A Review of the Preparation of Porous Fibers and Porous Parts by a Novel Micro-Extrusion Foaming Technique
Abstract
:1. Introduction
2. MEF
2.1. Polymer Physical Foaming Technology
2.2. Concise Overview of MEF Process and Principles
2.2.1. Extrusion Preparation of 1.75 mm Diameter Filaments
2.2.2. Saturated in High-Pressure Fluid
2.2.3. Micro-Extruding of the Saturated Filaments
2.2.4. Winding to Obtain Porous Fibers or Stacking to Obtain Porous Parts
3. MEF for Porous Fibers
3.1. Process and Principle
3.2. Influence Factors of Porous Fiber Fabrication
3.3. Characteristics of the Fibers
4. MEF for Porous Parts
4.1. The Micro-Extrusion Stacking for Pore Formation
4.2. Characteristics of the Parts
4.3. Different Material Systems
5. Summary and Outlooks of MEF
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Qin, R.; Chen, B. Laser-based additively manufactured bio-inspired crashworthy structure: Energy absorption and collapse behaviour under static and dynamic loadings. Mater. Des. 2021, 211, 110128. [Google Scholar] [CrossRef]
- Song, Y.; Phipps, J.; Zhu, C.; Ma, S. Porous Materials for Water Purification. Angew. Chem. Int. Ed. 2023, 62, e202216724. [Google Scholar] [CrossRef] [PubMed]
- Barbaros, I.; Yang, Y.; Safaei, B.; Yang, Z.; Qin, Z.; Asmael, M. State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials. Nanotechnol. Rev. 2022, 11, 321–371. [Google Scholar] [CrossRef]
- Foudazi, R.; Zowada, R.; Manas-Zloczower, I.; Feke, D.L. Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir 2023, 39, 2092–2111. [Google Scholar] [CrossRef] [PubMed]
- Hegde, V.; Uthappa, U.T.; Suneetha, M.; Altalhi, T.; Soo Han, S.; Kurkuri, M.D. Functional porous Ce-UiO-66 MOF@Keratin composites for the efficient adsorption of trypan blue dye from wastewater: A step towards practical implementations. Chem. Eng. J. 2023, 461, 142103. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Aisyah, H.A.; Nordin, A.H.; Ngadi, N.; Zuhri, M.Y.M.; Asyraf, M.R.M.; Sapuan, S.M.; Zainudin, E.S.; Sharma, S.; Abral, H.; et al. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers 2022, 14, 874. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, C.; Wang, F.; Yin, X.; Yu, J.; Zhang, S.; Ding, B. Recent Advances in Ultrafine Fibrous Materials for Effective Warmth Retention. Adv. Fiber Mater. 2022, 5, 847–867. [Google Scholar] [CrossRef]
- Khuzhayorov, B.; Mustofoqulov, J.; Ibragimov, G.; Md Ali, F.; Fayziev, B. Solute Transport in the Element of Fractured Porous Medium with an Inhomogeneous Porous Block. Symmetry 2020, 12, 1028. [Google Scholar] [CrossRef]
- Sumida, R.; Matsumoto, T.; Yokoi, T.; Yoshizawa, M. A Porous Polyaromatic Solid for Vapor Adsorption of Xylene with High Efficiency, Selectivity, and Reusability. Chem. A Eur. J. 2022, 28, e202202825. [Google Scholar] [CrossRef]
- Liu, R.; Hou, L.; Yue, G.; Li, H.; Zhang, J.; Liu, J.; Miao, B.; Wang, N.; Bai, J.; Cui, Z.; et al. Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers. Adv. Fiber Mater. 2022, 4, 604–630. [Google Scholar] [CrossRef]
- Lee, Y.; Chuah, C.Y.; Lee, J.; Bae, T.-H. Effective functionalization of porous polymer fillers to enhance CO2/N2 separation performance of mixed-matrix membranes. J. Membr. Sci. 2022, 647, 120309. [Google Scholar] [CrossRef]
- Haouari, S.; Rodrigue, D. A Low-Cost Porous Polymer Membrane for Gas Permeation. Materials 2022, 15, 3537. [Google Scholar] [CrossRef]
- Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. A Thermally Insulating Textile Inspired by Polar Bear Hair. Adv. Mater. 2018, 30, e1706807. [Google Scholar] [CrossRef] [PubMed]
- Altay, P.; Uçar, N. Comparative analysis of sound and thermal insulation properties of porous and non-porous polystyrene submicron fiber membranes. J. Text. Inst. 2022, 113, 2177–2184. [Google Scholar] [CrossRef]
- Khalf, A.; Madihally, S.V. Recent advances in multiaxial electrospinning for drug delivery. Eur. J. Pharm. Biopharm. 2017, 112, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Dilamian, M.; Noroozi, B. Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr. Polym. 2021, 251, 117016. [Google Scholar] [CrossRef]
- Sharma, A.K.; Juelfs, A.; Colling, C.; Sharma, S.; Conover, S.P.; Puranik, A.A.; Chau, J.; Rodrigues, L.; Sirkar, K.K. Porous Hydrophobic–Hydrophilic Composite Hollow Fiber and Flat Membranes Prepared by Plasma Polymerization for Direct Contact Membrane Distillation. Membranes 2021, 11, 120. [Google Scholar] [CrossRef]
- Kaiser, S.; Reichelt, E.; Gebhardt, S.E.; Jahn, M.; Michaelis, A. Porous Perovskite Fibers—Preparation by Wet Phase Inversion Spinning and Catalytic Activity. Chem. Eng. Technol. 2014, 37, 1146–1154. [Google Scholar] [CrossRef]
