Properties of High-Entropy Fe30Co20Ni20Mn20Al10 Alloy Produced by High-Energy Ball Milling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SEM Analysis
3.2. XRD Analysis
3.3. Magnetic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, J.; Xu, H.; Li, X.; Liu, M.; Zhang, T. The similarity of elements in multi-principle element alloys based on a new criterion for phase constitution. Mater. Des. 2021, 207, 109849. [Google Scholar] [CrossRef]
- Joseph, J.; Senadeera, M.; Chao, Q.; Rana, S.; Gupta, S. Computational design of thermally stable and precipitation-hardened Al-Co-Cr-Fe-Ni-Ti high entropy alloys. J. Alloys Compd. 2021, 888, 161496. [Google Scholar] [CrossRef]
- Yeh, J.W. Overview of High-Entropy Alloys, High-Entropy Alloys, Fundamentals and Applications; Gao, M.C., Yeh, J.W., Liaw, P.K., Zhang, Y., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Zaara, K.; Chemingui, M.; Gallet, S.L.; Gaillard, Y.; Escoda, L.; Saurina, J.; Suñol, J.J.; Bernard, F.; Khitouni, M.; Optasanu, V. High-Entropy FeCoNiB0.5Si0.5 Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering. Crystals 2020, 10, 929. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. 2011, 21, 433–446. [Google Scholar] [CrossRef]
- Senkov, O.; Wilks, G.; Scott, J.M.; Miracle, D. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S. High-Entropy Alloys; Butterworth-Heinemann: London, UK, 2014. [Google Scholar]
- Zhang, Y.; Zuo, T.; Cheng, Y.; Liaw, P.K. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 2013, 3, 1. [Google Scholar] [CrossRef]
- Praveen, S.; Basu, J.; Kashyap, S.; Kottada, R.S. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd. 2016, 662, 361. [Google Scholar] [CrossRef]
- Schuh, B.; Mendez-Martin, F.; Völker, B.; George, E.P.; Clemens, H.; Pippan, R.; Hohenwarter, A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015, 96, 258. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, W.; Wu, B.; Cao, X.; Liu, L.; Fu, Z. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 2015, 648, 217–224. [Google Scholar] [CrossRef]
- Murty, B.S.; Ranganathan, S. Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 1998, 43, 101. [Google Scholar] [CrossRef]
- Shashanka, R.; Chaira, D. Phase transformation and microstructure study of nano-structured austenitic and ferritic stainless-steel powders prepared by planetary milling. Powder Technol. 2014, 259, 125–136. [Google Scholar]
- Varalakshmi, S.; Kamaraj, M.; Murty, B.S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 2008, 460, 253–257. [Google Scholar] [CrossRef]
- Gómez-Esparza, C.D.; Baldenebro-López, F.; González-Rodelas, L.; Baldenebro-López, J.; Martínez-Sánchez, R. Series of nanocrystalline NiCoAlFe (Cr, Cu, Mo, Ti) high entropy alloys produced by mechanical alloying. Mater. Res. 2016, 19, 39–46. [Google Scholar] [CrossRef]
- Li, P.; Wang, A.; Liu, C.T. A ductile high entropy alloy with attractive magnetic properties. J. Alloys Compd. 2017, 694, 55–60. [Google Scholar] [CrossRef]
- Zuo, T.; Gao, M.C.; Ouyang, L.; Yang, X.; Cheng, Y.; Feng, R.; Zhang, Y. Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 2017, 130, 10–18. [Google Scholar] [CrossRef]
- Huang, S.; Li, W.; Li, X.; Schönecker, S.; Bergqvist, L.; Holmström, E.; Vitos, L. Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 2016, 103, 71–74. [Google Scholar] [CrossRef]
