Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis
Abstract
:1. Introduction
2. Reactors Used in the Biocatalytic Synthesis of Esters with Application in the Food Industry
3. Reactors Used in the Biocatalytic Synthesis of Esters with Applications in the Cosmetic Industry
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BR | batch reactor |
CAGR | compound annual growth rate |
CALB | Candida antarctica lipase B |
CRL | Candida rugosa lipase |
DES | deep eutectic solvent |
FBR | fluidized bed reactor |
GRAS | generally recognized as safe |
PBR | packed-bed reactor |
WOS | Web of Science |
References
- Wisniak, J. Alexander William Williamson. Educ. Quim. 2009, 7, 360–368. [Google Scholar] [CrossRef]
- Sirsam, R.; Hansora, D.; Usmani, G.A. A mini-review on solid acid catalysts for esterification reactions. J. Inst. Eng. India Ser. E 2016, 97, 167–181. [Google Scholar] [CrossRef]
- Jia, M.; Jiang, L.; Niu, F.; Zhang, Y.; Sun, X. A novel and highly efficient esterification process using triphenylphosphine oxide with oxalyl chloride. R. Soc. Open Sci. 2023, 5, 171988. [Google Scholar] [CrossRef] [PubMed]
- Montiel, M.C.; Maximo, F.; Serrano-Arnaldos, M.; Ortega-Requena, S.; Murcia, M.D.; Bastida, J. Biocatalytic solutions to cyclomethicones problem in cosmetics. Eng. Life Sci. 2019, 19, 370–388. [Google Scholar] [CrossRef] [PubMed]
- Chook, K.Y.; Aroua, M.K.; Gew, L.T. Enzyme biocatalysis for sustainability applications in reactors: A systematic review. Ind. Eng. Chem. Res. 2023, 62, 10800–10812. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Bornscheuer, U.T. Lipase-catalyzed syntheses of monoacylglycerols. Enzym. Microb. Technol. 1995, 17, 578–586. [Google Scholar] [CrossRef]
- Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature 2001, 409, 241–246. [Google Scholar] [CrossRef]
- Ortiz, C.; Lujan Ferreira, M.; Barbosa, O.; dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, A.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 2019, 9, 2380. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 2020, 19, 169. [Google Scholar] [CrossRef]
- Moura, M.V.H.; da Silva, G.P.; de Oliveira Machado, A.C.; Torres, F.A.G.; Freire, D.M.G.; Almeida, R.V. Displaying lipase B from Candida antarctica in Pichia pastoris using the yeast surface display approach: Prospection of a new anchor and characterization of the whole cell biocatalyst. PLoS ONE 2015, 10, e0141454. [Google Scholar] [CrossRef] [PubMed]
- de Maria, L.; Vind, J.; Oxenbøll, K.M.; Svendsen, A.; Patkar, S. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 2007, 74, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Remonatto, D.; Miotti, R.H.; Monti, R.; Bassan, J.C.; de Paula, A.V. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022, 114, 1–20. [Google Scholar] [CrossRef]
- Ragupathy, L.; Ziener, U.; Dyllick-Brenzinger, R.; von Vacano, B.; Landfester, K. Enzyme-catalyzed polymerizations at higher temperatures: Synthetic methods to produce polyamides and new poly(amide-co-ester)s. J. Mol. Catal. B Enzym. 2012, 76, 94–105. [Google Scholar] [CrossRef]
- Homann, M.J.; Vail, R.; Morgan, B.; Sabesan, V.; Levy, C.; Dodds, D.R.; Zaks, A. Enzymatic hydrolysis of a prochiral 3-substituted glutarate ester, an intermediate in the synthesis of an NK1/NK2 dual antagonist. Adv. Synth. Catal. 2001, 343, 744–749. [Google Scholar] [CrossRef]
- Lindeque, R.M.; Woodley, J. Reactor selection for effective continuous biocatalytic production of pharmaceuticals. Catalysts 2019, 9, 262. [Google Scholar] [CrossRef]
- Zhang, X.; Kobayashi, T.; Watanabe, Y.; Fuji, T.; Adachi, S.; Nakanishi, K.; Matsuno, R. Lipase-catalyzed synthesis of monolauroyl maltose through condensation of maltose and lauric acid. Food Sci. Technol. Res. 2003, 9, 110–113. [Google Scholar] [CrossRef]
- Sabeder, S.; Habulin, M.; Knez, Z. Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2005, 44, 9631–9635. [Google Scholar] [CrossRef]
- Keng, P.S.; Basri, M.; Ariff, A.B.; Abdul Rahman, M.B.; Abdul Rahman, R.N.Z.; Salleh, A.B. Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor. Bioresour. Technol. 2008, 99, 6097–6104. [Google Scholar] [CrossRef]
- Bodalo, A.; Bastida, J.; Maximo, M.F.; Montiel, M.C.; Murcia, M.D.; Ortega, S. Influence of the operating conditions on lipase-catalysed synthesis of ricinoleic acid estolides in solvent-free systems. Biochem. Eng. J. 2009, 44, 214–219. [Google Scholar] [CrossRef]
- Gomez, J.L.; Bastida, J.; Maximo, M.F.; Montiel, M.C.; Murcia, M.D.; Ortega, S. Solvent-free polyglycerol polyricinoleate synthesis mediated by lipase from Rhizopus arrhizus. Biochem. Eng. J. 2011, 54, 111–116. [Google Scholar] [CrossRef]
- Ortega-Requena, S.; Gómez, J.L.; Bastida, J.; Maximo, F.; Montiel, M.C.; Murcia, M.D. Study of different reaction schemes for the enzymatic synthesis of polyglycerol polyricinoleate. J. Sci. Food Agric. 2014, 94, 2308–2316. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Requena, S.; Bodalo-Santoyo, A.; Bastida-Rodriguez, J.; Maximo-Martin, M.F.; Montiel-Morte, M.C.; Gomez-Gomez, M. Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym® 435 in a solvent free system. Biochem. Eng. J. 2014, 84, 91–97. [Google Scholar] [CrossRef]
- dos Santos, P.; Zabot, G.L.; Meireles, M.A.A.; Mazutti, M.A.; Martinez, J. Synthesis of eugenyl acetate by enzymatic reactions in supercritical carbon dioxide. Biochem. Eng. J. 2016, 114, 1–9. [Google Scholar] [CrossRef]
- Martinez-Ruiz, A.; Tovar-Castro, L.; Garcia, H.S.; Saucedo-Castañeda, G.; Favela-Torres, E. Continuous ethyl oleate synthesis by lipases produced by solid-state fermentation by Rhizopus microsporus. Bioresour. Technol. 2018, 265, 52–58. [Google Scholar] [CrossRef]
- de Meneses, A.C.; Gomes Almeida Sa, A.; Lerin, L.A.; Corazza, M.L.; Hermes de Araujo, P.H.; Sayer, C.; de Oliveira, D. Benzyl butyrate esterification mediated by immobilized lipases: Evaluation of batch and fed-batch reactors to overcome lipase-acid deactivation. Process Biochem. 2019, 78, 50–57. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, H.; Choi, N.; Kim, Y.; Kim, B.H.; Kim, I.H. Production of stearidonic acid-rich triacylglycerol via a two-step enzymatic esterification. Food Chem. 2019, 270, 332–337. [Google Scholar] [CrossRef]
- Ortega-Requena, S.; Serrano-Arnaldos, M.; Montiel, M.C.; Maximo, F.; Bastida, J.; Murcia, M.D. Biocatalytic synthesis of polymeric esters used as emulsifiers. Chem. Biochem. Eng. Q. 2019, 33, 79–86. [Google Scholar] [CrossRef]
- Watanabe, Y.; Miyawaki, Y.; Adachi, S.; Nakanishi, K.; Matsuno, R. Continuous production of acyl mannoses by immobilized lipase using a packed bed reactor and their surfactant properties. Biochem. Eng. J. 2001, 8, 213–216. [Google Scholar] [CrossRef]
- Kuwabara, K.; Watanabe, Y.; Adachi, S.; Nakanishi, K.; Matsuno, R. Continuous production of acyl L-ascorbates using a packed bed reactor with immobilized lipase. J. Am. Oil Chem. Soc. 2003, 80, 895–898. [Google Scholar] [CrossRef]
- Piao, J.; Kobayashi, T.; Adachi, S.; Nakanishi, K.; Matsuno, R. Continuous synthesis of lauroyl or oleoyl erythritol by a packed bed reactor with an immobilized lipase. Process Biochem. 2004, 39, 681–686. [Google Scholar] [CrossRef]
- Piao, J.; Adachi, S. Enzymatic preparation of fatty acid esters of sugar alcohols by condensation in acetone using a packed bed reactor with immobilized Candida antarctica lipase. Biocatal. Biotransform. 2004, 22, 269–274. [Google Scholar] [CrossRef]
- Osorio, N.M.; Gusmao, J.H.; da Fonseca, M.M.; Ferreira-Dias, S. Lipase-catalysed interesterification of palm stearin with soybean oil in a continuous fluidised-bed reactor. Eur. J. Lipid Sci. Technol. 2005, 107, 455–463. [Google Scholar] [CrossRef]