- Lee, C.G.; Javed, H.; Zhang, D.; Kim, J.H.; Westerhoff, P.; Li, Q.; Alvarez, P.J.J. Porous Electrospun Fibers Embedding TiO2 for Adsorption and Photocatalytic Degradation of Water Pollutants. Environ. Sci. Technol. 2018, 52, 4285–4293. [Google Scholar] [CrossRef]
- Ma, X.-H.; Gu, S.-W.; Xu, Z.-L. Structure and property of PFSA/PES porous catalytic nanofibers. Catal. Today 2016, 276, 133–138. [Google Scholar] [CrossRef]
- Wang, S.; Xu, M.; Peng, T.; Zhang, C.; Li, T.; Hussain, I.; Wang, J.; Tan, B. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 2019, 10, 676. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Zhang, Y.; Liu, J.; Lu, Q.; Liu, M. Boron-doped ordered mesoporous carbons for the application of supercapacitors. Electrochim. Acta 2016, 207, 266–274. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, K.; Tian, J.; Shu, Y.; Yang, J.; Xiao, W.; Li, B.; Liao, X. Hierarchical porous hydroxyapatite fibers with a hollow structure as drug delivery carriers. Ceram. Int. 2016, 42, 19079–19085. [Google Scholar] [CrossRef]
- Paul, J.; Ahankari, S.S. Nanocellulose-based aerogels for water purification: A review. Carbohydr. Polym. 2023, 309, 120677. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hsieh, Y.-L. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy 2020, 68, 104305. [Google Scholar] [CrossRef]
- Pavan, G.; Singh, S. Near-perfect sound absorptions in low-frequencies by varying compositions of porous labyrinthine acoustic metamaterial. Appl. Acoust. 2022, 198, 108974. [Google Scholar] [CrossRef]
- Rastegar, N.; Ershad-Langroudi, A.; Parsimehr, H.; Moradi, G. Sound-absorbing porous materials: A review on polyurethane-based foams. Iran. Polym. J. 2022, 31, 83–105. [Google Scholar] [CrossRef]
- Hajikhani, M.; Lin, M. A review on designing nanofibers with high porous and rough surface via electrospinning technology for rapid detection of food quality and safety attributes. Trends Food Sci. Technol. 2022, 128, 118–128. [Google Scholar] [CrossRef]
- Veeramuthu, L.; Venkatesan, M.; Benas, J.-S.; Cho, C.-J.; Lee, C.-C.; Lieu, F.-K.; Lin, J.-H.; Lee, R.-H.; Kuo, C.-C. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers 2021, 13, 4281. [Google Scholar] [CrossRef]
- Raeisdasteh Hokmabad, V.; Davaran, S.; Ramazani, A.; Salehi, R. Design and fabrication of porous biodegradable scaffolds: A strategy for tissue engineering. J. Biomater. Sci. Polym. Ed. 2017, 28, 1797–1825. [Google Scholar] [CrossRef]
- Nofar, M.; Utz, J.; Geis, N.; Altstadt, V.; Ruckdaschel, H. Foam 3D Printing of Thermoplastics: A Symbiosis of Additive Manufacturing and Foaming Technology. Adv. Sci. 2022, 9, e2105701. [Google Scholar] [CrossRef]
- Ding, R.; Yao, J.; Du, B.; Zhao, L.; Guo, Y. Retracted: Mechanical Properties and Energy Absorption Capability of ARCH Lattice Structures Manufactured by Selective Laser Melting. Adv. Eng. Mater. 2020, 22, 1901534. [Google Scholar] [CrossRef]
- Kim, T.; Bae, J.Y.; Lee, N.; Cho, H.H. Hierarchical Metamaterials for Multispectral Camouflage of Infrared and Microwaves. Adv. Funct. Mater. 2019, 29, 1807319. [Google Scholar] [CrossRef]
- Shi, J.; Akbarzadeh, A.H. 3D Hierarchical lattice ferroelectric metamaterials. Int. J. Eng. Sci. 2020, 149, 103247. [Google Scholar] [CrossRef]
- Bhunia, A.; Esquivel, D.; Dey, S.; Fernández-Terán, R.; Goto, Y.; Inagaki, S.; Van Der Voort, P.; Janiak, C. A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. J. Mater. Chem. A 2016, 4, 13450–13457. [Google Scholar] [CrossRef]
- Hu, Y.-Q.; Li, H.-N.; Xu, Z.-K. Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions. J. Membr. Sci. 2022, 648, 120388. [Google Scholar] [CrossRef]
- Hu, X.; Tian, M.; Xu, T.; Sun, X.; Sun, B.; Sun, C.; Liu, X.; Zhang, X.; Qu, L. Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear. ACS Nano 2019, 14, 559–567. [Google Scholar] [CrossRef]
- Xu, H.; Yin, X.; Li, X.; Li, M.; Liang, S.; Zhang, L.; Cheng, L. Lightweight Ti2CTx MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Appl. Mater. Interfaces 2019, 11, 10198–10207. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Schubert, D.W. Highly Sensitive Ultrathin Flexible Thermoplastic Polyurethane/Carbon Black Fibrous Film Strain Sensor with Adjustable Scaffold Networks. Nanomicro Lett. 2021, 13, 64. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F.-S. Highly Efficient Heterogeneous Hydroformylation over Rh-Metalated Porous Organic Polymers: Synergistic Effect of High Ligand Concentration and Flexible Framework. J. Am. Chem. Soc. 2015, 137, 5204–5209. [Google Scholar] [CrossRef]
