pentagonal biconical
configuration. Each type of SMMs has its own unique structure and properties. All these
results lately propitiate a new era for SMMs and can provide some research ideas for
studying other ligand types of SMMs. In addition, we have summarized some basic
properties of common SMMs for the convenience of readers, as shown in Table 2.
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Table 2. Summary the molecular chemical formula, main structure and their properties of most
common SMMs.

Number Molecular
Chemical Formula

Rare Earth
Element Category Main Structure Properties Reference

1 MPc2
Dy, Tb Dy, Tb
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82.1 K 
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A very beautiful 
topology.  

A significant magnetic 
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can be enhanced under 
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Table 2. Cont.

Number Molecular
Chemical Formula

Rare Earth
Element Category Main Structure Properties Reference

6 [LnW10O36]9− Tb, Dy, Ho, Er
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4. Preparation Technology

The main methods for the study of Ln-Pcs are as follows: (1) Halogen synthesis
method; (2) Metallation of free-base ligands; (3) Mono Pc-based techniques; and (4) Axial
substitution at the metal center [82,83]. In 1965, Kirin and Moskalev studied the reaction
of rare earth acetates and phthalonitrile (PN) at 280–290 ◦C [40,41,84]. This led to the
formation of Ln-Pcs (Ln = Pr, Nd, Er, Lu) [85–87].

Dubinina et al. proposed a method for preparing Ln-Pcs in an alcohol/C12H8Cl4N2
(TCB) mixture. In this method, the Ln-Pcs were synthesized by a three-step procedure
(Figure 15a). Then, phenyl-substituted Pc complexes 6a-c were synthesized selectively from
ligand 3 and acetylacetonate salts of the corresponding lanthanides in a mixture of cetyl
alcohol-TCB (Figure 15b). It can prepare Ln-Pcs of phenyl [83].
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Simple heating of the single-decker lutetium complex to 400 ◦C in a vacuum (1 Torr)
produces a triple-decker complex. Another method is sublimation under high vacuum
(10−6 Torr) at 300–420 ◦C of the reaction obtained from template condensation between PN
and a series of rare earth acetates (Ln = La, Nd, Eu, Gd, Dy, Er, Yb, and Lu) [88].

The development of single-molecule materials is accompanied by the development of
material preparation technology. Methods such as vacuum evaporation, spin coating and
the Langmuir-Blodgett technique have been widely used to study thin films of MPcs. For
example, LnPc2 (Ln = Tb and Y) was synthesized using a solvothermal method [89].

In 2022, Zhang et al. synthesized two bismuth-cluster-bridged lanthanide compounds,
[K(THF)4]2[Cp*2Ln2Bi6] (Cp* = pentamethylcyclopentadienyl; 1-Ln, Ln = Tb, Dy), through
the solution organometallic method (Figure 16). The relationship between τ and T−1 of
[K(THF)4]2[Cp*2Ln2Bi6] was studied. They found that the lanthanide centers form strong
ferromagnetic interactions between lanthanides, which lead to magnetic blocking and open
hysteresis loops for super exchange-coupled SMMs comprising solely lanthanide ions [90].
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The discovery of the magnetic properties of Pc rare earth-like compounds has stim-
ulated research in this field and is still one of the hot spots for the exploration of new
magnetic materials [91,92]. The commonly used magnetic SMMs test system is the mag-
net property measurement system (MPMS), which is composed of a detection system,
software operating system, temperature control system, magnetic control system, sample
operating system and gas control system. MPMS can perform tests such as Direct Cur-
rent magnetization, Alternating Current magnetization and low temperature hysteresis
lines [93].

To end this section, we would like to emphasize that the development of preparation
technology is of great significance for the study of SMMs. This section summarized and
introduced the main methods for the study of Ln-Pcs as follows: (1) Halogen synthesis
method; (2) Metallation of free-base ligands; (3) Mono Pc-based techniques; and (4) Axial
substitution at the metal center, these synthesis methods are more common and practical.
The research on SMMs with new performance needs to be synthesized and validated
through experimental preparation techniques, and progress towards the goal of practical
quantitative production.