- de Freitas, L.; dos Santos, J.C.; Zanin, G.M.; de Castro, H.F. Packed bed reactor running on Babassu oil and glycerol to produce monoglycerides by enzymatic route using immobilized Burkholderia cepacia lipase. Appl. Biochem. Biotechnol. 2010, 161, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.K.; Kamaruddin, A.H.; Uzir, M.H. Enzymatic synthesis of farnesyl laurate in organic solvent: Initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies. Bioprocess. Biosyst. Eng. 2011, 34, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Escandell, J.; Wurm, D.J.; Belleville, M.P.; Sanchez, J.; Harasek, M.; Paolucci-Jeanjean, D. Enzymatic synthesis of butyl acetate in a packed bed reactor under liquid and supercritical conditions. Catal. Today 2015, 255, 3–9. [Google Scholar] [CrossRef]
- Paula, A.V.; Nunes, G.F.M.; Osorio, N.M.; Santos, J.C.; de Castro, H.F.; Ferreira-Dias, S. Continuous enzymatic interesterification of milkfat with soybean oil produces a highly spreadable product rich in polyunsaturated fatty acids. Eur. J. Lipid Sci. Technol. 2015, 117, 608–619. [Google Scholar] [CrossRef]
- Hidayat, C.; Fitria, K.; Supriyanto; Hastuti, P. Enzymatic synthesis of bio-surfactant fructose oleic ester using immobilized lipase on modified hydrophobic matrix in fluidized bed reactor. Agric. Agric. Sci. Procedia 2016, 9, 353–362. [Google Scholar] [CrossRef]
- Kirdi, R.; Akacha, N.B.; Messaoudi, Y.; Gargouri, M. Enhanced synthesis of isoamyl acetate using liquid-gas biphasic system by the transesterification reaction of isoamyl alcohol obtained from fusel oil. Biotechnol. Bioprocess. Eng. 2017, 22, 413–422. [Google Scholar] [CrossRef]
- Jia, C.; Wang, H.; Zhang, W.; Zhang, X.; Feng, B. Efficient enzyme-selective synthesis of monolauryl mannose in a circulating fluidized bed reactor. Process Biochem. 2018, 66, 28–32. [Google Scholar] [CrossRef]
- Salvi, H.M.; Kamble, M.P.; Yadav, G.D. Synthesis of geraniol esters in a continuous-flow packed bed reactor of immobilized lipase: Optimization of process parameters and kinetic modeling. Appl. Biochem. Biotechnol. 2018, 184, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.L.B.; Ubeyitogullari, A.; Hatami, T.; Martinez, J.; Ciftci, O.N. Continuous production of isoamyl acetate from fusel oil under supercritical CO2: A mass transfer approach. Chem. Eng. Res. Des. 2021, 176, 23–33. [Google Scholar] [CrossRef]
- Souza-Gonçalves, J.; Fialho, A.; Soares, C.M.F.; Ossrio, N.M.; Ferreira-Dias, S. Continuous production of dietetic structured lipids using crude acidic olive pomace oils. Molecules 2023, 28, 2637. [Google Scholar] [CrossRef] [PubMed]
- Ai, H.; Lee, Y.Y.; Xie, X.; Tan, C.P.; Lai, O.M.; Li, A.; Wang, Y.; Zhang, Z. Structured lipids produced from palm-olein oil by interesterification: A controllable lipase-catalyzed approach in a solvent-free system. Food Chem. 2023, 412, 135558. [Google Scholar] [CrossRef]
- Lozano, P.; Villora, G.; Gómez, D.; Gayo, A.B.; Sanchez-Conesa, J.A.; Rubio, M.; Iborra, J.L. Membrane reactor with immobilized Candida antarctica lipase B for ester synthesis in supercritical carbon dioxide. J. Supercrit. Fluids 2004, 29, 121–128. [Google Scholar] [CrossRef]
- Saponjic, S.; Knezevic-Jugovic, Z.D.; Bezbradica, D.I.; Zuza, M.G.; Saied, O.A.; Boskovic-Vragolovic, N.; Mijin, D.Z. Use of Candida rugosa lipase immobilized on sepabeads for the amyl caprylate synthesis: Batch and fluidized bed reactor study. Electron. J. Biotechnol. 2010, 13, 12–13. [Google Scholar] [CrossRef]
- Matte, C.R.; Bordinhao, C.; Poppe, J.K.; Rodrigues, R.C.; Hertz, P.F.; Ayub, M.A.Z. Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized immobead 150. J. Mol. Catal. B Enzym. 2016, 127, 67–75. [Google Scholar] [CrossRef]
- dos Santos, P.; Meireles, M.A.A.; Martinez, J. Production of isoamyl acetate by enzymatic reactions in batch and packed bed reactors with supercritical CO2. J. Supercrit. Fluids 2017, 127, 71–80. [Google Scholar] [CrossRef]
- Delavault, A.; Opochenska, O.; Laneque, L.; Soergel, H.; Muhle-Goll, C.; Ochsenreither, K.; Syldatk, C. Lipase-catalyzed production of sorbitol laurate in a “2-in-1” deep eutectic system: Factors affecting the synthesis and scalability. Molecules 2021, 26, 2759. [Google Scholar] [CrossRef]
- Yan, Y.; Bornscheuer, U.T.; Stadler, G.; Lutz-Wahl, S.; Reuss, M.; Schmid, R.D. Production of sugar fatty acid esters by enzymatic esterification in a stirred-tank membrane reactor: Optimization of parameters by response surface methodology. J. Am. Oil Chem. Soc. 2001, 78, 147–153. [Google Scholar] [CrossRef]
- Yan, Y.; Bornscheuer, U.T.; Schmid, R.D. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope. Biotechnol. Bioeng. 2002, 78, 31–34. [Google Scholar] [CrossRef]
- Antczak, T.; Patura, J.; Szczesna-Antczak, M.; Hiler, D.; Bielecki, S. Sugar ester synthesis by a mycelium-bound Mucor circinelloides lipase in a micro-reactor equipped with water activity sensor. J. Mol. Catal. B Enzym. 2004, 29, 155–161. [Google Scholar] [CrossRef]
- Woodcok, L.L.; Wiles, C.; Greenway, G.M.; Watts, P.; Wells, A.; Eyley, S. Enzymatic synthesis of a series of alkyl esters using Novozyme 435 in a packed bed, miniaturized, continuous flow reactor. Biocatal. Biotransform. 2008, 26, 501–507. [Google Scholar] [CrossRef]
- Bhavsar, K.V.; Yadav, G.D. n-Butyl levulinate synthesis using lipase catalysis: Comparison of batch reactor versus continuous flow packed bed tubular microreactor. J. Flow Chem. 2018, 8, 97–105. [Google Scholar] [CrossRef]
- Mathpati, A.C.; Kalghatgi, S.G.; Mathpati, C.S.; Bhanagea, B.M. Immobilized lipase catalyzed synthesis of n-amyl acetate: Parameter optimization, heterogeneous kinetics, continuous flow operation and reactor modeling. J. Chem. Technol. Biotechnol. 2018, 93, 2906–2916. [Google Scholar] [CrossRef]
- Holtheuer, J.; Tavernini, L.; Bernal, C.; Romero, O.; Ottone, C.; Wilson, L. Enzymatic synthesis of ascorbyl palmitate in a rotating bed reactor. Molecules 2023, 28, 644. [Google Scholar] [CrossRef] [PubMed]
- Enders, A.; Grunberger, A.; Bahnemann, J. Towards small scale: Overview and applications of microfluidics in biotechnology. Mol. Biotechnol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ansorge-Schumacher, M.B.; Thum, O. Immobilised lipases in the cosmetics industry. Chem. Soc. Rev. 2013, 42, 6475–6490. [Google Scholar] [CrossRef]
- Khan, N.R.; Rathod, V.K. Enzyme catalyzed synthesis of cosmetic esters and its intensification: A review. Process Biochem. 2015, 50, 1793–1806. [Google Scholar] [CrossRef]
- Laudani, C.G.; Habulin, M.; Kneza, Z.; Della Porta, G.; Reverchon, E. Lipase-catalyzed long chain fatty ester synthesis in dense carbon dioxide: Kinetics and thermodynamics. J. Supercrit. Fluids 2007, 41, 92–101. [Google Scholar] [CrossRef]
- Petersson, A.E.V.; Adlercreutz, P.; Mattiasson, B. A water activity control system for enzymatic reactions in organic media. Biotechnol. Bioeng. 2007, 97, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Trubiano, G.; Borio, D.; Errazu, A. Influence of the operating conditions and the external mass transfer limitations on the synthesis of fatty acid esters using a Candida antarctica lipase. Enzym. Microb. Technol. 2007, 40, 716–722. [Google Scholar] [CrossRef]
- Habulin, M.; Sabeder, S.; Acebes Sampedro, M.; Knez, Z. Enzymatic synthesis of citronellol laurate in organic media and in supercritical carbon dioxide. Biochem. Eng. J. 2008, 42, 6–12. [Google Scholar] [CrossRef]
- Liu, Q.; Jia, C.; Kim, J.M.; Jiang, P.; Zhang, X.; Feng, B.; Xu, S. Lipase-catalyzed selective synthesis of monolauroyl maltose using continuous stirred tank reactor. Biotechnol. Lett. 2008, 30, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Radzi, S.M.; Mohamad, R.; Basri, M.; Salleh, A.B.; Ariff, A.; Abdul Rahman, M.B.; Abdul Rahman, R.N.Z.R. Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol. J. Oleo Sci. 2010, 59, 127–134. [Google Scholar] [CrossRef] [PubMed]
