Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination
Abstract
:1. Introduction
2. Materials and Methods
3. Numerical Results
3.1. Results of an Example Multiscale FEM Analysis
3.2. Finding the Microscale Metamodel
3.3. Multiscale Analysis with Metamodel
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fish, J.; Wagner, G.J.; Keten, S. Mesoscopic and Multiscale Modelling in Materials. Nat. Mater. 2021, 20, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-Y.; Qian, S.-Y.; Wang, N.-W.; Xiong, W.; Wu, W.-Q. A Review on Stochastic Multiscale Analysis for FRP Composite Structures. Compos. Struct. 2022, 284, 115132. [Google Scholar] [CrossRef]
- Yao, L.; Ramesh, A.; Xiao, Z.; Chen, Y.; Zhuang, Q. Multimetal Research in Powder Bed Fusion: A Review. Materials 2023, 16, 4287. [Google Scholar] [CrossRef]
- Hughes, T.J.R.; Feijóo, G.R.; Mazzei, L.; Quincy, J.-B. The Variational Multiscale Method—A Paradigm for Computational Mechanics. Comput. Methods Appl. Mech. Eng. 1998, 166, 3–24. [Google Scholar] [CrossRef]
- Feyel, F. A Multilevel Finite Element Method (FE2) to Describe the Response of Highly Non-Linear Structures Using Generalized Continua. Comput. Methods Appl. Mech. Eng. 2003, 192, 3233–3244. [Google Scholar] [CrossRef]
- Kouznetsova, V.G.; Geers, M.G.D.; Brekelmans, W.A.M. Multi-Scale Second-Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy. Comput. Methods Appl. Mech. Eng. 2004, 193, 5525–5550. [Google Scholar] [CrossRef]
- Xu, R.; Bouby, C.; Zahrouni, H.; Ben Zineb, T.; Hu, H.; Potier-Ferry, M. A Multiscale Analysis on the Superelasticity Behavior of Architected Shape Memory Alloy Materials. Materials 2018, 11, 1746. [Google Scholar] [CrossRef] [PubMed]
- Fish, J.; Shek, K.; Pandheeradi, M.; Shephard, M.S. Computational Plasticity for Composite Structures Based on Mathematical Homogenization: Theory and Practice. Comput. Methods Appl. Mech. Eng. 1997, 148, 53–73. [Google Scholar] [CrossRef]
- Fatemi Dehaghani, P.; Hatefi Ardakani, S.; Bayesteh, H.; Mohammadi, S. 3D Hierarchical Multiscale Analysis of Heterogeneous SMA Based Materials. Int. J. Solids Struct. 2017, 118–119, 24–40. [Google Scholar] [CrossRef]
- Nezamabadi, S.; Yvonnet, J.; Zahrouni, H.; Potier-Ferry, M. A Multilevel Computational Strategy for Handling Microscopic and Macroscopic Instabilities. Comput. Methods Appl. Mech. Eng. 2009, 198, 2099–2110. [Google Scholar] [CrossRef]
- Budarapu, P.R.; Gracie, R.; Yang, S.-W.; Zhuang, X.; Rabczuk, T. Efficient Coarse Graining in Multiscale Modeling of Fracture. Theor. Appl. Fract. Mech. 2014, 69, 126–143. [Google Scholar] [CrossRef]
- Han, F.; Roters, F.; Raabe, D. Microstructure-Based Multiscale Modeling of Large Strain Plastic Deformation by Coupling a Full-Field Crystal Plasticity-Spectral Solver with an Implicit Finite Element Solver. Int. J. Plast. 2020, 125, 97–117. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, H.; Huang, T.; Wu, C.T. Intelligent Multiscale Simulation Based on Process-Guided Composite Database 2020. arXiv 2020, arXiv:arXiv:2003.09491. [Google Scholar]
- Gajek, S.; Schneider, M.; Böhlke, T. An FE-DMN Method for the Multiscale Analysis of Thermomechanical Composites. Comput. Mech. 2022, 69, 1087–1113. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Noels, L. Micromechanics-Based Material Networks Revisited from the Interaction Viewpoint; Robust and Efficient Implementation for Multi-Phase Composites. Eur. J. Mech. ASolids 2022, 91, 104384. [Google Scholar] [CrossRef]
- Xu, R.; Yang, J.; Yan, W.; Huang, Q.; Giunta, G.; Belouettar, S.; Zahrouni, H.; Zineb, T.B.; Hu, H. Data-Driven Multiscale Finite Element Method: From Concurrence to Separation. Comput. Methods Appl. Mech. Eng. 2020, 363, 112893. [Google Scholar] [CrossRef]