5. Performance of Single-Molecule Magnets
5.1. Magnetic Origin

SMMs constructed with rare earth metal ions have relatively large magnetic moments
and magnetic anisotropy due to their special electron layer structure: f electrons have large
unquenched orbital angular momentum.

To understand the magnetic origin and analyze the key factors influencing the magnetic
behavior, the microscopic relaxation can be analyzed by a macroscopic model (Figure 17).
The origin of the single-molecule magnetic behavior in lanthanide compounds is more
sophisticated due to the spin-orbit coupling of the lanthanide metal ions that generates
angular momentum J. Because the spin-orbit coupling energy is usually greater than the
effect of the crystal field for 4f lanthanides and actinides, it is important to consider the
spin-orbit coupling quantum number J. For the trivalent dysprosium ion with a 4f 9 electron
configuration, its free ion produces the ground state term 6H under the Coulomb repulsion
between electrons, containing 66 energy levels, at which point they can all be considered
to be simplicial. The presence of the spin-orbit coupling leads to further cleavage of this
term, producing a series of nonsimple branches, the lowest energy of which is 6H15/2; if it is
placed in a crystal field of certain symmetry, the crystal field action drives the spin ground
state J = 15/2 branch to continue cleavage into mJ = ±15/2, ±13/2, ±11/2... ±1/2 and
so on for the energy levels [93]. From the point of view of electronic structure, Dy-SMMs
have been widely studied in recent years because the trivalent dysprosium ion has a large
spin value (s = 5/2) and a large orbital angular momentum (l = 5) combined with a total
orbital angular momentum J = 15/2, which leads to a particularly large magnetic anisotropy.
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Figure 17 depicts the influence of various interactions on the energy level splitting of the
free Dy3+ simplicial 4f 9 group state [94].
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Figure 18. 4f electron density distribution of corresponding LnIII ions in their Ising limit state [95]. 

In the case of lanthanides with an oblate (squeezed along the axial direction) electron 
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Figure 17. Effect of different interactions on energy level splitting of the degenerate 4f 9 configuration
of free Dy ions (from left to right, interaction is from strong to weak) [94].

Most rare earth metal ions still exhibit the single-ion nature of the rare earth metal
ions themselves in systems of synthetic polymers or clusters because of the shielding effect
of the f electrons in the outer s and p electrons, which makes the magnetic interactions
relatively weak again. Although the magnetic interaction between rare earth metal ions is
weak, it still makes a significant contribution to its relaxation mechanism.

To clearly understand how to achieve maximum magnetic anisotropy for a specific
lanthanide ion, Long’s group proposed a theoretical model based on the Ising limit state
of various lanthanide ions through theoretical calculations (Figure 18) [66,95]. The model
uses a quadrupole approximation calculation to describe the ground state charge density
distribution corresponding to the eigenstates of various lanthanide ions. Due to the strong
angular dependence of the 4f orbitals, the 4f electron charge density distribution of the
lanthanide ions is not spherical but shows an anisotropic ellipsoidal shape [66]. By further
drawing on the electrostatic model of effective point charges, it can be visualized that some
of the lanthanide ion charge density distributions are flat and long (Pm3+, Sm3+, Eu3+, Er3+,
Tm3+, Yb3+), some are flat (Ce3+, Pr3+, Nd3+, Tb3+, Dy3+, Ho3+) or are isotropic spheres
(Gd3+) [95].
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In the case of lanthanides with an oblate (squeezed along the axial direction) electron
distribution, such as [Pc2Tb]−·TBA+ and [Pc2Dy]−·TBA+, the axial position of the ligand
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electrons is particularly favorable to produce considerable magnetic anisotropy. Notably,
Dy-SMMs with different structural types will significantly influence the Ueff of SMMs. Such
as, a centrosymmetric defect dicubane is found to show a remarkably large anisotropic
barrier of 170 cm−1 [96].