- El-Boulifi, B.; Ashari, S.E.; Serrano, M.; Aracil, J.; Martínez, M. Solvent-free lipase-catalyzed synthesis of a novel hydroxyl-fatty acid derivative of kojic acid. Enzym. Microb. Technol. 2014, 55, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.H.; Jin, Z.; Xu, Y.S.; Wang, P.; Lin, Y.; Han, S.Y.; Zheng, S.P. Scaling-up the synthesis of myristate glucose ester catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst. Enzym. Microb. Technol. 2015, 75–76, 30–36. [Google Scholar] [CrossRef]
- Jumbri, K.; Rozy, M.F.A.H.; Ashari, S.E.; Mohamad, R.; Basri, M.; Masoumi, H.E.F. Optimisation and characterisation of lipase- catalysed synthesis of a kojic monooleate ester in a solvent-free system by response surface methodology. PLoS ONE 2015, 10, e0144664. [Google Scholar] [CrossRef]
- Montiel, M.C.; Serrano, M.; Maximo, M.F.; Gomez, M.; Ortega-Requena, S.; Bastida, J. Synthesis of cetyl ricinoleate catalyzed by immobilized Lipozyme® CalB lipase in a solvent-free system. Catal. Today 2015, 255, 49–53. [Google Scholar] [CrossRef]
- Ortega, S.; Montiel, M.C.; Serrano, M.; Maximo, M.F.; Bastida, J. “100% natural” myristyl myristate. Study of the biocatalytic synthesis process. Afinidad 2015, 570, 155–159. [Google Scholar]
- Khan, N.; Jadhav, S.; Rathod, V.K. Enzymatic synthesis of n-butyl palmitate in a solvent-free system: RSM optimization and kinetic studies. Biocatal. Biotransform. 2016, 34, 99–109. [Google Scholar] [CrossRef]
- Mouad, A.M.; Taupin, D.; Lehr, L.; Yvergnaux, F.; Porto, A.L.M. Aminolysis of linoleic and salicylic acid derivatives with Candida antarctica lipase B: A solvent-free process to obtain amphiphilica amides for cosmetic application. J. Mol. Catal. B Enzym. 2016, 126, 64–68. [Google Scholar] [CrossRef]
- Serrano-Arnaldos, M.; Maximo-Martın, M.F.; Montiel-Morte, M.C.; Ortega-Requena, S.; Gomez-Gomez, E.; Bastida-Rodrıguez, J. Solvent-free enzymatic production of high quality cetyl esters. Bioprocess. Biosyst. Eng. 2016, 39, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Tomke, P.D.; Rathod, V.K. Enzyme as biocatalyst for synthesis of octyl ethanoate using acoustic cavitation: Optimization and kinetic study. Biocatal. Agric. Biotechnol. 2016, 7, 145–153. [Google Scholar] [CrossRef]
- Ye, R.; Hayes, D.G.; Burton, R.; Liu, A.; Harte, F.M.; Wang, Y. Solvent-free lipase-catalyzed synthesis of technical-grade sugar esters and evaluation of their physicochemical and bioactive properties. Catalysts 2016, 6, 78. [Google Scholar] [CrossRef]
- Deshmukh, A.R.; Rathod, V.K. Intensification of enzyme catalysed synthesis of hexyl acetate using sonication. Green. Process Synth. 2017, 6, 55–62. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; Sanchez, A.; Gomez, J.L.; Gomez, E.; Gomez, M.; Murcia, M.D. Kinetic study of the enzymatic synthesis of 2-phenylethyl acetate in discontinuous tank reactor. Ind. Eng. Chem. Res. 2018, 57, 11280–11287. [Google Scholar] [CrossRef]
- Murcia, M.D.; Gomez, M.; Gomez, E.; Gomez, J.L.; Hidalgo, A.M.; Sanchez, A.; Vergara, P. Kinetic modelling and kinetic parameters calculation in the lipase-catalysed synthesis of geranyl acetate. Chem. Eng. Res. Des. 2018, 138, 135–143. [Google Scholar] [CrossRef]
- Pereira, G.N.; Holz, J.P.; Giovannini, P.P.; Oliveira, J.V.; de Oliveira, D.; Lerin, L.A. Enzymatic esterification for the synthesis of butyl stearate and ethyl stearate. Biocatal. Agric. Biotechnol. 2018, 16, 373–377. [Google Scholar] [CrossRef]
- Serrano-Arnaldos, M.; Bastida, J.; Maximo, F.; Ortega-Requena, S.; Montiel, C. One-step solvent-free production of a spermaceti analogue using commercial immobilized lipases. ChemistrySelect 2018, 3, 748–752. [Google Scholar] [CrossRef]
- Khan, N.R.; Gawas, S.D.; Rathod, V.K. Enzyme-catalysed production of n-butyl palmitate using ultrasound assisted esterification of palmitic acid in a solvent-free system. Bioprocess. Biosys. Eng. 2018, 41, 1621–1634. [Google Scholar] [CrossRef]
- Basri, M.; Abdul Rahman, N.F.; Kassim, M.A.; Shahruzzaman, R.M.H.R.; Mokles, M.S.N. Lipase-catalyzed Production and Purification of Palm Esters Using Stirred Tank Reactors (STR). J. Oleo Sci. 2019, 68, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Gawas, S.D.; Khan, N.; Rathod, V.K. Application of response surface methodology for lipase catalyzed synthesis of 2-ethylhexyl palmitate in a solvent free system using ultrasound. Braz. J. Chem. Eng. 2019, 36, 1007–1017. [Google Scholar] [CrossRef]
- Jaiswal, K.S.; Rathod, V.K. Enzymatic synthesis of cosmetic grade wax ester in solvent free system: Optimization, kinetic and thermodynamic studies. SN Appl. Sci. 2019, 1, 949. [Google Scholar] [CrossRef]
- Serrano-Arnaldos, M.; Ortega-Requena, S.; Montiel, M.C.; Maximo, F.; Bastida, J.; Murcia, M.D. Preliminary economic assessment: A valuable tool to establish biocatalytic process feasibility with an in-lab immobilized lipase. J. Chem. Technol. Biotechnol. 2019, 94, 409–417. [Google Scholar] [CrossRef]
- Khan, N.R.; Rathod, V.K. Enzymatic synthesis of cetyl oleate in a solvent free medium using microwave irradiation and physicochemical evaluation. Biocatal. Biotransform. 2020, 38, 114–122. [Google Scholar] [CrossRef]
- Perdomo, I.C.; Contente, M.L.; Pinto, A.; Romano, D.; Fernandes, P.; Molinari, F. Continuous preparation of flavour-active acetate esters by direct biocatalytic esterification. Flavour. Fragr. J. 2020, 35, 190–196. [Google Scholar] [CrossRef]
- Corovic, M.; Milivojevic, A.; Simovic, M.; Banjanac, K.; Pjanovic, R.; Bezbradica, D. Enzymatically derived oil-based L-ascorbyl esters: Synthesis, antioxidant properties and controlled release from cosmetic formulations. Sus. Chem. Phar. 2020, 15, 100231. [Google Scholar] [CrossRef]
- Gawas, S.D.; Rathod, V.K. Ultrasound assisted green synthesis of 2-ethylhexyl stearate: A cosmetic bio-lubricant. J. Oleo Sci. 2020, 69, 1043–1049. [Google Scholar] [CrossRef]
- Gomez, J.L.; Gomez, M.; Murcia, M.D.; Gomez, E.; Hidalgo, A.M.; Montiel, C.; Martinez, R. Biosynthesis of benzyl acetate: Optimization of experimental conditions, kinetic modelling and application of alternative methods for parameters determination. Bioresour. Technol. Rep. 2020, 11, 100519. [Google Scholar] [CrossRef]
- Murcia, M.D.; Serrano-Arnaldos, M.; Ortega-Requena, S.; Maximo, F.; Bastida, J.; Montiel, M.C. Optimization of a sustainable biocatalytic process for the synthesis of ethylhexyl fatty acids esters. Catal. Today 2020, 6346, 98–105. [Google Scholar] [CrossRef]
- Serrano-Arnaldos, M.; Garcia-Martinez, J.J.; Ortega-Requena, S.; Bastida, J.; Maximo, F.; Montiel, M.C. Reaction strategies for the enzymatic synthesis of neopentyl glycol diheptanoate. Enzym. Microb. Technol. 2020, 132, 109400. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Arnaldos, M.; Montiel, M.C.; Ortega-Requena, S.; Maximo, F.; Bastida, J. Development and economic evaluation of an eco-friendly biocatalytic synthesis of emollient esters. Bioprocess. Biosys. Eng. 2020, 43, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.V.C.; Rosa, C.M.R.; Aguiar, L.G.; Oliveira, P.C.; de Castro, H.F.; Freitas, L. Synthesis of isopropyl palmitate by lipase immobilized on a magnetized polymer matrix. Chem. Eng. Technol. 2020, 43, 1741–1748. [Google Scholar] [CrossRef]
- Jaiswal, K.; Saraiya, S.; Rathod, V.K. Intensification of enzymatic synthesis of decyl oleate using ultrasound in solvent free system: Kinetic, thermodynamic and physicochemical study. J. Oleo Sci. 2021, 70, 559–570. [Google Scholar] [CrossRef]
- Montiel, M.C.; Asensi, M.; Gimeno-Martos, S.; Maximo, F.; Bastida, J. Sustainable biocatalytic procedure for obtaining new branched acid esters. Materials 2021, 14, 6847. [Google Scholar] [CrossRef]
