The Material Heterogeneity Effect on the Local Resistance of Pultruded GFRP Columns
Abstract
:1. Introduction
2. Test Program
2.1. Material and Methods
2.2. Description of the Column Samples
2.3. Test Method
3. Test Results
3.1. The First Test Stage: Control Samples
3.2. The Second Test Stage: Samples with End Supports
4. Discussion of the Test Results
5. Numerical Analysis of the Compressive Load Resistance Mechanisms
5.1. Description of the Simplified FE Model
5.2. Simulation Results
- A difference in “elastic” deformations results from the absence of the preloading stage in the physical tests. This difference increases when introducing the end plates (compare Figure 9a,b). This preloading is necessary to tighten the assembly parts; it is mandatory for complex loading setups, e.g., additional support plates.
- The end plate effect. The model adequately reflects deformations of the control sample (Figure 9a); the ultimate load prediction error is 7% (Table 4). However, the model cannot capture the support plate contribution to improving the mechanical resistance of the column samples, as evident in physical tests (Figure 9b). This discrepancy results from the essential effect of the plate on improving the material performance of the end zones, which is beyond the limited ability of the simplified numerical model.
- The column length effect. Table 4 indicates that the simplified model (neglecting the material heterogeneity) fails to predict the load-bearing capacity of the S-6 specimen with end supports, with a relative error of 18%. However, increasing the column length remedies the prediction results and reduces the error to 7%. These results relate the model nonlinearity to the buckling effects predominant in the S-15 sample.
5.3. Physically Non-Linear Modeling
5.4. Further Research
6. Conclusions
- Pultruded GFRP material exhibits lower compressive capacity than steel structures because of the fibers’ inability to resist the compression stresses. The material’s heterogeneity also causes stress to concentrate mainly at the column ends under compression, making it prone to crushing failure under compression.
- End constraints substantially improve the load-bearing capacity of the tubular GFRP columns. This study provides a possible solution to improve the local behavior of the support joints. However, this complex setup requires preloading to tighten the assembly parts.
- The primary failure mode of pultruded GFRP tubular profiles is a failure at the junction of the tube walls. Due to the material’s limited allowable deformation, the transverse tensile stress at the tube wall connection exceeds the strength limit. This leads to brittle failure and the profile separation forming flat components. This failure is unfavorable in engineering applications. Therefore, it is advisable to consider reinforcement solutions to enhance the transverse constraints of the locally produced pultruded materials.
- The test results of the columns equipped with support plates indicate a negative correlation between the load-bearing capacity and the column length. The short columns with a slenderness ratio of 6 fully realize the material strength of the GFRP profile. Increasing the column length reduces the column efficiency expressed in terms of the theoretical resistance of the reinforced composite. Therefore, GFRP columns require additional means to avoid premature stability loss.
- The simplified numerical model adequately predicts the ultimate resistance of relatively long columns (the average prediction error does not exceed 7%). However, the model fails to predict the effects beyond the elastic material model, e.g., failure characteristic of support joints of pultruded GFRP profiles. Therefore, developing adequate material models determines the further research object, and the proposed testing procedure helps generate the experimental data and verify the model’s adequacy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godat, A.; Légeron, F.; Gagné, V.; Marmion, B. Use of FRP pultruded members for electricity transmission towers. Compos. Struct. 2013, 105, 408–421. [Google Scholar] [CrossRef]