- Vaidya, M.; Prasad, A.; Parakh, A.; Murty, B.S. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 2017, 126, 37. [Google Scholar] [CrossRef]
- Pohan, R.M.; Gwalani, B.; Lee, J.; Alam, T.; Hwang, J.Y.; Ryu, H.J.; Banerjee, R.; Hong, S.H. Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 2018, 210, 62. [Google Scholar] [CrossRef]
- Bortolotti, M.; Lutterotti, L.; Pepponi, G. Combining XRD and XRF analysis in one Rietveld-like ftting. Powder Diffr. 2017, 32 (Suppl. S1), S225–S230. [Google Scholar] [CrossRef]
- Warren, B.E.; Averbach, B.L. The Effect of Cold-Work Distortion on X-Ray Patterns. J. Appl. Phys. 1950, 21, 595–599. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lachlan, M.D. Cranswick. In Powder Diffraction: Theory and Practice; Dinnebier, R.E., Billinge, S.J.L., Eds.; Royal Society of Chemistry: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Sakher, E.; Loudjani, N.; Benchiheub, M.; Bououdina, M. Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using Rietveld analysis. J. Nanomater. 2018, 2018, 2560641. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Ivanov, E.; Boldyrev, V.V. The science and technology of mechanical alloying. Mater. Sci. Eng. A. 2001, 304, 151–158. [Google Scholar] [CrossRef]
- Koch, C.C. Top-Down Synthesis of Nanostructured Materials: Mechanical and Thermal Processing Methods. Rev. Adv. Mater. Sci. 2003, 5, 91–99. [Google Scholar]
- Khitouni, N.; Ben Mbarek, W.; Guittoum, A.; Suñol, J.J.; Khitouni, M.; Azabou, M. X-Ray Diffraction and Mössbauer Studies of Nanostructured Ni40Fe60 Powder: Structure Defects and Hyperfine Structure. J. Supercond. Nov. Magn. 2022, 35, 3439–3446. [Google Scholar] [CrossRef]
- Zhang, K.; Fu, Z.; Zhang, J.; Wang, W.; Lee, S.; Niihara, K. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 2010, 495, 33–38. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Hu, Y.-H.; Hsieh, C.-A.; Yeh, J.-W.; Chen, S.-K. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 2009, 481, 768–775. [Google Scholar] [CrossRef]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metals and Alloys, 2nd ed.; Springer: Berlin, Germany, 1992. [Google Scholar]
- Fu, Z.; Chen, W.; Chen, Z.; Wen, H.; Lavernia, E.J. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater. Sci. Eng. A 2014, 619, 137–145. [Google Scholar] [CrossRef]
- Mhadhbi, M.; Khitouni, M.; Escoda, L.; Sunol, J.J.; Dammak, M. Characterization of Mechanically Alloyed Nanocrystalline Fe(Al): Crystallite Size and Dislocation Density. J. Nanomater. 2010, 2010, 712407. [Google Scholar] [CrossRef]
- Kaloshkin, S.D.; Tcherdyntsev, V.V.; Tomilin, I.A.; Baldokhin, Y.V.; Shelekhov, E.V. Phase transformations in Fe-Ni system at mechanical alloying and consequent annealing of elemental powder mixtures. Phys. B Condens. Matter 2001, 299, 236–241. [Google Scholar] [CrossRef]
- Hamzaoui, R.; Cherigui, M.; Guessasma, S.; Elkedimand, O.; Fenineche, N. Artificial neural network methodology: Application to predict magnetic properties of nanocrystalline alloys. Mater. Sci. Eng. 2009, 163, 17–21. [Google Scholar] [CrossRef]
- Daly, R.; Sunol, J.J.; Khitouni, M. Structural thermal properties of the Fe-based alloys prepared by mechanical milling Korean. J. Chem. Eng. 2022, 39, 1614–1623. [Google Scholar]