- Serrano-Arnaldos, M.; Murcia, M.D.; Ortega-Requena, S.; Montiel, M.C.; Maximo, F.; Gomez, E.; Bastida, J. A simplified kinetic model to describe the solvent-free enzymatic synthesis of wax esters. J. Chem. Technol. Biotechnol. 2021, 96, 2325–2335. [Google Scholar] [CrossRef]
- Maximo, F.; Asensi, M.; Serrano-Arnaldos, M.; Ortega-Requena, S.; Montiel, C.; Bastida, J. Biocatalytic intensified process for the synthesis of neopentyl glycol dicaprylate/dicaprate. Sus. Chem. Phar. 2022, 30, 100882. [Google Scholar] [CrossRef]
- Montiel, C.; Gimeno-Martos, S.; Ortega-Requena, S.; Serrano-Arnaldos, M.; Maximo, F.; Bastida, J. Green production of a high-value branched-chain diester: Optimization based on operating conditions and economic and sustainability criteria. Appl. Sci. 2023, 13, 6177. [Google Scholar] [CrossRef]
- Montiel, M.C.; Serrano-Arnaldos, M.; Yagüe, C.; Ortega-Requena, S.; Maximo, F.; Bastida, J. Development of an industrial sustainable process for wax esters production: Enzyme immobilization, process optimization, and plant simulation. J. Chem. Technol. Biotechnol. 2023, 98, 2295–2304. [Google Scholar] [CrossRef]
- Nieto, S.; Bernal, J.M.; Villa, R.; Garcia-Verdugo, E.; Donaire, A.; Lozano, P. Sustainable setups for the biocatalytic production and scale-up of panthenyl monoacyl esters under solvent-free conditions. ACS Sustain. Chem. Eng. 2023, 11, 5737–5747. [Google Scholar] [CrossRef] [PubMed]
- Rangel, A.B.S.; Silva, M.V.C.; de Assis, G.P.; Rosa, C.M.R.; dos Santos, J.C.; de Freitas, L. Synthesis and characterization of magnetic poly(STY-EGDMA) particles for application as biocatalyst support in octyl oleate ester synthesis: Kinetic and thermodynamic parameters and mathematical modeling. Catal. Lett. 2023, 153, 3284–3296. [Google Scholar] [CrossRef]
- Tufvesson, P.; Lima-Ramos, J.; Nordblad, M.; Woodley, J.M. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org. Process Res. Dev. 2011, 15, 266–274. [Google Scholar] [CrossRef]
- de Maria, P.D. Biocatalysis, sustainability, and industrial applications: Show me the metrics. Curr. Opin. Green. Sustain. Chem. 2021, 31, 100514. [Google Scholar] [CrossRef]
- Arcos, J.A.; Garcia, H.S.; Hill, C.G. Continuous enzymatic esterification of glycerol with (poly)unsaturated fatty acids in a packed bed reactor. Biotechnol. Bioeng. 2000, 68, 563–570. [Google Scholar] [CrossRef]
- Wehtje, E.; Costes, D.; Adlercreutz, P. Continuous lipase-catalyzed production of wax ester using silicone tubing. J. Am. Oil Chem. Soc. 1999, 76, 1489–1493. [Google Scholar] [CrossRef]
- Laszlo, J.A.; Compton, D.L.; Eller, F.J.; Taylor, S.L.; Isbell, T.A. Packed bed bioreactor synthesis of feruloylated monoacyl- and diacylglycerols: Clean production of a “green” sunscreen. Green Chem. 2003, 5, 382–386. [Google Scholar] [CrossRef]
- Chang, S.W.; Shaw, J.F.; Yang, C.K.; Shieh, C.J. Optimal continuous biosynthesis of hexyl laurate by a packed bed bioreactor. Process Biochem. 2007, 42, 1362–1366. [Google Scholar] [CrossRef]
- Ju, H.Y.; Yang, C.K.; Yen, Y.H.; Shieh, C.J. Continuous lipase-catalyzed synthesis of hexyl laurate in a packed bed reactor: Optimization of the reaction conditions in a solvent-free system. J. Chem. Technol. Biotechnol. 2009, 84, 29–33. [Google Scholar] [CrossRef]
- Serri, N.A.; Kamaruddin, A.H.; Len, K.Y.T. A continuous esterification of malonic acid with citronellol using packed bed reactor: Investigation of parameter and kinetics study. Food Bioprod. Process 2010, 88, 327–332. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Lv, F.; Ye, R.; Bie, X.; Zhang, C.; Lu, Z. Enzymatic synthesis of lard-based ascorbyl esters in a packed bed reactor: Optimization by response surface methodology and evaluation of antioxidant properties. LWT Food Sci. Technol. 2014, 57, 393–399. [Google Scholar] [CrossRef]
- Compton, D.L.; Goodell, J.R.; Grallc, S.; Evans, K.O.; Cermak, S.C. Continuous, packed bed, enzymatic bioreactor production and stability of feruloyl soy glycerides. Ind. Crops Prod. 2015, 77, 787–794. [Google Scholar] [CrossRef]
- Ganguly, S.; Nandi, S. Process optimization of lipase catalyzed synthesis of diesters in a packed bed reactor. Biochem. Eng. J. 2015, 102, 2–5. [Google Scholar] [CrossRef]
- Shen, H.; Tao, Y.; Cui, C.; Zhang, Y.; Chen, B.; Tan, T. Synthesis of 2-ethyl hexanol fatty acid esters in a packed bed bioreactor using a lipase immobilized on a textile membrane. Biocatal. Biotransform. 2015, 33, 44–50. [Google Scholar] [CrossRef]
- Wan, F.L.; Teng, Y.L.; Wang, Y.; Li, A.J.; Zhang, N. Optimization of oligoglycerol fatty acid esters preparation catalyzed by Lipozyme 435. Grasas Aceites 2015, 66, e088. [Google Scholar] [CrossRef]
- Machado, J.R.; Pereira, G.N.; dos Santos de Oliveira, P.; Zenevicz, M.C.; Lerin, L.; Barreto de Oliveira, R.D.R.; Cavalcanti, S.C.H.; Ninow, J.L.; de Oliveira, D. Synthesis of eugenyl acetate by immobilized lipase in a packed bed reactor and evaluation of its larvicidal activity. Process Biochem. 2017, 58, 114–119. [Google Scholar] [CrossRef]
- Zenevicz, M.C.P.; Jacques, A.; Silva, M.J.A.; Furigo, A.; Oliveira, V.; de Oliveira, D. Study of a reactor model for enzymatic reactions in continuous mode coupled to an ultrasound bath for esters production. Bioprocess. Biosys. Eng. 2018, 41, 1589–1597. [Google Scholar] [CrossRef]
- Shahrin, N.A.; Yong, G.G.; Serri, N.A. Fructose stearate esterify in packed bed reactor using immobilized lipase. IOP Conf. Ser. Mat. Sci. Eng. 2020, 716, 012017. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G.; Tang, J.; Ming, M.; Jia, C.; Feng, B. Continuous biosynthesis of geranyl butyrate in a circulating fluidized bed reactor. Food Biosci. 2019, 27, 60–65. [Google Scholar] [CrossRef]
- Silva, M.V.C.; Rangel, A.B.S.; Aguiar, L.G.; de Castro, H.F.; de Freitas, L. Continuous enzymatic synthesis of 2-ethylhexyl oleate in a fluidized bed reactor: Operating conditions, hydrodynamics, and mathematical modeling. Ind. Eng. Chem. Res. 2020, 59, 19522–19530. [Google Scholar] [CrossRef]
- Silva, M.V.C.; Souza, A.B.; de Castro, H.F.; Aguiar, L.G.; de Oliveira, P.C.; de Freitas, L. Synthesis of 2-ethylhexyl oleate catalyzed by Candida antarctica lipase immobilized on a magnetic polymer support in continuous flow. Bioprocess. Biosys. Eng. 2020, 43, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Hosney, H.; Mustafa, A. Semi-continuous production of 2-ethyl hexyl ester in a packed bed reactor: Optimization and economic evaluation. J. Oleo Sci. 2020, 69, 31–41. [Google Scholar] [CrossRef]
- Huang, S.M.; Huang, H.Y.; Chen, Y.M.; Kuo, C.H.; Shieh, C.J. Continuous production of 2-phenylethyl acetate in a solvent-free system using a packed bed reactor with Novozym® 435. Catalysts 2020, 10, 714. [Google Scholar] [CrossRef]
- Hollenbach, R.; Muller, D.; Delavault, A.; Syldatk, C. Continuous flow glycolipid synthesis using a packed bed reactor. Catalysts 2022, 12, 551. [Google Scholar] [CrossRef]
- Vilas Boas, R.M.; Lima, R.; Silva, M.V.C.; de Freitas, L.; Aguiar, L.G.; de Castro, H.F. Continuous production of monoacylglycerol via glycerolysis of babassu oil by immobilized Burkholderia cepacia lipase in a packed bed reactor. Bioprocess. Biosys. Eng. 2021, 44, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.V.C.; Rangel, A.B.S.; Rosa, C.M.R.; de Assis, G.P.; Aguiar, L.G.; de Freitas, L. Development of a magnetically stabilized fluidized bed bioreactor for enzymatic synthesis of 2-ethylhexyl oleate. Bioprocess. Biosys. Eng. 2023, 46, 1665–1676. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, M.P.; Willemot, R.M.; Monsan, P.; Boures, E. Enzymatic Synthesis of α-butylglucoside linoleate in a packed bed reactor for future pilot scale-up. Biotechnol. Prog. 2000, 16, 589–594. [Google Scholar] [CrossRef]