- Vedernikov, A.; Safonov, A.; Tucci, F.; Carlone, P.; Akhatov, I. Pultruded materials and structures: A review. J. Compos. Mater. 2020, 54, 4081–4117. [Google Scholar] [CrossRef]
- Jamali, F.; Mousavi, S.R.; Peyma, A.B.; Moodi, Y. Prediction of compressive strength of fiber-reinforced polymers-confined cylindrical concrete using artificial intelligence methods. J. Reinf. Plast. Compos. 2022, 41, 679–704. [Google Scholar] [CrossRef]
- Garnevičius, M.; Gribniak, V. Developing a hybrid FRP-concrete composite beam. Sci. Rep. 2022, 12, 16237. [Google Scholar] [CrossRef] [PubMed]
- Moodi, Y.; Ghasemi, M.; Mousavi, S.R. Estimating the compressive strength of rectangular fiber reinforced polymer–confined columns using multilayer perceptron, radial basis function, and support vector regression methods. J. Reinf. Plast. Compos. 2022, 41, 130–146. [Google Scholar] [CrossRef]
- Fouad, R.; Aboubeah, A.S.; Hussein, A.; Zaher, A.; Said, H. Flexural behavior of RC continuous beams having hybrid reinforcement of steel and GFRP bars. J. Reinf. Plast. Compos. 2023, 42, 07316844231151607. [Google Scholar] [CrossRef]
- Alhawamdeh, M.; Alajarmeh, O.; Aravinthan, T.; Shelley, T.; Schubel, P.; Mohammed, A.; Zeng, X. Review on local buckling of hollow box FRP profiles in civil structural applications. Polymers 2021, 13, 4159. [Google Scholar] [CrossRef] [PubMed]
- Berardi, V.P.; Perrella, M.; Feo, L.; Cricrì, G. Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modeling. Compos. Part B Eng. 2017, 122, 136–144. [Google Scholar] [CrossRef]
- Cardoso, D.C.; Togashi, B.S. Experimental investigation on the flexural-torsional buckling behavior of pultruded GFRP angle columns. Thin-Walled Struct. 2018, 125, 269–280. [Google Scholar] [CrossRef]
- Tomblin, J.; Barbero, E. Local buckling experiments on FRP columns. Thin-Walled Struct. 1994, 18, 97–116. [Google Scholar] [CrossRef]
- Sultani, H.A.; Sokolov, A.; Rimkus, A.; Gribniak, V. Quantifying the residual stiffness of concrete beams with polymeric reinforcement under repeated loads. Polymers 2023, 15, 3393. [Google Scholar] [CrossRef] [PubMed]
- Chinnasamy, Y.; Joanna, P.S.; Kothanda, K.; Gurupatham, B.G.A.; Roy, K. Behavior of pultruded glass-fiber-reinforced polymer beam-columns infilled with engineered cementitious composites under cyclic loading. J. Compos. Sci. 2022, 6, 338. [Google Scholar] [CrossRef]
- Assad, M.; Hawileh, R.; Abdalla, J. Finite element simulation of FRP-strengthened thin RC slabs. J. Compos. Sci. 2022, 6, 263. [Google Scholar] [CrossRef]
- Uyttersprot, J.; De Corte, W.; Van Paepegem, W. Modal parameter identification and comfort assessment of GFRP lightweight footbridges in relation to human–structure interaction. J. Compos. Sci. 2023, 7, 348. [Google Scholar] [CrossRef]
- FiberLine Composites. GFRP Profiles—Design Manual; Fibreline: Kolding, Denmark, 2003; 326p, Available online: https://fiberline.com/download-our-free-manual/ (accessed on 18 May 2020).
- Creative Pultrusions. Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles; Revision 11; Creative Pultrusions: Alum Bank, PA, USA, 2004; Volume 5, 326p, Available online: https://www.emcoplastics.com/assets/pdf/plexiglas/Pultex%20Design%20Manual.pdf (accessed on 17 May 2020).
- Correia, R.J. Pultrusion of advanced fibre-reinforced polymer (FRP) composites. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Bai, J., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2013; pp. 207–251. [Google Scholar]
- Fascetti, A.; Feo, L.; Abbaszadeh, H. A critical review of numerical methods for the simulation of pultruded fiber-reinforced structural elements. Compos. Struct. 2021, 273, 114284. [Google Scholar] [CrossRef]
- Poulton, M.; Sebastian, W. Taxonomy of fibre mat misalignments in pultruded GFRP bridge decks. Compos. Part A Appl. Sci. Manuf. 2021, 142, 106239. [Google Scholar] [CrossRef]
- Zureick, A. FRP pultruded structural shapes. Prog. Struct. Eng. Mater. 1998, 1, 143–149. [Google Scholar] [CrossRef]
- Seangatith, S.; Sriboonlue, W. Axially loaded glass-fiber reinforced plastic composite columns. In Proceedings of the Seventh East Asia Pacific Conference on Structural Engineering Construction, Kochi, Japan, 27–29 August 1999; pp. 1307–1312. [Google Scholar]