The adsorption of Pcs can form spinterfaces by the interfacial coupling effect, which
may change the magnetic properties of molecules and ferromagnetic substrates [97–103].
From Figure 19, we can see the Fe4N/C60/Fe4N and La2/3Sr1/3MnO3/C60/Fe4N models.
Interestingly, the poles of La2/3Sr1/3MnO3/C60/Fe4N can be switched, which is useful for
studying the function of spintronic devices [103].
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Additionally, Tb ions and Dy ions have remarkable magnetic anisotropy in strongly
axial ligand fields. This is because they have an oblate-shaped electron density [56,104].
The magnetic properties of Dy ions are more prominent than those of lanthanide ions, and
using Dy-SMMs as a model, many novel results were found [7,105].

5.2. Magnetic Properties of SMMs

The magnetic properties of SMMs mainly include magnetic anisotropy, Ueff, and TB.
In 2023, Zhu et al. prepared a new compound [Dy2(hfac)6(tpphz)]·CH2Cl2, which has
a big π-conjugated bridging ligand (Figure 20a). Magnetic measurements revealed that
[Dy2(hfac)6(tpphz)]·CH2Cl2 possesses zero field SMM behavior with a single magnetic
relaxation process. In Figure 20b, all curves rise rapidly before 1 T. As H increases, the
curves rise slowly until the H value is 7 T. Furthermore, no superposition could be observed
among the corresponding M-HT-1 curves (Figure 20c). All these results suggest significant
magnetic anisotropy [106–108].

The current effective method to study the magnetic anisotropy of Dy-systems (trian-
gular Dy3 and planar Dy4) is the Post-Hartree-Fock ab initio method. This method can not
only get the energies of the multiplets but also determine the anisotropy axes and the g
tensors for the lowest Kramers doublets of each dysprosium site [109,110].

Ruan et al. analyzed the relationship between the magnetic properties and the TbPc2
film, as shown in Figure 21. The results show that when the growth temperature is 150 ◦C,
the TbPc2 film has significant magnetic anisotropy; that is, the out-of-plane magnetic
moments are obviously greater than the in-plane magnetic moments [111].
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The more complex the molecular structure of SMMs, the less pronounced their proper-
ties become. This is because the more lanthanide ions there are in SMMs, the more difficult
it is to control the coordination environment and the more complicated the situation.

Crystal field effects arise mainly from the Coulombic interactions of the central ion
and ligand. The crystal field effect is closely related to Ln-SMMs because it is extremely
influential for the splitting of multiple states. Furthermore, the “ion field” (4f -electron shell
from the metal ion) and the “crystal field” (ligand shell from the ligand atom) constitute
the coordination compounds.

Small changes in the coordination environment of rare earth ions will obviously influ-
ence the magnetic properties of the constructed complexes. Therefore, this characteristic of
Ln-SMMs, which is extremely sensitive to the coordination environment, can be used to reg-
ulate the magnetic properties of Ln-SMMs. In essence, the regulation of Ln-SMMs includes
two aspects: (1) the regulation of uniaxial magnetic anisotropy and (2) the regulation of
intermolecular interactions. From the point of view of experimental design, the modulation
methods that can be adopted are mainly (1) modulation of metal-centered Ln (Ln = Tb, Dy)
ions and (2) modulation of the coordination environment (external field modulation).

In 2020, Chibotaru et al. used complete active space self-consistent field methods to
study the magnetic anisotropy of the divalent lanthanide oxide LnO (Ln = Tb, Dy).