- Hilterhaus, L.; Thum, O.; Liese, A. Reactor concept for lipase-catalyzed solvent-free conversion of highly viscous reactants forming two-phase systems. Org. Process Res. Dev. 2008, 12, 618–625. [Google Scholar] [CrossRef]
- Couto, R.; Vidinha, P.; Peres, C.; Ribeiro, A.S.; Ferreira, O.; Oliveira, M.V.; Macedo, E.A.; Loureiro, J.M.; Barreiros, S. Geranyl acetate synthesis in a packed bed reactor catalyzed by novozym in supercritical carbon dioxide and in supercritical ethane. Ind. Eng. Chem. Res. 2011, 50, 1938–1946. [Google Scholar] [CrossRef]
- Damnjanovic, J.J.; Zuza, M.G.; Savanovic, J.K.; Bezbradica, D.I.; Mijin, D.Z.; Boskovic-Vragolovic, N.; Knezevic-Jugovic, Z.D. Covalently immobilized lipase catalyzing high-yielding optimized geranyl butyrate synthesis in a batch and fluidized bed reactor. J. Mol. Catal. B Enzym. 2012, 75, 50–59. [Google Scholar] [CrossRef]
- Khan, N.R.; Jadhav, S.V.; Rathod, V.K. Lipase catalysed synthesis of cetyl oleate using ultrasound: Optimisation and kinetic studies. Ultrason. Sonochem. 2015, 27, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Corovic, M.; Milivojevic, A.; Carevic, M.; Banjanac, K.; Tanaskovic, S.J.; Bezbradica, D. Batch and semicontinuous production of l-ascorbyloleate catalyzed by CALB immobilized onto Purolite® MN102. Chem. Eng. Res. Des. 2017, 126, 161–171. [Google Scholar] [CrossRef]
- Lajis, A.F.B.; Hamid, M.; Ahmad, S.; Ariff, A.B. Comparative study of stirred and fluidized tank reactor for hydroxyl-kojic acid derivatives synthesis and their biological activities. Turk. J. Biochem. 2018, 43, 205–219. [Google Scholar] [CrossRef]
- Vilas Boas, R.N.; Ceron, A.A.; Bento, H.B.S.; de Castro, H.F. Application of an immobilized Rhizopus oryzae lipase to batch and continuous ester synthesis with a mixture of a lauric acid and fusel oil. Biomass Bioenergy 2018, 119, 61–68. [Google Scholar] [CrossRef]
- Satyawali, Y.; Cauwenberghs, L.; Dejonghe, W. Lipase-catalyzed solvent-free synthesis of polyglycerol 10 (PG-10) esters. Chem. Biochem. Eng. Q. 2019, 33, 501–509. [Google Scholar] [CrossRef]
- Carvalho, C.M.L.; Aires-Barros, M.R.; Cabral, J.M.S. A continuous membrane bioreactor for ester synthesis in organic media: I. Operational characterization and stability. Biotechnol. Bioeng. 2001, 72, 127–135. [Google Scholar] [CrossRef]
- Cvjetkoa, M.; Vorkapic-Furac, J.; Znidarsic-Plaz, P. Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor. Process Biochem. 2012, 47, 1344–1350. [Google Scholar] [CrossRef]
- Giovannini, P.P.; Catani, M.; Massi, A.; Sacchetti, G.; Tacchini, M.; de Oliveira, D.; Lerin, L.A. Continuous production of eugenol esters using enzymatic packed bed microreactors and an evaluation of the products as antifungal agents. Flavour. Fragr. J. 2019, 34, 201–210. [Google Scholar] [CrossRef]
Ester | Biocatalyst | Characteristics | Reference |
---|---|---|---|
Monolauroyl maltose | Chirazyme® L-2 C2 immobilized Candida antarctica lipase B | Batch and continuous stirred tank reactors Volume: 300 mL Immobilized lipase packed into a stainless-steel basket Solvent: acetone Water removal: molecular sieves Conversion: 60% after 90 h | [17] |
Fructose palmitate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 100 mL Solvent: 2-methyl-2-butanol, supercritical CO2 Water removal: molecular sieves Conversion: 78% after 72 h | [18] |
Oleyl palm ester | Lipozyme® RM IM immobilized Rhizomucor miehei lipase | Batch reactor with different impellers Volume: 2 L and scale up to 50 L Solvent: n-hexane Conversion: 97.2% after 5 h | [19] |
Ricinoleic acid estolides | Candida rugosa lipase in-lab immobilized in Lewatit MonoPlusMP64 | Batch reactor Volume: 100 mL Solvent: solvent-free Water removal: atmospheric evaporation and vacuum (comparison) Conversion: 68% after 24 h | [20] |
Polyglycerol polyricinoleate | Candida rugosa, Rhizopus arrhizus, and Rhizopus oryzae lipases in-lab immobilized in Lewatit MonoPlusMP64 | Batch reactor (two steps) Volume: 100 mL Solvent: solvent-free Water removal: vacuum Conversion: 91.5% after 125 h, 98% after 320 h | [21,22] |
Polyglycerol polyricinoleate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor with different impellers Volume: 100 mL Solvent: solvent-free Water removal: vacuum and dry N2 bubbling Conversion: 99.3% after 55 h | [23] |
Eugenyl acetate | Lipozyme® 435 and Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 100 mL Solvent: supercritical CO2 Kinetic model Conversion: 45% after 6 h | [24] |
Ethyl oleate | Dry biocatalyst of supported Rhizopus microsporus with lipase activity | Continuous stirred tank reactor Volume: 700 mL Solvent: n-hexane Water removal: molecular sieves Conversion: 90% after 14 h | [25] |
Benzyl butyrate | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase Lipozyme® RM IM immobilized Rhizomucor miehei lipase NS 88011 Non-commercial immobilized Candida antarctica lipase B | Batch and fed-batch reactors Volume: 500 mL Solvent: solvent-free Water removal: molecular sieves Conversion: 80% after 12 h | [26] |
Stearidonic acid-rich triacylglycerol | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Batch reactor (two steps) Volume: 50 mL Water removal: vacuum Conversion: 86.4% after 12 h | [27] |
Polyglycerol polyricinoleate | Candida antarctica lipase B in-lab immobilized in Lewatit MonoPlusMP64 | Batch reactor Volume: 100 mL Solvent: solvent-free Water removal: vacuum and dry N2 bubbling Conversion: 98% after 159 h | [28] |
Ester | Biocatalyst | Characteristics | Reference |
---|---|---|---|
Acyl mannoses | Chirazyme® L-2 C2 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) 10 mm i.d. × 50 mm Residence time: 12 min Solvent: acetonitrile, acetone, 2-methyl-2-propanol, 2-methyl-2-butanol Conversion: 40% for 16 days | [29] |
Acyl L- ascorbates | Chirazyme® L-2 C2 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) 4.6 mm i.d. × 150 mm Residence time: 5 min Solvent: acetone Productivity: 1.6–1.9 kg/L for 11 days | [30] |
Lauroyl and oleoyl erythritol | Chirazyme® L-2 C2 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) 10 mm i.d. × 50 mm Residence time: 4.5 min Solvent: acetone Productivity: 1.25–1.6 kg/L for 14 days | [31] |
Fatty acid esters of sugar alcohols | Chirazyme® L-2 C2 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) 20 mm i.d. × 50 mm Residence time: 15 min Solvent: acetone Productivity: 1.3–2 kg/L for 2 days | [32] |
Esters of palm stearin with soybean oil | Novozym® 435 immobilized Candida antarctica lipase B | Fluidized bed reactor (continuous) 2 cm i.d. × 20 cm Residence time: 19 min Solvent: solvent-free Conversion: 10–45% for 21 days | [33] |
Monoglycerides of Babassu oil | Lipase PS—Batch number: 01022TD in-lab immobilized Burkholderia cepacia lipase | Packed-bed reactor (continuous) 1.5 cm i.d. × 5.5 cm Residence time: 356 min Solvent: solvent-free Conversion: 25–33% for 22 days | [34] |
Farnesyl laurate | Lipozyme® RM IM immobilized Rhizomucor miehei lipase | Packed-bed reactor (continuous) 1.2 cm i.d × 9.24 cm Residence time: 22 min Solvent: iso-octane Kinetic and mass transfer model Conversion: 98.07% for 3 h | [35] |
Butyl acetate | Candida antarctica lipase B in-lab immobilized in porous γ-alumina pellets | Packed-bed reactor (continuous) 12 g biocatalyst Flow rate: 0.5–10 mL/min Solvent: n-hexane, supercritical CO2 (comparison) Productivities: 119 µmol/min × g pellets and 501 µmol/min × g pellets | [36] |
Esters of milkfat with soybean oil | Rhizopus oryzae lipase in-lab immobilized in polysiloxane– polyvinyl alcohol particles Novozym® 435 immobilized Candida antarctica lipase B | Fluidized bed reactor (recirculating and continuous) 20 mm i.d. × 200 mm Residence time: 12 min and 6 min Solvent: solvent-free Conversion: 52% and 27% for 190 h | [37] |