- Souilah, S.; Alleg, S.; Djebbari, C.; Ben Salema, R.; Sunol, J.J. Magnetic and microstructural properties of the mechanically alloyed Fe57Co21Nb7B15 powder mixture. Mater. Chem. Phys. 2012, 132, 766–772. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Daly, R.; Khitouni, N.; Escoda, L.; Isern, N.L.; Sunol, J.J.; Greneche, J.M.; Khitouni, M. Microstructure, Magnetic and Mössbauer Studies of Mechanically Alloyed FeCoNi Nanocrystalline Powders. Arab. J. Sci. Eng. 2021, 46, 5633–5643. [Google Scholar] [CrossRef]
- Schrefl, T.; Fidler, J.; Kronmüller, H. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys. Rev. B 1994, 49, 6100. [Google Scholar] [CrossRef]
- Jurczyk, M. Nanocomposite Nd–Fe–B type magnets. J. Alloys Compd. 2000, 299, 283–286. [Google Scholar] [CrossRef]
- Kaczmarska, K.; Pierre, J.; Tobola, J.; Skolozdra, R.V.A. Localization of 3 d Mn states in semi-Heusler phases. Phys. Rev. B 1999, 60, 373. [Google Scholar] [CrossRef]
- Shen, T.D.; Schwarz, R.B.; Thompson, J.D. Soft magnetism in mechanically alloyed nanocrystalline materials. Phys. Rev. B 2005, 72, 014431. [Google Scholar] [CrossRef]
- Chintala, J.N.P.K.; Varma, M.C.; Choudary, G.S.V.R.K.; Rao, K.H. Control of coercivity and magnetic anisotropy through cobalt substitution in Ni-Zn ferrite. J. Supercond. Novel Magn. 2021, 34, 2357–2370. [Google Scholar] [CrossRef]
- Luis, F.; Torres, J.M.; García, L.M.; Bartolomé, J.; Stankiewicz, J.; Petroff, F.; Fettar, F.; Maurice, J.L.; Vaures, A. Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: Influence of the surface and of interparticle interactions. Phys. Rev. B 2002, 65, 094409. [Google Scholar] [CrossRef]
- Chen, J.P.; Sorensen, C.M.; Klabunde, K.J.; Hadjipanayis, G.C. Enhanced magnetization of nanoscale colloidal cobalt particles. Phys. Rev. B 1995, 51, 11527. [Google Scholar] [CrossRef]
- Jamet, M.; Wernsdorfer, W.; Thirion, C.; Mailly, D.; Dupuis, V.; Mélinon, P.; Pérez, A. Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 2001, 86, 4676. [Google Scholar] [CrossRef]
- Dimian, M.; Kachkachi, H. Effect of surface anisotropy on the hysteretic properties of a magnetic particle. J. Appl. Phys. 2002, 91, 7625–7627. [Google Scholar] [CrossRef]
- Crisan, O.; Angelakeris, M.; Flevaris, N.K.; Filoti, G. Magnetism and anisotropy in core-shell nanoparticles. J. Optoelectron. Adv. Mater. 1003, 5, 959–962. [Google Scholar]
- Herzer, G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 1990, 26, 1397–1402. [Google Scholar] [CrossRef]
- Yu, R.H.; Basu, S.; Zhang, R.Y.; Parvizi-Marjidi, A.; Unruh, K.M.; Xiao, J.Q. High-temperature soft magnetic materials: FeCo alloys and composites. IEEE Trans. Magn. 2000, 36, 3388–3393. [Google Scholar] [CrossRef]
- Karimi, L.; Shokrollahi, H. Structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni63Fe13Mo 4Nb20 powders prepared by mechanical alloying. J. Alloys Compd. 2011, 509, 6571–6577. [Google Scholar] [CrossRef]
- Krifa, M.; Mhadhbi, M.; Escoda, L.; Güell, J.M.; Sunol, J.J.; Llorca-Isern, N.; Artieda-Guzmán, C.; Khitouni, M. Nanocrystalline (Fe60Al40)80Cu20 alloy prepared by mechanical alloying. J. Alloys Compd. 2013, 554, 51–58. [Google Scholar] [CrossRef]
- Zelenakova, A.; Oleksakova, D.; Degmova, J.; Kovac, J.; Kollar, P.; Kusy, M.; Sovak, P. Structural and magnetic properties of mechanically alloyed FeCo powders. J. Magn. Magn. Mater. 2007, 316, e519–e522. [Google Scholar] [CrossRef]
- Zeng, Q.; Baker, I. Magnetic properties and thermal ordering of mechanically alloyed Fe–40 at% Al. Intermetallics 2006, 14, 396–405. [Google Scholar] [CrossRef]