- Choi, W.J.; Hwang, K.S.; Kwon, H.J.; Lee, C.; Kim, C.H.; Kim, T.H.; Heo, S.W.; Kim, J.H.; Lee, J.Y. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110693. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef]
- Wang, P.; Lv, H.; Cao, X.; Liu, Y.; Yu, D.-G. Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers 2023, 15, 921. [Google Scholar] [CrossRef]
- Jokinen, M.; Peltola, T.; Veittola, S.; Rahiala, H.; Rosenholm, J.B. Adjustable biodegradation for ceramic fibres derived from silica sols. J. Eur. Ceram. Soc. 2000, 20, 1739–1748. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, J.; Li, J.; Li, D.; Xiao, C.; Xiao, H.; Yang, H.; Zhuang, X.; Chen, X. Electrospun polymer biomaterials. Prog. Polym. Sci. 2019, 90, 1–34. [Google Scholar] [CrossRef]
- Doan, H.N.; Tagami, S.; Vo, P.P.; Negoro, M.; Sakai, W.; Tsutsumi, N.; Kanamori, K.; Kinashi, K. Scalable fabrication of cross-linked porous centrifugally spun polyimide fibers for thermal insulation application. Eur. Polym. J. 2022, 169, 111123. [Google Scholar] [CrossRef]
- Marjuban, S.M.; Rahman, M.; Duza, S.S.; Ahmed, M.B.; Patel, D.K.; Rahman, M.S.; Lozano, K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers 2023, 15, 1253. [Google Scholar] [CrossRef]
- Protz, R.; Lehmann, A.; Ganster, J.; Fink, H.P. Solubility and spinnability of cellulose-lignin blends in aqueous NMMO. Carbohydr. Polym. 2021, 251, 117027. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, H.; Li, X.; Liu, Z.; Jia, Q. Study on dry spinning and structure of low mole ratio complex of calcium chloride-polyamide 6. J. Appl. Polym. Sci. 2010, 118, 1996–2004. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, T.; Xu, Z.; Zhao, Y. Wet-spun porous fibers from high internal phase emulsions: Continuous preparation and high stretchability. J. Polym. Sci. 2021, 59, 1055–1064. [Google Scholar] [CrossRef]
- Döğüşcü, D.K.; Hekimoğlu, G.; Sarı, A. High internal phase emulsion templated-polystyrene/carbon nano fiber/hexadecanol composites phase change materials for thermal management applications. J. Energy Storage 2021, 39, 102674. [Google Scholar] [CrossRef]
- Samanta, A.; Nandan, B.; Srivastava, R.K. Morphology of electrospun fibers derived from High Internal Phase Emulsions. J. Colloid Interface Sci. 2016, 471, 29–36. [Google Scholar] [CrossRef]
- Puppi, D.; Zhang, X.; Yang, L.; Chiellini, F.; Sun, X.; Chiellini, E. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: A review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1562–1579. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, Y.; Bai, H. A superhydrophobic textile inspired by polar bear hair for both in air and underwater thermal insulation. Chem. Eng. J. 2020, 397, 125441. [Google Scholar] [CrossRef]
- Rohani Shirvan, A.; Nouri, A.; Sutti, A. A perspective on the wet spinning process and its advancements in biomedical sciences. Eur. Polym. J. 2022, 181, 111681. [Google Scholar] [CrossRef]
- Barroso-Solares, S.; Cuadra-Rodriguez, D.; Rodriguez-Mendez, M.L.; Rodriguez-Perez, M.A.; Pinto, J. A new generation of hollow polymeric microfibers produced by gas dissolution foaming. J. Mater. Chem. B 2020, 8, 8820–8829. [Google Scholar] [CrossRef]
- Barroso-Solares, S.; Pinto, J.; Salvo-Comino, C.; Cuadra-Rodríguez, D.; García-Cabezón, C.; Rodríguez-Pérez, M.A.; Rodríguez-Méndez, M.L. Tuning the electrochemical response of PCL-PEDOT:PSS fibers-based sensors by gas dissolution foaming. Appl. Surf. Sci. 2023, 638, 158062. [Google Scholar] [CrossRef]
- Barkan-Öztürk, H.; Menner, A.; Bismarck, A. Polymerised high internal phase emulsion micromixers for continuous emulsification. Chem. Eng. Sci. 2022, 252, 117296. [Google Scholar] [CrossRef]
- Schallert, V.; Slugovc, C. A Natural Rubber Waste Derived Surfactant for High Internal Phase Emulsion Templating of Poly(Dicyclopentadiene). Macromol. Chem. Phys. 2021, 222, 2100110. [Google Scholar] [CrossRef]
- Sin, D.; Miao, X.; Liu, G.; Wei, F.; Chadwick, G.; Yan, C.; Friis, T. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater. Sci. Eng. C 2010, 30, 78–85. [Google Scholar] [CrossRef]
- Shudo, Y.; Fukuda, M.; Islam, M.S.; Kuroiwa, K.; Sekine, Y.; Karim, M.R.; Hayami, S. 3D porous Ni/NiOx as a bifunctional oxygen electrocatalyst derived from freeze-dried Ni(OH)2. Nanoscale 2021, 13, 5530–5535. [Google Scholar] [CrossRef]
- Indira, V.; Abhitha, K. Mesoporogen-free synthesis of hierarchical zeolite A for CO2 capture: Effect of freeze drying on surface structure, porosity and particle size. Results Eng. 2023, 17, 100886. [Google Scholar] [CrossRef]