- Lane, A.; Mottram, J.T. Influence of modal coupling on the buckling of concentrically loaded pultruded fibre-reinforced plastic columns. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2002, 216, 133–144. [Google Scholar] [CrossRef]
- Hassan, N.K.; Mosallam, A.S. Buckling and ultimate failure of thin-walled pultruded composite columns. Polym. Polym. Compos. 2004, 12, 469–481. [Google Scholar] [CrossRef]
- Bai, Y.; Keller, T. Shear failure of pultruded fiber-reinforced polymer composites under axial compression. ASCE J. Compos. Constr. 2009, 13, 234–242. [Google Scholar] [CrossRef]
- Wu, C.; Tian, J.; Ding, Y.; Feng, P. Axial compression behavior of pultruded GFRP channel sections. Compos. Struct. 2022, 289, 115438. [Google Scholar] [CrossRef]
- Higgoda, T.M.; Elchalakani, M.; Kimiaei, M.; Wittek, A.; Yang, B. Experimental and numerical investigation of pultruded GFRP circular hollow tubular columns under concentric and eccentric loading. Compos. Struct. 2023, 304, 116427. [Google Scholar] [CrossRef]
- Guo, Z.; Xue, X.; Ye, M.; Chen, Y.; Li, Z. Experimental research on pultruded concrete-filled GFRP tubular short columns externally strengthened with CFRP. Compos. Struct. 2021, 255, 112943. [Google Scholar] [CrossRef]
- Hadi, M.; Le, T. Behaviour of hollow core square reinforced concrete columns wrapped with CFRP with different fibre orientations. Constr. Build. Mater. 2014, 50, 62–73. [Google Scholar] [CrossRef]
- Guo, Z.; Ye, M.; Chen, Y.; Chen, X. Experimental study on compressive behavior of concrete-filled GFRP tubular stub columns after being subjected to acid corrosion. Compos. Struct. 2020, 250, 112630. [Google Scholar] [CrossRef]
- Dong, Z.; Han, T.; Zhang, B.; Zhu, H.; Wu, G.; Wei, Y.; Zhang, P. A review of the research and application progress of new types of concrete-filled FRP tubular members. Constr. Build. Mater. 2021, 312, 125353. [Google Scholar] [CrossRef]
- Cintra, G.G.; Cardoso, D.C.T.; Vieira, J.D. Parameters affecting local buckling response of pultruded GFRP I-columns: Experimental and numerical investigation. Compos. Struct. 2019, 222, 110897. [Google Scholar] [CrossRef]
- Alhawamdeh, M.; Alajarmeh, O.; Aravinthan, T.; Shelley, T.; Schubel, P.; Kemp, M.; Zeng, X. Modelling hollow pultruded FRP profiles under axial compression: Local buckling and progressive failure. Compos. Struct. 2021, 262, 113650. [Google Scholar] [CrossRef]
- Choi, J.-W.; Joo, H.-J.; Choi, W.-C.; Yoon, S.-J. Local buckling strength of pultruded FRP I-section with various mechanical properties compression members. KSCE J. Civ. Eng. 2015, 19, 710–718. [Google Scholar] [CrossRef]
- Wang, W.; Sheikh, M.N.; Hadi, M.N.S. Behaviour of perforated GFRP tubes under axial compression. Thin-Walled Struct. 2015, 95, 88–100. [Google Scholar] [CrossRef]
- Gribniak, V.; Rimkus, A.; Plioplys, L.; Misiūnaitė, I.; Garnevičius, M.; Boris, R.; Šapalas, A. An efficient approach to describe the fiber effect on mechanical performance of pultruded GFRP profiles. Front. Mater. 2021, 8, 746376. [Google Scholar] [CrossRef]
- Barkanov, E.; Akishin, P.; Namsone, E.; Auzins, J.; Morozovs, A. Optimization of pultrusion processes for an industrial application. Mech. Compos. Mater. 2021, 56, 697–712. [Google Scholar] [CrossRef]
- Civera, M.; Boscato, G.; Fragonara, L.Z. Treed Gaussian process for manufacturing imperfection identification of pultruded GFRP thin-walled profile. Compos. Struct. 2020, 254, 112882. [Google Scholar] [CrossRef]
- Boscato, G.; Civera, M.; Fragonara, L.Z. Recursive partitioning and Gaussian process regression for the detection and localization of damages in pultruded glass fiber reinforced polymer material. Struct. Control Health Monit. 2021, 28, e2805. [Google Scholar] [CrossRef]
- Podolak, P.; Droździel, M.; Czapski, P.; Kubiak, T.; Bieniaś, J. The failure mode variation in post-buckled GFRP columns with different stacking sequences—Experimental damage analysis and numerical prediction. Int. J. Mech. Sci. 2021, 210, 106747. [Google Scholar] [CrossRef]