Fructose oleic ester | Candida rugosa lipase in-lab immobilized in modified Amberlite IRA-96 | Fluidized bed reactor (batch recirculating) 10 mm i.d. × 160 mm Residence time: 42.78–213.91 min Solvent: solvent-free Conversion: 197.06% (mixture of mono- di- and tri- esters) 15 cycles | [38] |
Isoamyl acetate | Aspergillus oryzae lipase in-lab immobilized in calcium alginate beads | Gas-liquid fluidized bed reactor (continuous) 0.8 mm i.d. × 143 mm Continuous ethanol removal: N2 flow Solvent: solvent-free Conversion: 89.55% for 60 min | [39] |
Monolauroyl maltose | Novozym® 435 immobilized Candida antarctica lipase B | Fluidized bed reactor (recirculating) 10 mm i.d. × 300 mm Flow rate: 1 mL/min Solvent: acetone Conversion: 30% for 5 days | [40] |
Geraniol esters | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase Lipozyme® RM IM immobilized Rhizomucor miehei lipase | Packed-bed reactor (continuous) 3.0 mm i.d. × 100 mm Residence time: 5–25 min Solvent: n-heptane Kinetic model Conversion: 87% for 25 h | [41] |
Isoamyl acetate | Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) 8 mm i.d. × 200 mm Residence time: 36.5 min Solvent: supercritical CO2 Mathematical model Conversion: 95.5% | [42] |
Structured lipids from olive oil | Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase Lipozyme® RM IM immobilized Rhizomucor miehei lipase | Packed-bed reactor (continuous) 2 cm i.d. × 20 cm Residence time: 10.9 and 20 min Solvent: solvent-free Conversion: 70% for 70 h | [43] |
Structured lipids from palm-olein | Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Packed-bed reactor (continuous) 30 mm i.d. × 48 cm Solvent: solvent-free Lipid composition | [44] |
Ester | Biocatalyst | Characteristics | Reference |
---|---|---|---|
Butyl butyrate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor and membrane reactor (recirculating) Volume BR: 400 mL Volume MR: 175 mL Solvent: supercritical CO2 Selectivity: ≥99% after 3 h BR ≥99% after 7 cycles of 6 h MR Better results with MR | [45] |
Amyl caprylate | Candida rugosa lipase in-lab immobilized on Sepabeads EC-EP | Batch reactor and fluidized bed reactor (recirculating) Volume BR: 10 mL Volume FBR: 80 mL, 10 mm i.d. × 136 mm, residence time: 3.53–0.75 min Solvent: isooctane Water removal: molecular sieves Conversion: ≥99% after 24 h BR 90.2% for 70 h FBR Better results with FBR | [46] |
Butyl butyrate | Thermomyces lanuginosus lipase (TLL) in-lab immobilized on Immobead 150 | Batch reactor, packed-bed reactor, packed-bed reactor with glass beads and fluidized bed reactor (continuous) Volume BR: 10 mL PBR: 10 mm i.d. × 65 mm Solvent: n-hexane Conversion: 21%, 85% and 60% Better results with PBR with glass beads | [47] |
Isoamyl acetate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor and packed-bed reactor (continuous) Volume BR: 100 mL PBR: 3.37 mm i.d. × 0.33 m, residence time: 5.6–11 s Solvent: supercritical CO2 Mathematical model (mass transfer, kinetic and reactor design) Better results with PBR | [48] |
Sorbitol laurate | 10 immobilized lipases 6 lipases in solution | Batch reactor and “tube-reactor” (discontinuous in orbital shaker) Volume BR: 500 mL Conversion: 28% after 48 h BR 50% after 48 h TR | [49] |
Ester | Biocatalyst | Characteristics | References |
---|---|---|---|
Sugar fatty acid esters | Chirazyme® L-2 immobilized Candida antarctica lipase B | Continuous stirred membrane tank reactor Membrane area: 23 cm2. Bottom part for the reaction 58 mm i.d. × 2 mm Solvent: ethyl methyl ketone, n-hexane Water removal: azeotrope and membrane evaporation Conversion: 93% after 48 h | [50,51] |
Sugar esters | Mycelium-bound Mucor circinelloides lipase | Batch microreactor with water activity sensor Volume: 37 mL Solvent: di-n-pentyl and petroleum ethers Water activity influence Conversion: 72% after 20 min | [52] |
Alkyl esters | Novozym® 435 Immobilized Candida antarctica lipase B | Packed-bed miniaturized reactor (continuous) 1.65 mm i.d. × 30 mm 100 mg lipase, flow rate of 1 µL/min Solvent: n-hexane Conversion: 92% for 2 h | [53] |
n-Butyl levulinate | Lipozyme® RM IM immobilized Rhizomucor miehei lipase Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed microreactor (continuous) 3 mm i.d. × 100 mm Residence time: 1–5 min Solvent: tert-butyl methyl ether, 1,4 dioxane, acetonitrile, toluene Conversion: 85% for 25 h (6 runs) | [54] |
n-Amyl acetate | Burkholderia cepacia lipase in-lab immobilized on a biodegradable polymer | Coated film microreactor (batch and continuous) Volume: 18 mL Solvent: n-hexane Mathematical model (dispersion model) Productivities: 8.16 and 6.54 mmol/g h | [55] |
Ascorbyl palmitate | Lipozyme® 435 immobilized Candida antarctica lipase B Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase Lipozyme® RM IM immobilized Rhizomucor miehei lipase Lipozyme® Novo 40086 immobilized Rhizomucor miehei lipase Amano lipase PS immobilized Burkholderia cepacia lipase | Batch reactor: rotating basket, sequential batches Volume: 500 mL Solvent: 2-methyl-2-butanol Water removal: molecular sieves Conversion: 80% each batch (4 batches) | [56] |
Ester | Biocatalyst | Characteristics | Reference |
---|---|---|---|
n-Octyl oleate | Lipozyme® RM IM immobilized Rhizomucor miehei lipase | Batch reactor Volume: 102 mL Solvent: supercritical CO2 Conversion: 88% after 5 h | [60] |
Cetyl palmitate | Novozym® 435 immobilized Candida antarctica lipase B Candida rugosa lipase in-lab immobilized in MP 1000 | Batch reactor Volume: 0.6 L Solvent: solvent-free Water activity measurement and control Conversion: 73% after 192 h | [61] |
Ethyl oleate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 250 mL Solvent: solvent-free Kinetic model Conversion: 90% after 5.5 h | [62] |
Citronellol laurate | Novozym® 435 immobilized Candida antarctica lipase B SP 382 immobilized Candida antarctica lipase B Lipozyme® RM IM immobilized Rhizomucor miehei lipase | Batch reactor Volume: 100 mL Solvent: n-heptane, supercritical CO2 Conversion: 74% after 5 h | [63] |
Monolauryl maltose | Novozym® 435 immobilized Candida antarctica lipase B | Continuous stirred tank reactor Lipase in a stainless-steel basket Volume: 250 mL Solvent: acetone Water removal: molecular sieves (addition) Successive maltose addition due to insolubility Recycling lauric acid and solvent Productivity: 9.2 g/d L reactor for 10 days | [64] |
Oleyl oleate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor (different agitators) Volume: 2 L Solvent: hexane Kinetic model Conversion: >90% after 1 h (Rushton turbine) | [65] |
Kojic acid ricinoleate | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® RM IM immobilized Rhizomucor miehei lipase Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Batch reactor Volume: 500 mL Solvent: solvent-free Water removal: vacuum Conversion: 87.4% after 6 h | [66] |
Fatty acid glucose ester | Candida antarctica lipase B displaying-Pichia pastoris strain GS115/CALB-GCW21-42 | Batch reactor Volume: 5 mL, 2 L and 5 L Solvent: different organic solvents Water removal: molecular sieves Conversion: 90% after 96 h | [67] |
Kojic acid monooleate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 125 mL Solvent: solvent-free Water removal: atmospheric evaporation Conversion: 44.46% after 5 h | [68] |
Cetyl ricinoleate | Candida antarctica lipase B in-lab immobilized in Lewatit MonoPlusMP64 | Batch reactor Volume: 50 mL and 100 mL Solvent: solvent-free Water removal: atmospheric evaporation and vacuum with dry N2 bubbling Conversion: 98% after 3 h | [69] |
Myristyl myristate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 50 mL and 100 mL Solvent: solvent-free Water removal: atmospheric evaporation and vacuum with dry N2 bubbling Conversion: 99% after 2 h | [70] |
n-Butyl palmitate | Fermase CALB 10000 immobilized Candida antarctica lipase B | Batch reactor Volume: 250 mL Solvent: solvent-free Water removal: molecular sieves Kinetic model Conversion: 91.25% after 4 h | [71] |