- Saad, B.; Matter, S.; Ciardelli, G.; Neuenschwander, P.; Suter, U.W.; Uhlschmid, G.K.; Welti, M. Interactions of osteoblasts and macrophages with biodegradable and highly porous polyesterurethane foam and its degradation products. J. Biomed. Mater. Res. 1996, 32, 355–366. [Google Scholar] [CrossRef]
- Zhai, W.; Jiang, J.; Park, C.B. A review on physical foaming of thermoplastic and vulcanized elastomers. Polym. Rev. 2021, 62, 95–141. [Google Scholar] [CrossRef]
- Jeon, B.; Kim, H.K.; Cha, S.W.; Lee, S.J.; Han, M.-S.; Lee, K.S. Microcellular foam processing of biodegradable polymers—Review. Int. J. Precis. Eng. Manuf. 2013, 14, 679–690. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P.; Chao, Y.; Yu, J.; Zhu, W.; Liu, Z.; Xu, C. Recent advances in 3D printing for catalytic applications. Chem. Eng. J. 2022, 433, 134341. [Google Scholar] [CrossRef]
- Ivanovski, S.; Breik, O.; Carluccio, D.; Alayan, J.; Staples, R.; Vaquette, C. 3D printing for bone regeneration: Challenges and opportunities for achieving predictability. Periodontology 2000 2023, ahead of print. [Google Scholar] [CrossRef]
- El Hadad, A.; Peón, E.; García-Galván, F.; Barranco, V.; Parra, J.; Jiménez-Morales, A.; Galván, J. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy. Materials 2017, 10, 94. [Google Scholar] [CrossRef]
- Elhadad, A.A.; Rosa-Sainz, A.; Cañete, R.; Peralta, E.; Begines, B.; Balbuena, M.; Alcudia, A.; Torres, Y. Applications and multidisciplinary perspective on 3D printing techniques: Recent developments and future trends. Mater. Sci. Eng. R Rep. 2023, 156, 100760. [Google Scholar] [CrossRef]
- Shanmugam, V.; Das, O.; Babu, K.; Marimuthu, U.; Veerasimman, A.; Johnson, D.J.; Neisiany, R.E.; Hedenqvist, M.S.; Ramakrishna, S.; Berto, F. Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int. J. Fatigue 2021, 143, 106007. [Google Scholar] [CrossRef]
- Ozbolat, I.T.; Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016, 76, 321–343. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Ren, J.; Rong, L.; Cao, P.F.; Advincula, R.C. 3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam. Adv. Funct. Mater. 2019, 29, 1900469. [Google Scholar] [CrossRef]
- Visser, C.W.; Amato, D.N.; Mueller, J.; Lewis, J.A. Architected Polymer Foams via Direct Bubble Writing. Adv. Mater. 2019, 31, e1904668. [Google Scholar] [CrossRef]
- Costantini, M.; Jaroszewicz, J.; Kozon, L.; Szlazak, K.; Swieszkowski, W.; Garstecki, P.; Stubenrauch, C.; Barbetta, A.; Guzowski, J. 3D-Printing of Functionally Graded Porous Materials Using On-Demand Reconfigurable Microfluidics. Angew. Chem. Int. Ed. 2019, 58, 7620–7625. [Google Scholar] [CrossRef]
- Li, M.; Tian, F.; Jiang, J.; Zhou, M.; Chen, Q.; Zhao, D.; Zhai, W. Robust and Multifunctional Porous Polyetheretherketone Fiber Fabricated via a Microextrusion CO2 Foaming. Macromol. Rapid Commun. 2021, 42, e2100463. [Google Scholar] [CrossRef]
- Martini; Ellen, J. The Production and Analysis of Microcellular Thermoplastic Foams; MTI: Cambrige, UK, 1981. [Google Scholar]
- Liu, J.; Qin, S.; Wang, G.; Zhang, H.; Zhou, H.; Gao, Y. Batch foaming of ultra-high molecular weight polyethylene with supercritical carbon dioxide: Influence of temperature and pressure. Polym. Test. 2021, 93, 106974. [Google Scholar] [CrossRef]
- Shabani, A.; Fathi, A.; Erlwein, S.; Altstädt, V. Thermoplastic polyurethane foams: From autoclave batch foaming to bead foam extrusion. J. Cell. Plast. 2020, 57, 391–411. [Google Scholar] [CrossRef]
- Ryu, Y.; Sohn, J.S.; Yun, C.S.; Cha, S.W. Shrinkage and Warpage Minimization of Glass-Fiber-Reinforced Polyamide 6 Parts by Microcellular Foam Injection Molding. Polymers 2020, 12, 889. [Google Scholar] [CrossRef]
- Chen, Y.; Das, R. A review on manufacture of polymeric foam cores for sandwich structures of complex shape in automotive applications. J. Sandw. Struct. Mater. 2021, 24, 789–819. [Google Scholar] [CrossRef]
- Gandhi, A.; Bhatnagar, N. Physical Blowing Agent Residence Conditions Stimulated Morphological Transformations in Extrusion Foaming. Polym. Plast. Technol. Eng. 2015, 54, 1812–1818. [Google Scholar] [CrossRef]
- Wolff, F.; Ceron Nicolat, B.; Fey, T.; Greil, P.; Münstedt, H. Extrusion Foaming of a Preceramic Silicone Resin with a Variety of Profiles and Morphologies. Adv. Eng. Mater. 2012, 14, 1110–1115. [Google Scholar] [CrossRef]
- Gold, S.A.; Strong, R.; Turner, B.N. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Kuang, T.; Chen, F.; Chang, L.; Zhao, Y.; Fu, D.; Gong, X.; Peng, X. Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem. Eng. J. 2017, 307, 1017–1025. [Google Scholar] [CrossRef]