- Le, B.A.; Yvonnet, J.; He, Q.-C. Computational Homogenization of Nonlinear Elastic Materials Using Neural Networks. Int. J. Numer. Methods Eng. 2015, 104, 1061–1084. [Google Scholar] [CrossRef]
- Lu, X.; Giovanis, D.G.; Yvonnet, J.; Papadopoulos, V.; Detrez, F.; Bai, J. A Data-Driven Computational Homogenization Method Based on Neural Networks for the Nonlinear Anisotropic Electrical Response of Graphene/Polymer Nanocomposites. Comput. Mech. 2019, 64, 307–321. [Google Scholar] [CrossRef]
- Gorji, M.B.; Mozaffar, M.; Heidenreich, J.N.; Cao, J.; Mohr, D. On the Potential of Recurrent Neural Networks for Modeling Path Dependent Plasticity. J. Mech. Phys. Solids 2020, 143, 103972. [Google Scholar] [CrossRef]
- Ghavamian, F.; Simone, A. Accelerating Multiscale Finite Element Simulations of History-Dependent Materials Using a Recurrent Neural Network. Comput. Methods Appl. Mech. Eng. 2019, 357, 112594. [Google Scholar] [CrossRef]
- Mozaffar, M.; Bostanabad, R.; Chen, W.; Ehmann, K.; Cao, J.; Bessa, M.A. Deep Learning Predicts Path-Dependent Plasticity. Proc. Natl. Acad. Sci. USA 2019, 116, 26414–26420. [Google Scholar] [CrossRef]
- Yang, C.; Kim, Y.; Ryu, S.; Gu, G.X. Prediction of Composite Microstructure Stress-Strain Curves Using Convolutional Neural Networks. Mater. Des. 2020, 189, 108509. [Google Scholar] [CrossRef]
- Rao, C.; Liu, Y. Three-Dimensional Convolutional Neural Network (3D-CNN) for Heterogeneous Material Homogenization. Comput. Mater. Sci. 2020, 184, 109850. [Google Scholar] [CrossRef]
- Vlassis, N.N.; Ma, R.; Sun, W. Geometric Deep Learning for Computational Mechanics Part I: Anisotropic Hyperelasticity. Comput. Methods Appl. Mech. Eng. 2020, 371, 113299. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.T.; Koishi, M. A Deep Material Network for Multiscale Topology Learning and Accelerated Nonlinear Modeling of Heterogeneous Materials. Comput. Methods Appl. Mech. Eng. 2019, 345, 1138–1168. [Google Scholar] [CrossRef]
- Gajek, S.; Schneider, M.; Böhlke, T. On the Micromechanics of Deep Material Networks. J. Mech. Phys. Solids 2020, 142, 103984. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.T. Exploring the 3D Architectures of Deep Material Network in Data-Driven Multiscale Mechanics. J. Mech. Phys. Solids 2019, 127, 20–46. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.T.; Koishi, M. Transfer Learning of Deep Material Network for Seamless Structure–Property Predictions. Comput. Mech. 2019, 64, 451–465. [Google Scholar] [CrossRef]
- Wu, L.; Adam, L.; Noels, L. Micro-Mechanics and Data-Driven Based Reduced Order Models for Multi-Scale Analyses of Woven Composites. Compos. Struct. 2021, 270, 114058. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Noels, L. Interaction-Based Material Network: A General Framework for (Porous) Microstructured Materials. Comput. Methods Appl. Mech. Eng. 2022, 389, 114300. [Google Scholar] [CrossRef]
- Liu, Z. Cell Division in Deep Material Networks Applied to Multiscale Strain Localization Modeling. Comput. Methods Appl. Mech. Eng. 2021, 384, 113914. [Google Scholar] [CrossRef]
- Liu, Z. Deep Material Network with Cohesive Layers: Multi-Stage Training and Interfacial Failure Analysis. Comput. Methods Appl. Mech. Eng. 2020, 363, 112913. [Google Scholar] [CrossRef]
- Gajek, S.; Schneider, M.; Böhlke, T. An FE–DMN Method for the Multiscale Analysis of Short Fiber Reinforced Plastic Components. Comput. Methods Appl. Mech. Eng. 2021, 384, 113952. [Google Scholar] [CrossRef]
- Kirchdoerfer, T.; Ortiz, M. Data-Driven Computational Mechanics. Comput. Methods Appl. Mech. Eng. 2016, 304, 81–101. [Google Scholar] [CrossRef]
- Sanz-Herrera, J.A.; Mora-Macías, J.; Ayensa-Jiménez, J.; Reina-Romo, E.; Doweidar, M.H.; Domínguez, J.; Doblaré, M. Data-Driven Computational Simulation in Bone Mechanics. Ann. Biomed. Eng. 2021, 49, 407–419. [Google Scholar] [CrossRef]