Amphiphilic amides | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 50 mL Solvent: solvent-free Ethanol removal: vacuum Conversion: 99% after 20 h | [72] |
Cetyl fatty acid esters | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 100 mL Solvent: solvent-free Water removal: vacuum with dry N2 bubbling Conversion: 98.5% after 1.5 h | [73] |
Octyl ethanoate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor with ultrasound Volume: 50 mL Solvent: solvent-free Kinetic model Conversion: 97.31% after 20 min | [74] |
Oleic acid sugar esters | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 100 mL Solvent: solvent-free Water removal: molecular sieves Conversion: 96.6% after 6 days | [75] |
Hexyl acetate | Lipozyme® RM IM immobilized Rhizomucor miehei lipase | Batch reactor with ultrasound Volume: 50 mL Solvent: hexane Conversion: 85% after 4 h | [76] |
2-Phenylethyl acetate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 50 mL Solvent: hexane Kinetic model Conversion: 95.42% after 2 h | [77] |
Geranyl acetate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 50 mL Solvent: hexane Kinetic model Conversion: 98.4% after 160 min | [78] |
Butyl stearate ethyl stearate | Novozym® 435 immobilized Candida antarctica lipase B | Batch and fedbatch reactors Volume: 250 mL Solvent: solvent-free Conversion: 92% after 24 h | [79] |
Spermaceti analogue | Lipozyme® RM IM immobilized Rhizomucor miehei lipase CalB immo Plus immobilized Candida antarctica lipase B | Batch reactor Volume: 100 mL Solvent: solvent-free Water removal: vacuum with dry N2 bubbling Conversion: 98% after 2 h | [80] |
n-Butyl palmitate | Fermase CALB 10000 immobilized Candida antarctica lipase B | Batch reactor with ultrasound Volume: 100 mL Solvent: solvent-free Water removal: molecular sieves Kinetic model Conversion: 96.6% after 50 min | [81] |
Palm oil esters | Lipozyme® RM IM immobilized Rhizomucor miehei lipase Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Batch reactor (scale-up) Volume: 2 L, 15 L, and 300 L Solvent: n-hexane and solvent-free Conversion: >90% after 3 h | [82] |
2-Ethylhexyl palmitate | Fermase CALB 10000 immobilized Candida antarctica lipase B | Batch reactor with ultrasound Volume: 50 mL Solvent: solvent-free Conversion: 96.56% after 2 h | [83] |
Cetyl caprate | Fermase CALB 10000 immobilized Candida antarctica lipase B | Batch reactor Volume: 50 mL Solvent: solvent-free Kinetic model Conversion: 95% after 80 min | [84] |
Spermaceti analogue | Candida antarctica lipase B in-lab immobilized in different supports | Batch reactor Volume: 100 mL Solvent: solvent-free Economic study Water removal: vacuum with dry N2 bubbling Conversion: >90% after 1 h | [85] |
Cetyl oleate | Fermase CALB 10000 immobilized Candida antarctica lipase B | Batch reactor with ultrasound Volume: 50 mL Solvent: solvent-free Conversion: 97.5% after 20 min | [86] |
Isoamyl and cinnamyl acetate | Lyophilized mycelium of Aspergillus oryzae | Continuous stirred tank membrane reactor Volume: 200 mL Residence time: 500 min Solvent: n-heptane Conversion: 98% for 10 days | [87] |
Fatty acid ascorbyl esters | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 100 mL Solvent: organic solvent Kinetic model Conversion: high conversion depending on the fatty acid | [88] |
2-Ethylhexyl stearate | Fermase CALB 10000 immobilized Candida antarctica lipase B | Batch reactor with ultrasound Volume: 50 mL Solvent: solvent-free Conversion: 95.87% after 3 h | [89] |
Benzyl acetate | Novozym® 435 immobilized Candida antarctica lipase B Novozym® 40086 immobilized Rhizomucor miehei lipase Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Batch reactor Volume: 50 mL Solvent: n-hexane and n-heptane Kinetic model Conversion: >90% after 2.5 h | [90] |
2-Ethylhexyl palmitate and stearate | Novozym® 435 immobilized Candida antarctica lipase B Novozym® 40086 immobilized Rhizomucor miehei lipase | Batch reactor Volume: 100 mL Solvent: solvent-free Water removal: vacuum with dry N2 bubbling Conversion: 98% after 45 min | [91] |
Neopentyl glycol diheptanoate | Novozym® 435 immobilized Candida antarctica lipase B | Batch and fed-batch reactors Volume: 50 mL Solvent: solvent-free Water removal: atmospheric evaporation Conversion: 95% after 6 h | [92] |
Spermaceti analogue | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Batch reactor Volume: 100 mL Solvent: solvent-free Economic study Water removal: vacuum with dry N2 bubbling Conversion: >97.5% after 2 h | [93] |
Isopropyl palmitate | Penicillium camemberti lipase in-lab immobilized on magnetized poly(styrene- codivinylbenzene) | Batch reactor Volume: 280 mL Solvent: heptane Kinetic model Conversion: 85.65% after 12 h | [94] |
Decyl oleate | Fermase CALB 10000 immobilized Candida antarctica lipase B | Batch reactor with ultrasounds Volume: 50 mL Solvent: solvent-free Kinetic model Conversion: 97.14% after 25 min | [95] |
2-Ethylhexyl 2-methylhexanoate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 50 mL Solvent: solvent-free Economic study and green metrics Water removal: atmospheric evaporation Conversion: 99.74% after 5 h | [96] |
Spermaceti analogue | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® RM IM immobilized Rhizomucor miehei lipase Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase CalB immo Plus immobilized Candida antarctica lipase B | Batch reactor Volume: 100 mL Solvent: solvent-free Kinetic model Water removal: vacuum with dry N2 bubbling Conversion: >90% after 1 h | [97] |
Neopentyl glycol dicaprylate/ dicaprate | Lipozyme® 435 immobilized Candida antarctica lipase B | Batch and fed-batch reactors Volume: 50 mL Solvent: solvent-free Economic study and green metrics Water removal: atmospheric evaporation Conversion: 92.5% after 6 h | [98] |
Neopentyl glycol dilaurate | Novozym® 435 immobilized Candida antarctica lipase B Novozym® 40086 immobilized Rhizomucor miehei lipase | Batch reactor Volume: 50 mL Solvent: solvent-free Economic study and green metrics Water removal: atmospheric evaporation Conversion: >90% after 6 h | [99] |
Spermaceti analogue | Candida antarctica lipase B in-lab immobilized in Purolite® Lifetech™ ECR8285 | Batch reactor Volume: 100 mL Solvent: solvent-free Water removal: vacuum with dry N2 bubbling Conversion: 97% after 1 h Production plant simulation using aspenONE suite v10 | [100] |
Panthenyl monoacyl ester | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor Volume: 500 mL Solvent: solvent-free (eutectic mixture) Green metrics Conversion: 87−95% after 6 h | [10] |
Octyl oleate | Candida antarctica lipase B in-lab immobilized on magnetic poly(STY-EGDMA) particles | Batch reactor Volume: 100 mL Solvent: solvent-free Kinetic model Conversion: 57% after 24 h | [102] |
Ester | Biocatalyst | Characteristics | Reference |
---|---|---|---|
Mono-, di-, and triacyglycerols from (poly)unsaturated fatty acids | Chirazyme® L-9 immobilized Mucor miehei lipase | Packed-bed reactor (continuous) 0.32 cm i.d. × 20 cm 0.47 cm i.d. × 8.9 cm 0.63 cm i.d. × 5 cm 0.79 cm i.d. × 3.2 Residence time: 15 min Solvent: hexane, 2-propanol, ethyl acetate, formic acid Conversion: 80–90% for 12 days | [105] |
Cetyl palmitate | SP 435 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) Silicone and PVC tube: 3 mm i.d. Flow rate: 0.005 g/min Productivity: 7.2 g/day Conversion: 99.1% for 7 days | [106] |
Feruloylated monoacyl- and diacyl glycerols | Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed reactor (recirculating) 2.5 cm i.d. × 30 cm Flow rate: 2 mL/min Solvent: solvent-free Water removal: molecular sieves Conversion: 60% after 140 h | [107] |
Hexyl laurate | Lipozyme® IM-77 immobilized Rhizomucor miehei lipase | Packed-bed reactor (continuous) 0.25 cm i.d. × 25 cm Residence time: 0.43 min Solvent: n-hexane Conversion: 97% | [108] |