- Ma, L.; Hamidinejad, M.; Zhao, B.; Liang, C.; Park, C.B. Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection. Nano-Micro Lett. 2021, 14, 19. [Google Scholar] [CrossRef]
- Tomasko, D.L.; Li, H.; Liu, D.; Han, X.; Wingert, M.J.; Lee, L.J.; Koelling, K.W. A Review of CO2 Applications in the Processing of Polymers. Ind. Eng. Chem. Res. 2003, 42, 6431–6456. [Google Scholar] [CrossRef]
- Knez, Ž.; Markočič, E.; Leitgeb, M.; Primožič, M.; Knez Hrnčič, M.; Škerget, M. Industrial applications of supercritical fluids: A review. Energy 2014, 77, 235–243. [Google Scholar] [CrossRef]
- Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers 2019, 11, 306. [Google Scholar] [CrossRef]
- Lombardi, L.; Tammaro, D. Effect of polymer swell in extrusion foaming of low-density polyethylene. Phys. Fluids 2021, 33, 033104. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Jiang, J.; Tian, F.; Gao, N.; Zhai, W. Microextrusion Foaming of Polyetheretherketone Fiber: Mechanical and Thermal Insulation Properties. Adv. Eng. Mater. 2021, 24, 2101110. [Google Scholar] [CrossRef]
- Zhou, M.; Li, M.; Jiang, J.; Li, Y.; Liu, H.; Chen, B.; Zhao, D.; Zhai, W. Porous polyetherimide fiber fabricated by a facile micro-extrusion foaming for high temperature thermal insulation. J. CO2 Util. 2022, 65, 102247. [Google Scholar] [CrossRef]
- Park, C.B.; Baldwin, D.F.; Suh, N.P. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 1995, 35, 432–440. [Google Scholar] [CrossRef]
- Park, C.B.; Cheung, L.K. A study of cell nucleation in the extrusion of polypropylene foams. Polym. Eng. Sci. 1997, 37, 1–10. [Google Scholar] [CrossRef]
- Rainglet, B.; Besognet, P.; Benoit, C.; Delage, K.; Bounor-Legaré, V.; Forest, C.; Cassagnau, P.; Chalamet, Y. TPV Foaming by CO2 Extrusion: Processing and Modelling. Polymers 2022, 14, 4513. [Google Scholar] [CrossRef] [PubMed]
- Haurat, M.; Sauceau, M.; Baillon, F.; Barbenchon, L.L.; Pedros, M.; Dumon, M. Supercritical CO2-assisted extrusion foaming: A suitable process to produce very lightweight acrylic polymer micro foams. J. Appl. Polym. Sci. 2023, 140, e53277. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, C.; Huang, W.; Chang, K.-C.; Lee, L.J. Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming. Polym. Eng. Sci. 2013, 53, 2360–2369. [Google Scholar] [CrossRef]
- Park, C.B.; Suh, N.P. Rapid Polymer/Gas Solution Formation for Continuous Production of Microcellular Plastics. J. Manuf. Sci. Eng. 1996, 118, 639–645. [Google Scholar] [CrossRef]
- Tabatabaei, A.; Barzegari, M.R.; Nofar, M.; Park, C.B. In-situ visualization of polypropylene crystallization during extrusion. Polym. Test. 2014, 33, 57–63. [Google Scholar] [CrossRef]
- Wang, K.; Pang, Y.; Wu, F.; Zhai, W.; Zheng, W. Cell nucleation in dominating formation of bimodal cell structure in polypropylene/polystyrene blend foams prepared via continuous extrusion with supercritical CO2. J. Supercrit. Fluids 2016, 110, 65–74. [Google Scholar] [CrossRef]
- Song, L.; Dai, R.; Li, Y.; Wang, Q.; Zhang, C. Polyvinylidene Fluoride Energy Harvester with Boosting Piezoelectric Performance through 3D Printed Biomimetic Bone Structures. ACS Sustain. Chem. Eng. 2021, 9, 7561–7568. [Google Scholar] [CrossRef]
- Hu, B.; Li, M.; Jiang, J.; Zhai, W. Development of microcellular thermoplastic polyurethane honeycombs with tailored elasticity and energy absorption via CO2 foaming. Int. J. Mech. Sci. 2021, 197, 106324. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Shao, Z.; Gao, W.; Fan, W.; Liu, T.; Bai, H. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chem. Eng. J. 2020, 390, 124623. [Google Scholar] [CrossRef]
- Dippold, M.; Ruckdäschel, H. Influence of pressure-induced temperature drop on the foaming behavior of amorphous polylactide (PLA) during autoclave foaming with supercritical CO2. J. Supercrit. Fluids 2022, 190, 105734. [Google Scholar] [CrossRef]
- McIlroy, C.; Graham, R.S. Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts. Addit. Manuf. 2018, 24, 323–340. [Google Scholar] [CrossRef]
- Naguib, H.E.; Park, C.B.; Reichelt, N. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. J. Appl. Polym. Sci. 2003, 91, 2661–2668. [Google Scholar] [CrossRef]
- Marascio, M.G.M.; Antons, J.; Pioletti, D.P.; Bourban, P.-E. 3D Printing of Polymers with Hierarchical Continuous Porosity. Adv. Mater. Technol. 2017, 2, 1700145. [Google Scholar] [CrossRef]