- Mora-Macías, J.; Ayensa-Jiménez, J.; Reina-Romo, E.; Doweidar, M.H.; Domínguez, J.; Doblaré, M.; Sanz-Herrera, J.A. A Multiscale Data-Driven Approach for Bone Tissue Biomechanics. Comput. Methods Appl. Mech. Eng. 2020, 368, 113136. [Google Scholar] [CrossRef]
- Karapiperis, K.; Stainier, L.; Ortiz, M.; Andrade, J.E. Data-Driven Multiscale Modeling in Mechanics. J. Mech. Phys. Solids 2021, 147, 104239. [Google Scholar] [CrossRef]
- Burczyński, T.; Kuś, W.; Brodacka, A. Multiscale Modeling of Osseous Tissues. J. Theor. Appl. Mech. 2010, 48, 855–870. [Google Scholar]
- Terroba, F.; Frövel, M.; Atienza, R. Structural Health and Usage Monitoring of an Unmanned Turbojet Target Drone. Struct. Health Monit. 2019, 18, 635–650. [Google Scholar] [CrossRef]
- Serafini, J.; Bernardini, G.; Porcelli, R.; Masarati, P. In-Flight Health Monitoring of Helicopter Blades via Differential Analysis. Aerosp. Sci. Technol. 2019, 88, 436–443. [Google Scholar] [CrossRef]
- Li, L. Damage Development and Lifetime Prediction of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at 1300 °C in Vacuum, Inert and Oxidative Atmospheres. Aerosp. Sci. Technol. 2019, 86, 613–629. [Google Scholar] [CrossRef]
- Dziendzikowski, M.; Kurnyta, A.; Reymer, P.; Kurdelski, M.; Klysz, S.; Leski, A.; Dragan, K. Application of Operational Load Monitoring System for Fatigue Estimation of Main Landing Gear Attachment Frame of an Aircraft. Materials 2021, 14, 6564. [Google Scholar] [CrossRef] [PubMed]
- Mucha, W. Comparison of Machine Learning Algorithms for Structure State Prediction in Operational Load Monitoring. Sensors 2020, 20, 7087. [Google Scholar] [CrossRef] [PubMed]
- Robert, D.J.; Chan, D.; Rajeev, P.; Kodikara, J. Effects of Operational Loads on Buried Water Pipes Using Field Tests. Tunn. Undergr. Space Technol. 2022, 124, 104463. [Google Scholar] [CrossRef]
- Schroeder, K.; Ecke, W.; Apitz, J.; Lembke, E.; Lenschow, G. A Fibre Bragg Grating Sensor System Monitors Operational Load in a Wind Turbine Rotor Blade. Meas. Sci. Technol. 2006, 17, 1167. [Google Scholar] [CrossRef]
- Tabian, I.; Fu, H.; Sharif Khodaei, Z. A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures. Sensors 2019, 19, 4933. [Google Scholar] [CrossRef]
- Jung, K.-C.; Chang, S.-H. Advanced Deep Learning Model-Based Impact Characterization Method for Composite Laminates. Compos. Sci. Technol. 2021, 207, 108713. [Google Scholar] [CrossRef]
- Khan, A.; Ko, D.-K.; Lim, S.C.; Kim, H.S. Structural Vibration-Based Classification and Prediction of Delamination in Smart Composite Laminates Using Deep Learning Neural Network. Compos. Part B Eng. 2019, 161, 586–594. [Google Scholar] [CrossRef]
- Candon, M.J.; Levinski, O.; Altaf, A.; Carrese, R.; Marzocca, P. Aircraft Transonic Buffet Load Prediction Using Artificial Neural Networks. In AIAA Scitech 2019 Forum; AIAA SciTech Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar]
- Terada, K.; Kikuchi, N. A Class of General Algorithms for Multi-Scale Analyses of Heterogeneous Media. Comput. Methods Appl. Mech. Eng. 2001, 190, 5427–5464. [Google Scholar] [CrossRef]
- Kouznetsova, V.G. Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2004. [Google Scholar]
- Burczyński, T.; Pietrzyk, M.; Kuś, W.; Madej, Ł.; Mrozek, A.; Rauch, Ł. Multiscale Modelling and Optimisation of Materials and Structures; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; ISBN 978-1-119-97592-2. [Google Scholar]
- Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N. Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches. Int. J. Solids Struct. 2000, 37, 2285–2311. [Google Scholar] [CrossRef]
- Ostoja-Starzewski, M. Material Spatial Randomness: From Statistical to Representative Volume Element. Probabilistic Eng. Mech. 2006, 21, 112–132. [Google Scholar] [CrossRef]