From Figure 22, we can see that the barrier of magnetization blocking sketches the
contours of the relaxation pathway linking all doublet states arising from the ground atomic
multiplet. This is similar to the case when the group of levels belonging to the ground
atomic multiplet overlaps with the states from the excited atomic multiplet. The highest
magnetic Ueff obtained by theoretical calculation exceeds 3000 cm−1, which qualitatively
improves the expected performance of SMMs and provides a theoretical basis for the
experimental synthesis of divalent Ln-SMMs [112].
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It is worth noting that Ln-SMMs are an important model for studying the high
anisotropic barriers of SMMs. The anisotropic barrier records are constantly being refreshed
for Ln-SMMs, for example, defect-dicubane Dy4 (170 K) [113], linear Dy4 (173 K) [113] and
pyramid Dy5 (528 K) [62].

In 2023, Chen et al. reported [Dy(L1)(L2)] (HL1 = (E)-2-(((3-aminopropyl)imino)methyl)
phenol, H2L2 = 2,2′-((1E,1′E)-(propane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))
diphenol) compounds (Figure 23a). Combined with Equation (1) and Figure 23b, the mag-
netic characterizations reveal that the material exhibits slow magnetic relaxation behavior
with Ueff = 95.98 cm−1 [114].
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Equation (1) expresses the relationship of ln(τ) versus T−1 for [Dy(L1)(L2)] [114]:

τ − 1obs =τ
−1

QTM
+ CTn + τ−10 exp

(
−Ue f f /T

)
(1)

When n is 1.8, Ueff = 87.6 cm−1 and τ0 = 1.96 × 10−6 s for [Dy(L1)(L2)].
Due to the complex magnetic relaxation behavior of TbPc2 near the zero field at

low temperatures and the quantum tunneling effect of magnetization, the remanence
and coercivity of TbPc2 at low temperatures are also very small, showing a “butterfly”
hysteresis line, which seriously hinders the application of TbPc2 SMMs for the preparation
of high-density memory devices, such as the effect of exchange coupling between different
substrates [39,115,116].

SMMs have magnetic bistability at the molecular level and exhibit slow magnetic
relaxation over Ueff below the TB. When there is an external magnetic field, Zeeman
splitting occurs, and the original simplex Population number will be destroyed. Therefore,
the magnetization intensity vector sum will no longer be equal to zero, so SMMs have
magnetic bistability. When the applied magnetic field is withdrawn, the magnetization
intensity is reoriented, the process of reorientation then takes place to overcome Ueff, and
the temperature at which the magnetic moment is frozen is called the TB [96].

In recent decades, researchers have been working on increasing Ueff and improving
TB. The TB increases from the previous 60 K [117] to 80 K [118]. Although this result
is very encouraging, it is still far from room temperature (300 K), which becomes one
of the biggest obstacles limiting the realization of SMMs for practical applications. The
reason for the relatively high Ueff and TB of the high-performing SMM system is mainly
attributed to the significant magnetic anisotropy possessed by the molecular magnets, and
the lanthanide ion magnetism comes from the magnetic anisotropy caused by the strong
intrinsic spin-orbit coupling. Conventional magnetic materials are difficult to improve due
to the limitation of the superparamagnetic effect, but the emergence of molecular-based
magnets can solve this problem precisely. SMMs can be used to make ultrahigh-density
storage materials owing to their tiny nanometer sizes and obvious magnetic behavior [119].
Modulation of the ligand field of Ln-SMMs allows the construction of high-performance
SMMs. Most Ln-SMMs (Ln = Tb, Dy) have high Ueff [12,13,73].
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Wu et al. assembled [Dy2(HL)2(SCN)2]·2CH3CN complexes using the H3L multiden-
tate ligand (Figure 24a). According to the equation to fit the data: τobs