- Gribniak, V.; Rimkus, A.; Plioplys, L.; Misiūnaitė, I.; Boris, R.; Pravilonis, T. Evaluating mechanical efficiency of glass fibres in a polymer profile. Polym. Test. 2021, 102, 107338. [Google Scholar] [CrossRef]
- GB/T 1446-2005; Fiber-Reinforced Plastics Composites–The Generals for Determination of Properties. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
- GB/T 1447-2005; Fiber-Reinforced Plastics Composites–Determination of Tensile Properties. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
- GB/T 1448-2005; Fiber-Reinforced Plastics Composites–Determination of Compressive Properties. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
- Arnautov, A.K.; Nasibullins, A.; Gribniak, V.; Blumbergs, I.; Hauka, M. Experimental characterization of the properties of double-lap needled and hybrid joints of carbon/epoxy composites. Materials 2015, 8, 7578–7586. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, H.; Gribniak, V. Analyzing the sample geometry effect on mechanical performance of drilled GFRP connections. Materials 2022, 15, 2901. [Google Scholar] [CrossRef]
- Hashin, Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980, 47, 329–335. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Z.; Zhu, H.; Cui, J.; Li, D.; Li, Y.; Luan, Y. Numerical simulation of bolted joint composite laminates under low-velocity impact. Mater. Today Commun. 2020, 23, 100891. [Google Scholar] [CrossRef]
- Gribniak, V.; Rimkus, A.; Misiūnaitė, I.; Zakaras, T. Improving local stability of aluminium profile with low-modulus stiffeners: Experimental and numerical web buckling analysis. Thin-Walled Struct. 2022, 172, 108858. [Google Scholar] [CrossRef]
- Li, H.; Shi, J.; Zhao, J.; Zheng, Y.; Duan, Y.; Li, C. Tensile behavior analysis of CFRP (carbon-fiber-reinforced-polymer)–titanium joint under preload. Polym. Compos. 2023, 44, 2205–2221. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, Y.; Liu, Z.; Bao, Y.; Wang, J.; Chen, C. Analytical method for assembly-induced deformation prediction of composite bolted joints with assembly gap. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023; in press. [Google Scholar] [CrossRef]
Parameter | Value * |
---|---|
Tensile strength (MPa) | 464.2 ± 8.12% |
Compressive strength (MPa) | 189.2 ± 5.61% |
Modulus of elasticity of longitudinal tension (GPa) | 32.77 ± 1.54% |
Modulus of elasticity of longitudinal compression (GPa) | 53.30 ± 4.12% |
Modulus of elasticity of transverse tension (GPa) | 3.68 ± 6.85% |
Modulus of elasticity of transverse compression (GPa) | 6.16 ± 5.91% |
Modulus of shear (GPa) | 1.60 ± 8.90% |
Poisson’s ratio (-) | 0.27 |
Type | Pu,control | Pu,1 | Pu,2 | Pu,3 | Pu,4 | Pu,5 | Mean * |
---|---|---|---|---|---|---|---|
S-6 | 60.50 | 92.43 | 70.91 | 90.1 | 90.07 | 92.48 | 87.20 ± 10.5% |
S-10 | 65.01 | 68.82 | 80.95 | 76.48 | 72.49 | 70.74 | 73.90 ± 6.6% |
S-15 | 54.63 | 58.39 | 72.92 | 74.03 | 63.79 | 68.81 | 67.59 ± 9.7% |
E1 (GPa) | E2 (GPa) | E3 (GPa) | G12 (GPa) | G13 (GPa) | G23 (GPa) | η12 | η13 | η23 |
---|---|---|---|---|---|---|---|---|
33.27 | 3.68 | 3.68 | 1.6 | 1.6 | 1.6 | 0.27 | 0.27 | 0.4 |
Column | Test Result * (kN) | Prediction (kN) | Δ (%) |
---|---|---|---|
S-6 control | 60.5 | 56.3 | 6.9 |
S-6 | 87.2 ± 10.5% | 71.8 | 17.7 |
S-15 | 67.6 ± 9.7% | 63.2 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Gribniak, V.; Ding, C.; Zhu, H.; Chen, B. The Material Heterogeneity Effect on the Local Resistance of Pultruded GFRP Columns. Materials 2024, 17, 153. https://doi.org/10.3390/ma17010153
Zhu Y, Gribniak V, Ding C, Zhu H, Chen B. The Material Heterogeneity Effect on the Local Resistance of Pultruded GFRP Columns. Materials. 2024; 17(1):153. https://doi.org/10.3390/ma17010153
Chicago/Turabian StyleZhu, Yongcheng, Viktor Gribniak, Chaofeng Ding, Hua Zhu, and Baiqi Chen. 2024. "The Material Heterogeneity Effect on the Local Resistance of Pultruded GFRP Columns" Materials 17, no. 1: 153. https://doi.org/10.3390/ma17010153
APA StyleZhu, Y., Gribniak, V., Ding, C., Zhu, H., & Chen, B. (2024). The Material Heterogeneity Effect on the Local Resistance of Pultruded GFRP Columns. Materials, 17(1), 153. https://doi.org/10.3390/ma17010153