- Pingaro, M.; Reccia, E.; Trovalusci, P.; Masiani, R. Fast Statistical Homogenization Procedure (FSHP) for Particle Random Composites Using Virtual Element Method. Comput. Mech. 2019, 64, 197–210. [Google Scholar] [CrossRef]
- Jaszak, P.; Grzejda, R.; Kluczyński, J.; Zmarzły, P. Basic Design Parameters Influencing on Axial Stiffness of the Spiral Wound Gasket. Materials 2023, 16, 6209. [Google Scholar] [CrossRef]
- Mucha, W. Application of Dynamic Condensation for Model Order Reduction in Real-Time Hybrid Simulations. Meccanica 2023, 58, 1409–1425. [Google Scholar] [CrossRef]
- Livingstone, D.J. Artificial Neural Networks: Methods and Applications; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; ISBN 978-1-61737-738-9. [Google Scholar]
- Mucha, W.; Kokot, G.; Viana, J.C.; Nunes, J.P. New Operational Load Monitoring Approach Using Digital Image Correlation and Image Classification Networks. J. Phys. Conf. Ser. 2023, 2512, 012015. [Google Scholar] [CrossRef]
- Kałużyński, P.; Mucha, W.; Capizzi, G.; Lo Sciuto, G. Chemiresistor Gas Sensors Based on Conductive Copolymer and ZnO Blend—Prototype Fabrication, Experimental Testing, and Response Prediction by Artificial Neural Networks. J. Mater. Sci. Mater. Electron. 2022, 33, 26368–26382. [Google Scholar] [CrossRef]
- Hoh, H.J.; Xiao, Z.M.; Luo, J. On the Plastic Zone Size and Crack Tip Opening Displacement of a Dugdale Crack Interacting with a Circular Inclusion. Acta Mech. 2010, 210, 305–314. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Kumar, K.R.; Reddy, T.A.J. Structural Safety Evaluation Using Modified Latin Hypercube Sampling Technique. Int. J. Perform. Eng. 2013, 9, 515. [Google Scholar] [CrossRef]
- Lv, C.; Xing, Y.; Zhang, J.; Na, X.; Li, Y.; Liu, T.; Cao, D.; Wang, F.-Y. Levenberg–Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System. IEEE Trans. Ind. Inform. 2018, 14, 3436–3446. [Google Scholar] [CrossRef]
- Nguyen, D.; Widrow, B. Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights. In Proceedings of the 1990 IJCNN International Joint Conference on Neural Networks, San Diego, CA, USA, 17–21 June 1990; Volume 3, pp. 21–26. [Google Scholar]
Epoxy Matrix | Glass Fibers | |
---|---|---|
Young’s modulus, MPa | 3780 | 78,000 |
Poison’s ratio | 0.35 | 0.22 |
Young’s moduli | E1 = 7962.6 MPa | E2 = 7951.3 MPa | E3 = 7912.7 MPa |
Poison’s ratios | ν12 = 0.2891 | ν23 = 0.2874 | ν31 = 0.2879 |
Shear moduli | G12 = 5863.2 MPa | G23 = 5852.6 MPa | G31 = 5863.2 MPa |
Load Case L [N] | [50, −100, 50] | [100, 0, 0] |
---|---|---|
[] | 466.1 | −120.1 |
[] | −265.8 | 36.4 |
[] | 161.5 | 27.5 |
[] | 9.31 | 10.44 |
[] | −19.41 | 0.04 |
[] | −85.39 | 3.70 |
FEM: Max. macro stress [MPa] | 6.70 | 2.96 |
FEM: Max. micro stress epoxy [MPa] | 43.07 | 8.59 |
ANN: Max. micro stress epoxy [MPa] | 43.02 | 8.87 |
FEM: Max. micro stress glass [MPa] | 33.30 | 8.31 |
ANN: Max. micro stress glass [MPa] | 33.11 | 8.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuś, W.; Mucha, W.; Jiregna, I.T. Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination. Materials 2024, 17, 154. https://doi.org/10.3390/ma17010154
Kuś W, Mucha W, Jiregna IT. Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination. Materials. 2024; 17(1):154. https://doi.org/10.3390/ma17010154
Chicago/Turabian StyleKuś, Wacław, Waldemar Mucha, and Iyasu Tafese Jiregna. 2024. "Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination" Materials 17, no. 1: 154. https://doi.org/10.3390/ma17010154
APA StyleKuś, W., Mucha, W., & Jiregna, I. T. (2024). Multiscale Analysis of Composite Structures with Artificial Neural Network Support for Micromodel Stress Determination. Materials, 17(1), 154. https://doi.org/10.3390/ma17010154