−1 = τQTM
−1 +CTn +

τ0
−1 exp

(
−Ue f f /T

)
, where the Orbach parameters are Ueff and τ0, the Raman parameters

are C and n, and the rate of quantum tunneling of magnetization (QTM) is τQTM
−1. The plot

of ln (τ) versus 1/T exhibits a linear regime at high temperatures in Figure 24b, suggesting
the dominance of the Orbach relaxation process. The quantum tunneling of magnetization
(QTM) and Raman processes probably play the leading role at low temperatures, which is
verified by the presence of curvature and temperature-independent regimes [54,120]. The
Cole-Cole curves can be fitted using the generalized Debye model. The Dy centers in the
complexes display capped octahedron coordination geometries and behave as an SMM, as
shown in Figure 24c [54].
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Figure 24. The schematic image: (a) Structures of [Dy2(HL)2(SCN)2]·2CH3CN. For brevity, H is
omitted. (b) Arrhenius plots of relaxation time data. (c) Cole-Cole plots under a zero-dc field for
[Dy2(HL)2(SCN)2]·2CH3CN. Solid lines correspond to the best fits [54].

Guo et al. studied a compound [(CpiPr5)Dy(Cp*)]+ (CpiPr5 = penta-iso-propylcyclopentadienyl,
Cp* = pentamethylcyclopentadienyl), as shown in Figure 25. The hysteresis temperature
was increased to 80 K, reaching above the liquid nitrogen temperature of 77 K for the first
time, and the anisotropic Ueff was as high as 1541 cm−1, making it the best performing
SMM to date (Figure 26a,b) [118].
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Figure 26. The schematic image: (a) Expansion of the hysteresis loops at 77 K of [(CpiPr5)
Dy(Cp*)][B(C6F5)4]. (b) Hysteresis loops at 80 K of [(CpiPr5)Dy(Cp*)][B(C6F5)4] [118].

As shown in Figure 27a, Blagg et al. [62] reported iso-propoxide-bridged Dy com-
pounds [Dy5O(OiPr)13]. According to the Arrhenius law τ = τ0 exp(∆E/kB T), the relation-
ship between ln(τ) versus T−1 (Figure 27b) could be obtained. They found that the Ueff of
the SMMs reached approximately 530 cm−1.
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Figure 27. The schematic image: (a) Structure of [Dy5O(OiPr)13]; the left and right views represent
perpendicular and parallel to the pseudofourfold axis, respectively. (Tibetan green large ball rep-
resents Dy, iPr groups trimmed for clarity). (b) The relationship between time (τ) versus T−1 for
[Dy5O(OiPr)13] under zero static field, from data collected in frequency (•) and temperature (#)
variation regime. The solid line stands for the best fit to the Arrhenius law [62].
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In 2023, Luo et al. reported the preparation of [ErCl(OArAd)3][Na(THF)6] and Er(OArAd)3
(ArOAd = O-C6H2-2,6-Ad-4-Me). The Ueff arrives at 43 cm−1 for Er(OArAd)3. They
found that the strong equatorial ligand field and high local symmetry are important to
restrain the quantum tunneling of magnetization and realizing outstanding-performance
Er-SMMs [121].

The enthusiasm for research on the synthesis of highly nucleated rare earth SMMs
has been increasing because highly nucleated rare earth complexes, especially clusters, not
only have nanometer dimensions but also have exotic properties not found in mononuclear
rare earth complexes or low-nuclear rare earth clusters. Hong et al. synthesized spherical
Dy36 cluster-based lattices through nicotinic acid, azide and nitrate ligands and exhibited
slow magnetic relaxation behavior [122]. Tong et al. assembled Dy11 and Dy12 clusters
with slow magnetic relaxation behavior by o-phenanthroline derivative ligands [123,124],
and Ln-SMMs are becoming increasingly diverse.