- Schlomann, E. Properties of Magnetic Materials with a Nonuniform Saturation Magnetization. I. General theory and calculation of the static magnetization. J. Appl. Phys. 1967, 38, 5027–5034. [Google Scholar] [CrossRef]
- Dionne, G.F.; Weiss, J.A.; Gary, A.A. Hysteresis loops modeled from coercivity, anisotropy, and microstructure parameters. J. Appl. Phys. 1987, 61, 3862–3864. [Google Scholar] [CrossRef]
- Xu, J.; Shang, C.; Ge, W.; Jia, H.; Liaw, P.K.; Wang, Y. Effects of elemental addition on the microstructure, thermal stability, and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy. Adv. Powder Technol. 2016, 27, 1418–1426. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Xu, J.; Wang, Y. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys. J. Magn. Magn. Mater. 2014, 355, 58–64. [Google Scholar] [CrossRef]
- Tsai, M.H. Physical properties of high entropy alloys. Entropy 2013, 15, 5338. [Google Scholar] [CrossRef]
- Yang, P.; Liu, Y.; Zhao, X.; Cheng, J.; Li, H. Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 2016, 27, 1128–1133. [Google Scholar] [CrossRef]
- Ibn Gharsallah, H.; Azabou, M.; Escoda, L.; Suñol, J.J.; López, I.; Llorca-Isern, N.; Khitouni, M. The magnetic and structural properties of nanostructured (Fe75Al25)100-xBx alloys prepared by mechanical alloying. J. Alloys Compd. 2017, 729, 776–786. [Google Scholar] [CrossRef]
- Burton, P.W. A Handbook of Lattice Spacings and Structures of Metals and Alloys: International Series of Monographs on Metal Physics and Physical Metallurgy; Elsevier: Amsterdam, The Netherlands, 2013; Volume 4. [Google Scholar]
- Krifa, M.; Mhadhbi, M.; Escoda, L.; Saurina, J.; Suñol, J.J.; Llorca-Isern, N.; Artieda-Guzmán, C.; Khitouni, M. Phase transformations during mechanical alloying of Fe–30% Al–20% Cu. Powder Technol. 2013, 246, 117–124. [Google Scholar] [CrossRef]
- Plascak, J.A.; Zamora, L.E.; Alcazar, G.A.P. Ising model for disordered ferromagnetic Fe–Al alloys. Phys. Rev. 2000, 61, 3188–3191. [Google Scholar] [CrossRef]
- Sato, T.; Takabayashi, H. Effect of Si/Al addition on magnetic properties of Fe-Co alloy. AIP Adv. 2023, 13, 035306. [Google Scholar] [CrossRef]
- Feng, W.; Qi, W.; Wang, S. Effects of Mn and Al Addition on Structural and Magnetic Properties of FeCoNi-based High Entropy Alloys. Mater. Res. Express 2018, 5, 106511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammar, C.B.; Khitouni, N.; Mbarek, W.B.; Alsulami, A.H.; Suñol, J.-J.; Khitouni, M.; Chemingui, M. Properties of High-Entropy Fe30Co20Ni20Mn20Al10 Alloy Produced by High-Energy Ball Milling. Materials 2024, 17, 234. https://doi.org/10.3390/ma17010234
Ammar CB, Khitouni N, Mbarek WB, Alsulami AH, Suñol J-J, Khitouni M, Chemingui M. Properties of High-Entropy Fe30Co20Ni20Mn20Al10 Alloy Produced by High-Energy Ball Milling. Materials. 2024; 17(1):234. https://doi.org/10.3390/ma17010234
Chicago/Turabian StyleAmmar, Chérif Ben, Nawel Khitouni, Wael Ben Mbarek, Abdulelah H. Alsulami, Joan-Josep Suñol, Mohamed Khitouni, and Mahmoud Chemingui. 2024. "Properties of High-Entropy Fe30Co20Ni20Mn20Al10 Alloy Produced by High-Energy Ball Milling" Materials 17, no. 1: 234. https://doi.org/10.3390/ma17010234
APA StyleAmmar, C. B., Khitouni, N., Mbarek, W. B., Alsulami, A. H., Suñol, J. -J., Khitouni, M., & Chemingui, M. (2024). Properties of High-Entropy Fe30Co20Ni20Mn20Al10 Alloy Produced by High-Energy Ball Milling. Materials, 17(1), 234. https://doi.org/10.3390/ma17010234