- Shaayegan, V.; Wang, C.; Ataei, M.; Costa, F.; Han, S.; Bussmann, M.; Park, C.B. Supercritical CO2 utilization for development of graded cellular structures in semicrystalline polymers. J. CO2 Util. 2021, 51, 101615. [Google Scholar] [CrossRef]
- Wong, A.; Wijnands, S.F.L.; Kuboki, T.; Park, C.B. Mechanisms of nanoclay-enhanced plastic foaming processes: Effects of nanoclay intercalation and exfoliation. J. Nanoparticle Res. 2013, 15, 1–15. [Google Scholar] [CrossRef]
- Wong, A.; Park, C.B. The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide. Chem. Eng. Sci. 2012, 75, 49–62. [Google Scholar] [CrossRef]
- Krause, B.; Sijbesma, H.J.P.; Münüklü, P.; van der Vegt, N.F.A.; Wessling, M. Bicontinuous Nanoporous Polymers by Carbon Dioxide Foaming. Macromolecules 2001, 34, 8792–8801. [Google Scholar] [CrossRef]
- Guo, H.; Nicolae, A.; Kumar, V. Solid-state microcellular and nanocellular polysulfone foams. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 975–985. [Google Scholar] [CrossRef]
- Pang, Y.; Cao, Y.; Zheng, W.; Park, C.B. A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chem. Eng. J. 2022, 430, 132662. [Google Scholar] [CrossRef]
- Hong, Y.; Mrinal, M.; Phan, H.S.; Tran, V.D.; Liu, X.; Luo, C. In-situ observation of the extrusion processes of Acrylonitrile Butadiene Styrene and Polylactic Acid for material extrusion additive manufacturing. Addit. Manuf. 2022, 49, 102507. [Google Scholar] [CrossRef]
- Bharath, H.S.; Bonthu, D.; Gururaja, S.; Prabhakar, P.; Doddamani, M. Flexural response of 3D printed sandwich composite. Compos. Struct. 2021, 263, 113732. [Google Scholar] [CrossRef]
- Park, B.K.; Hwang, D.J.; Kwon, D.E.; Yoon, T.J.; Lee, Y.W. Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies. Nanomaterials 2018, 8, 575. [Google Scholar] [CrossRef]
- Damanpack, A.R.; Sousa, A.; Bodaghi, M. Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent. Micromachines 2021, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Dileep, B.; Doddamani, M. Compressive response of 3D printed graded foams. Compos. Part C Open Access 2021, 6, 100181. [Google Scholar] [CrossRef]
- Compton, B.G.; Lewis, J.A. 3D-printing of lightweight cellular composites. Adv. Mater. 2014, 26, 5930–5935. [Google Scholar] [CrossRef]
- Duan, Y.; Ding, Y.; Liu, Z.; Hou, N.; Zhao, X.; Liu, H.; Zhao, Z.; Hou, B.; Li, Y. Effects of cell size vs. cell-wall thickness gradients on compressive behavior of additively manufactured foams. Compos. Sci. Technol. 2020, 199, 108339. [Google Scholar] [CrossRef]
- Abedin, R.; Feng, X.; Pojman, J., Jr.; Ibekwe, S.; Mensah, P.; Warner, I.; Li, G. A Thermoset Shape Memory Polymer-Based Syntactic Foam with Flame Retardancy and 3D Printability. ACS Appl. Polym. Mater. 2022, 4, 1183–1195. [Google Scholar] [CrossRef]
- Sun, B.; Wu, L. Research progress of 3D printing combined with thermoplastic foaming. Front. Mater. 2022, 9, 1083931. [Google Scholar] [CrossRef]
- Sanz-Horta, R.; Elvira, C.; Gallardo, A.; Reinecke, H.; Rodriguez-Hernandez, J. Fabrication of 3D-Printed Biodegradable Porous Scaffolds Combining Multi-Material Fused Deposition Modeling and Supercritical CO2 Techniques. Nanomaterials 2020, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhou, C.; Fan, H.; Zhang, B.; Pei, X.; Fan, Y.; Jiang, Q.; Bao, R.; Yang, Q.; Dong, Z.; et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology. Compos. Part B Eng. 2018, 152, 151–159. [Google Scholar] [CrossRef]
- Rasouli, A.; Azdast, T.; Mohammadzadeh, H.; Mihankhah, P.; Hasanzadeh, R. Morphological properties and mechanical performance of polylactic acid scaffolds fabricated by a novel fused filament fabrication/gas foaming coupled method. Int. J. Adv. Manuf. Technol. 2022, 119, 7463–7474. [Google Scholar] [CrossRef]
- Cecen, B. FDM-based 3D printing of PLA/PHA composite polymers. Chem. Pap. 2023, 77, 4379–4386. [Google Scholar] [CrossRef]
- Zhou, M.; Li, M.; Jiang, J.; Gao, N.; Tian, F.; Zhai, W. Construction of Bionic Porous Polyetherimide Structure by an In Situ Foaming Fused Deposition Modeling Process. Adv. Eng. Mater. 2021, 24, 2101027. [Google Scholar] [CrossRef]
- Gummadi, S.K.; Saini, A.; Owusu-Danquah, J.S.; Sikder, P. Mechanical Properties of 3D-Printed Porous Poly-ether-ether-ketone (PEEK) Orthopedic Scaffolds. Jom 2022, 74, 3379–3391. [Google Scholar] [CrossRef]
- Bharath, H.S.; Sawardekar, A.; Waddar, S.; Jeyaraj, P.; Doddamani, M. Mechanical behavior of 3D printed syntactic foam composites. Compos. Struct. 2020, 254, 112832. [Google Scholar] [CrossRef]
- Doddamani, M. Dynamic mechanical analysis of 3D printed eco-friendly lightweight composite. Compos. Commun. 2020, 19, 177–181. [Google Scholar] [CrossRef]