In addition, with the development of technology, the general necessity of studying
molecular spintronics [8,125], leads to the possibility of studying SMMs. This section
summarizes the properties of Ln-SMM, as previously studied, including TB, Ueff, and
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Number Performance Definition Typical Model Reference
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The Ueff is the main parameter to evaluate the performance of an SMM, because its
height determines an important indicator of whether a SMM can be practically applied in
the future, that is TB. Regarding the TB, it usually refers to the temperature at which the
molecule will exhibit the magnet’s behavior. Specifically, the flip of the molecular magnetic
moment slows down as the temperature decreases. When the temperature is below a
critical temperature (TB), the molecular thermal vibration energy will not be sufficient
to make the magnetization intensity (or magnetic moment) overturn the energy barrier,
then the magnetic moment flip becomes blocked and tends to stay in a certain direction
(the magnetization intensity can be preserved). The SMM then exhibits the behavior of
a magnet.

Magnetic anisotropy plays a crucial role in the magnetic properties of SMM systems: it
affects the shape of the hysteresis loop, the magnitude of the magnet coercivity, in addition
to the occurrence of magnetic blocking in SMMs and the preferential orientation of the
molecular magnetization.

Research in SMMs is rich and interesting, connecting not only theory and experiment,
but also linking our lives and work together. The interested reader is addressed to the cited
literature for more details.

6. Conclusions and Outlook

Rare earth SMMs are popular due to their tunable structural magnetic properties. In
the nearly 30 years since the first rare earth SMMs were reported, tremendous progress
has been made in single-molecule magnets, especially in single-nuclear and bi-nuclear
rare earth SMMs, where some molecules have even been able to exhibit hysteresis lines
above liquid nitrogen temperatures. Lanthanide elemental metal ions with a high spin
ground state are good choices for the preparation of molecular materials with SMMs. In
this review, the development of rare earth element monomolecular magnets with Pc as a
ligand is presented, highlighting the various forms of monomolecular magnets and the
current status of research on their magnetic properties, Ueff, and TB. SMMs generally
consist of an intrinsic metal nucleus surrounded by an organic ligand shell. With the rapid
development of science and technology, great progress has been made in the study of
multi-nuclear SMMs. The synthesis of multinuclear rare earth SMMs and research on
magneto-structural relationships are interesting. Due to the large number of metal ions
inside multinuclear rare earth SMMs, the complexity of the interactions between the metal
ions increases exponentially compared to that of binuclear ones, and the properties of the
SMMs can be affected. Meanwhile displaying the preparation and properties of SMMs
composed of other ligands. Moreover, the development of the preparation technology of
SMMs with rare earth element Pcs is summarized. Methods for regulating the magnetic
anisotropy, Ueff, and TB of SMMs are also presented. Magnetic anisotropy plays a crucial
role in the magnetic properties of single-molecule systems: it affects the shape of the
hysteresis loop, the occurrence of magnetic blockage in single-molecule magnets and
the preferential orientation of molecular magnetization. Despite significant progress has
been made, some critically technical points are still needed for consideration for further
applications. In general, the following strategies may provide us with a new clue to
construct high-performance Ln-SMMs:

(1) Specific and detailed theoretical studies for further new straight forward synthetic
strategies in production ambient conditions. One can continue the axial strong crystal
modulation of the bulk field, combined with symmetry strategies to improve the
rigidity of molecules and enhance intermolecular forces and magnetic exchange to
synthesize higher performance SMMs with higher performance.

(2) Experimental and theoretical calculations were performed to explore more efficient
methods to modulate the relaxation process to increase the TB of SMMs.

(3) The synthesis of SMMs with significant anisotropy, together with a wide range of
bridging ligands, has been used in the search for effective exchange interactions,
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and more non-centrosymmetric multinuclear SMMs with a special arrangement of
metal-centered magnetic anisotropy can be designed in the synthesis work.

(4) Spintronic devices based on SMMs are an important direction of effort. It is more
challenging to detect the magnetic properties of single molecule layers quickly.

All in all, we believe as scientific research progresses, more magnetic energy of rare
earth SMMs can be exploited, data recording of Ueff and TB can be enhanced again, and
magnetic anisotropy can be better applied to the development of spintronics devices. This
review has important implications and insights for the design of Ln-SMMs.
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