- Patil, B.; Bharath Kumar, B.R.; Bontha, S.; Balla, V.K.; Powar, S.; Hemanth Kumar, V.; Suresha, S.N.; Doddamani, M. Eco-friendly lightweight filament synthesis and mechanical characterization of additively manufactured closed cell foams. Compos. Sci. Technol. 2019, 183, 107816. [Google Scholar] [CrossRef]
- Sarrafan, S.; Feng, X.; Li, G. A soft syntactic foam actuator with high recovery stress, actuation strain, and energy output. Mater. Today Commun. 2022, 31, 103303. [Google Scholar] [CrossRef]
- Kalia, K.; Francoeur, B.; Amirkhizi, A.; Ameli, A. In Situ Foam 3D Printing of Microcellular Structures Using Material Extrusion Additive Manufacturing. ACS Appl. Mater. Interfaces 2022, 14, 22454–22465. [Google Scholar] [CrossRef] [PubMed]
- Pack, R.C.; Romberg, S.K.; Badran, A.A.; Hmeidat, N.S.; Yount, T.; Compton, B.G. Carbon Fiber and Syntactic Foam Hybrid Materials via Core–Shell Material Extrusion Additive Manufacturing. Adv. Mater. Technol. 2020, 5, 2000731. [Google Scholar] [CrossRef]
- Yousefi Kanani, A.; Kennedy, A. Experimental and numerical analysis of additively manufactured foamed sandwich beams. Compos. Struct. 2023, 312, 116866. [Google Scholar] [CrossRef]
- Flagiello, D.; Tammaro, D.; Erto, A.; Maffettone, P.L.; Lancia, A.; Di Natale, F. Performances of a Y-type structured packing produced by 3D foam-printing for the intensification of gas absorption processes. Chem. Eng. Res. Des. 2023, 195, 637–650. [Google Scholar] [CrossRef]
- Dinakaran, I.; Sakib-Uz-Zaman, C.; Rahman, A.; Khondoker, M.A.H. Controlling degree of foaming in extrusion 3D printing of porous polylactic acid. Rapid Prototyp. J. 2023, 29, 1958–1968. [Google Scholar] [CrossRef]
- Gunasekaran, H.B.; Ponnan, S.; Thirunavukkarasu, N.; Laroui, A.; Wu, L.; Wang, J. Rapid Carbon Dioxide Foaming of 3D Printed Thermoplastic Polyurethane Elastomers. ACS Appl. Polym. Mater. 2022, 4, 1497–1511. [Google Scholar] [CrossRef]
- Azdast, T.; Hasanzadeh, R. Polylactide scaffold fabrication using a novel combination technique of fused deposition modeling and batch foaming: Dimensional accuracy and structural properties. Int. J. Adv. Manuf. Technol. 2021, 114, 1309–1321. [Google Scholar] [CrossRef]
- Farrokhabadi, A.; Veisi, H.; Gharehbaghi, H.; Montesano, J.; Behravesh, A.H.; Hedayati, S.K. Investigation of the energy absorption capacity of foam-filled 3D-printed glass fiber reinforced thermoplastic auxetic honeycomb structures. Mech. Adv. Mater. Struct. 2022, 30, 758–769. [Google Scholar] [CrossRef]
- Sajjad, R.; Butt, S.U.; Saeed, H.A.; Anwar, M.T.; Rasheed, T. Impact of multiple infill strategy on the structural strength of single build FDM printed parts. J. Manuf. Process. 2023, 89, 105–110. [Google Scholar] [CrossRef]
- Quero, R.F.; Costa, B.M.d.C.; da Silva, J.A.F.; de Jesus, D.P. Using multi-material fused deposition modeling (FDM) for one-step 3D printing of microfluidic capillary electrophoresis with integrated electrodes for capacitively coupled contactless conductivity detection. Sens. Actuators B Chem. 2022, 365, 131959. [Google Scholar] [CrossRef]
- Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 2021, 47, 102378. [Google Scholar] [CrossRef]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chen, B.; Li, Y.; Jiang, J.; Zhai, W. Enhanced Interfacial Adhesion and Increased Isotropy of 3D Printed Parts with Microcellular Structure Fabricated via a Micro-Extrusion CO2-Foaming Process. Adv. Eng. Mater. 2023, 25, 2201468. [Google Scholar] [CrossRef]
- Royer, J.R.; Gay, Y.J.; Desimone, J.M.; Khan, S.A. High-pressure rheology of polystyrene melts plasticized with CO2: Experimental measurement and predictive scaling relationships. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 3168–3180. [Google Scholar] [CrossRef]
- Bortner, M.J.; Baird, D.G. Absorption of CO2 and subsequent viscosity reduction of an acrylonitrile copolymer. Polymer 2004, 45, 3399–3412. [Google Scholar] [CrossRef]
- Zhai, W.; Yu, J.; Ma, W.; He, J. Influence of Long-Chain Branching on the Crystallization and Melting Behavior of Polycarbonates in Supercritical CO2. Macromolecules 2006, 40, 73–80. [Google Scholar] [CrossRef]
- Zhai, W.; Hu, B.; Li, M.; Jiang, J.; Zhou, M. Dimensional Accuracy Control and Compressive Property of Microcellular Polyetherimide Honeycomb Foams Manufactured by an In Situ Foaming Fused Deposition Modeling Technology. Adv. Eng. Mater. 2021, 23, 2001449. [Google Scholar] [CrossRef]
- Villamil Jimenez, J.A.; Le Moigne, N.; Benezet, J.C.; Sauceau, M.; Sescousse, R.; Fages, J. Foaming of PLA Composites by Supercritical Fluid-Assisted Processes: A Review. Molecules 2020, 25, 3408. [Google Scholar] [CrossRef]
- Sarver, J.A.; Kiran, E. Foaming of polymers with carbon dioxide—The year-in-review—2019. J. Supercrit. Fluids 2021, 173, 105166. [Google Scholar] [CrossRef]
- Tammaro, D.; Henry Detry, A.L.; Landonfi, L.; Napolitano, F.; Villone, M.M.; Maffettone, P.L.; Squillace, A. Bio-Lightweight Structures by 3D Foam Printing. In Proceedings of the 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), Virtual, 6–9 September 2021; pp. 47–51. [Google Scholar]
- Tammaro, D.; Villone, M.M.; Maffettone, P.L. Microfoamed Strands by 3D Foam Printing. Polymers 2022, 14, 3214. [Google Scholar] [CrossRef]
- Griffiths, C.A.; Rees, A.; Morgan, A.; Korkees, F. Optimisation of 3D Printing for Microcellular Polymers. Polymers 2023, 15, 3910. [Google Scholar] [CrossRef] [PubMed]
- Dugad, R.; Radhakrishna, G.; Gandhi, A. Solid-state foaming of acrylonitrile butadiene styrene through microcellular 3D printing process. J. Cell. Plast. 2021, 58, 325–355. [Google Scholar] [CrossRef]
- Longo, A.; Giannetti, D.; Tammaro, D.; Costanzo, S.; Di Maio, E. TPU-based porous heterostructures by combined techniques. Int. Polym. Process. 2022, 37, 415–426. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, X.; Miao, Z.; Zhang, H.; Zhao, X.; Wang, K.; Qin, J.; Zhang, G. 3D-Printed Polyurethane Tissue-Engineering Scaffold with Hierarchical Microcellular Foam Structure and Antibacterial Properties. Adv. Eng. Mater. 2022, 24, 2101134. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Q.; Zhang, Y.; Sheng, X.; Miao, Z.; Qin, J.; Zhang, G.; Shi, X. 3D printing thermoplastic polyurethane hierarchical cellular foam with outstanding energy absorption capability. Addit. Manuf. 2023, 76, 103770. [Google Scholar] [CrossRef]
Foaming Technology | Foaming Method | Raw Material | State of Polymer before Foaming | State of Polymer during Foaming | Cell Morphology | Expansion | Morphology of Foaming Materials |
---|---|---|---|---|---|---|---|
MEF technology | Rapid heating | Polymer filament | Glassy state | Viscous state | Uniform cellular structure | Low | Foamed fibers or foamed complex 3D components |
Continuous extrusion foaming technology | Pressure quenching | Polymer pellets | Viscous state | Viscous state | Non-uniform cellular morphology | Low | Foamed fibers or foamed sheets |
Injection molding foaming technology | Pressure quenching | Polymer pellets | Viscous state | Viscous state or high-elastic state | Uniform cellular structure | High | Foamed profiles |
Batch foaming technology | Pressure quenching or rapid heating | Polymer pellets or sheets or profiles | Glassy state or high-elastic state | High-elastic state | Uniform closed-cell structure | Very high | Foamed beads or foamed sheets or foamed profiles |
Micro-Extrusion Foam Stacking | |||
---|---|---|---|
Material | Motivation | Year | |
Polylactic acid (PLA) | PLA | Mechanism research | 2017 |
PLA/βTCP, PLCA | Application of tissue engineering | 2017 | |
PLA/CFs | Enhancement of mechanical properties | 2021 | |
PLA | Mechanism research | 2022 | |
PLA | Printing parameter optimization | 2023 | |
Polyetherimide (PEI) | Production of hierarchical porous parts | 2020 | |
Dimensional accuracy research | 2021 | ||
Production of biomimetic structural parts | 2021 | ||
Research on interfacial adhesion enhancement | 2023 | ||
Acrylonitrile butadiene styrene (ABS) | Lightweight | 2021 | |
Thermoplastic polyurethane (TPU) | Production of porous heterostructures | 2022 | |
Application of tissue engineering | 2022 | ||
Study on properties of hierarchical cellular foam | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Huang, H.; Wang, Y.; Zhou, M.; Zhai, W. A Review of the Preparation of Porous Fibers and Porous Parts by a Novel Micro-Extrusion Foaming Technique. Materials 2024, 17, 172. https://doi.org/10.3390/ma17010172
Wang Z, Huang H, Wang Y, Zhou M, Zhai W. A Review of the Preparation of Porous Fibers and Porous Parts by a Novel Micro-Extrusion Foaming Technique. Materials. 2024; 17(1):172. https://doi.org/10.3390/ma17010172
Chicago/Turabian StyleWang, Zelin, Hanyi Huang, Yushu Wang, Mengnan Zhou, and Wentao Zhai. 2024. "A Review of the Preparation of Porous Fibers and Porous Parts by a Novel Micro-Extrusion Foaming Technique" Materials 17, no. 1: 172. https://doi.org/10.3390/ma17010172
APA StyleWang, Z., Huang, H., Wang, Y., Zhou, M., & Zhai, W. (2024). A Review of the Preparation of Porous Fibers and Porous Parts by a Novel Micro-Extrusion Foaming Technique. Materials, 17(1), 172. https://doi.org/10.3390/ma17010172