Hexyl laurate | Lipozyme® IM-77 immobilized Rhizomucor miehei lipase | Packed-bed reactor (continuous) 0.25 cm i.d. × 25 cm Flow rate: 0.55 mL/min Solvent: solvent-free Production rate: 87.44 μmol/min | [109] |
Citronellyl malonate | Candida rugosa lipase in-lab immobilized on Amberlite MB-1 | Packed-bed reactor (continuous) 1.2 cm i.d. × 24 cm Flow rate: 1 mL/min Solvent: iso-octane Kinetic model Water removal: molecular sieves Conversion: 90% (steady state after 180 min) | [110] |
Lard-based ascorbyl esters | Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) 2 cm i.d. × 10 cm or 25 cm Flow rate: 0.07 mL/min Solvent: tert-amyl alcohol Water removal: molecular sieves Conversion: 50.50% | [111] |
Feruloyl soy glycerides | Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous, pilot scale) Four 304-stainless steel columns 9.8 cm i.d. × 132 cm Flow rate: 2.5 mL/min Solvent: solvent-free Conversion: 65% for 4.5 months | [112] |
Dibehenyl adipate Dibehenyl sebacate | Lipozyme® RM IM immobilized Rhizomucor miehei lipase Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase SP 435 immobilized Candida antarctica lipase B NS40013 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) 1 in i.d. × 12 in Flow rate: 3 mL/min Solvent: isooctane Water removal: vacuum Conversion: 89% and 91% for 5 h; 20 reuses | [113] |
2-Ethylhexyl palmitate | Candida sp. 99–125 lipase in-lab immobilized on a fabric membrane | Packed-bed reactor (recirculating) 40, 60, 90 mm i.d. × 630, 280, 124 mm Residence time: 160 s Solvent: solvent-free Study of H/D influence on conversion Water removal: molecular sieves Conversion: 95% for 300 h (30 batches) | [114] |
Polyglycerol fatty acid esters | Lipozyme® 435 immobilized Candida antarctica lipase B | Bubble column reactor (batches) Volume: 2 L Solvent: solvent-free Water removal: vacuum and N2 bubbling Conversion: 95.82% for 4.25 h (10 batches) | [115] |
Eugenyl acetate | Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Packed-bed reactor (continuous) 15 mm i.d. × 55 mm Residence time: 55, 7, and 4 min Solvent: solvent-free Conversion: 93.1% | [116] |
Soybean-free fatty acids ethyl esters | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Packed-bed reactor with ultrasound (continuous) 14.5 mm i.d. × 171 mm Flow rate: 2.5 mL/min Conversion: 95% at 6 min residence time | [117] |
Fructose stearate | Rhizomucor miehei lipase in-lab immobilized into chicken eggshells | Packed-bed reactor (continuous) 10 mm i.d.× 90 mm Flow rate: 0.074 mL/min Solvent: ethanol Product concentration: 7.252 × 10−1 mol/L | [118] |
Geranyl butyrate | Candida rugosa lipase in-lab immobilized on different resins | Fluidized bed reactor (recirculating) 1.4 cm i.d. × 17 cm Flow rate: 0.07 mL/min Residence time: 4.7 h Solvent: n-heptane Water removal: molecular sieves Conversion: 77% for 12 h | [119] |
2-Ethylhexyl oleate | Candida antarctica lipase in-lab immobilized on STY-DVB-M particles | Fluidized bed reactor (continuous with recirculation) 15 mm i.d. × 202 mm Residence time: 6, 12, and 18 h Solvent: solvent-free Mathematical model (kinetic and mass transfer) Conversion: 48.24% for 8 days | [120] |
2-Ethylhexyl oleate | Candida antarctica lipase in-lab immobilized on STY-DVB-M particles | Packed-bed reactor (continuous) 11 mm i.d. × 166 mm Residence time: 3, 6, and 12 h Solvent: solvent-free Kinetic model Conversion: 60% for 16 days | [121] |
2-Ethylhexyl oleate | Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed reactor (semicontinuous) 12 mm i.d. × 300 mm Flow rate: 1.5 mL/min Solvent: solvent-free Water removal: molecular sieves Economic study and process plant simulation Conversion: >95% for 12 cycles × 720 h each | [122] |
2-Phenylethyl acetate | Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous) 0.46 cm i.d. × 25 cm Flow rate: 1, 3, and 5 mL/min Solvent: solvent-free Conversion: 100% for 10 min (lower flow rate) | [123] |
Glucose mono decanoate | Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed reactor (continuous recycling glucose) XK16 column from Cytiva Flow rate: 0.5 mL/min Residence time: 13 min Productivity: 1228 µmol/L h | [124] |
Monoacyl glycerols of Babassu oil | Burkholderia cepacia lipase in-lab immobilized on SiO2–PVA particles | Packed-bed reactor (continuous) 15 mm i.d. × 55 mm Residence time: 9.8 h Mathematical model (mass transfer) Productivity: 52.3 mg/g h | [125] |
2-Ethylhexyl oleate | Candida antarctica lipase in-lab immobilized on STY-DVB-M particles | Fluidized bed reactor magnetically stabilized (continuous recycling substrate) 15 mm i.d. × 202 mm Flow rate: 0.044 mL/min Solvent: solvent-free Residence time: 12 h Kinetic model Conversion: 55.63% for 16 days | [126] |
Ester | Biocatalyst | Characteristics | Reference |
---|---|---|---|
α-Butylglucoside linoleate | Chirazyme® L-2 C2 immobilized Candida antarctica lipase B Chirazyme® L-9 immobilized Mucor miehei lipase | Batch reactor and packed-bed reactor (recirculating with mixing tank) BR: rotary evaporator (Büchi, R-114) PBR: 20 cm i.d. × 150 cm, flow rate: 4.5 mL/min Solvent: decane Water removal: vacuum Conversion: >90% for >5 cycles × 70 h each Better results with PBR and Chirazyme L-9 | [127] |
Myristyl myristate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor, packed-bed reactor, and bubble column reactor Solvent: solvent-free Water removal: vacuum Mathematical model (kinetic and mass transfer) Conversion: 99.6% after 5.5 h bubble column reactor after 17 h packed-bed reactor after 24 h batch reactor Better results with bubble column reactor | [128] |
Geranyl acetate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor, packed-bed reactor, and PBR series PBR: 3.2 mm i.d. × different lengths Solvent: supercritical CO2 and supercritical ethane Mathematical model (kinetic and reactor design) Batter results with two reactors in series | [129] |
Geranyl butyrate | Candida rugosa lipase in-lab immobilized on Sepabeads® EC-EP, Sepabeads® EC-HA and Purolite® A-109 | Batch reactor and fluidized bed reactor (recirculating) Volume BR: 100 mL PBR: 10 mm i.d. × 136 mm Solvent: isooctane Mathematical model (hydrodynamic) Conversion: >99.9% after 48 h BR 78.9% after 10 h FBR Better results with FBR | [130] |
Cetyl oleate | Fermase CALB 10000 immobilized Candida antarctica lipase B | Batch reactor and batch reactor with ultrasound Volume BR: 250 mL Volume BR ultrasound: 50 mL Solvent: solvent-free Water removal: molecular sieves Kinetic model Conversion: 95.96% after 2 h BR 95.96% after 30 min BR with ultrasound Better results with BR (stirred) with ultrasound | [131] |
Ascorbyl oleate | Candida antarctica lipase in-lab immobilized on Purolite® MN102 | Batch reactor and fluidized bed reactor (recirculating) Volume BR: 5 mL FBR: 9 mm i.d. × 136 mm Solvent: tert-butanol Water removal: molecular sieves Mathematical model (kinetic and hydrodynamic) Better results with FBR (no damage of particles) | [132] |
Kojic acid derivatives with fatty acids | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® RM IM immobilized Rhizomucor miehei lipase Lipozyme® TL-IM immobilized Thermomyces lanuginosus lipase | Batch reactor and fluidized tank reactor Volume BR: 100 mL FBR: The same BR sparged with air Solvent: solvent-free Better results with BR | [133] |
Isoamyl laurate | Five microbial lipases In-lab immobilized on epoxy-polysiloxane-hydroxyethylcellulose and styrene-divinylbenzene | Batch reactor and packed-bed reactor (continuous) Volume BR: 20 mL PBR: 15 mm i.d. × 55 mm; flow rate: 1.8 mL/h; residence time: 3.12 h Solvent: solvent-free Conversion: 81.26% after 24 h BR 0.8 mol/L h PBR for 168 h Better results with PBR | [134] |
Polyglycerol-10 laurate Polyglycerol-10 caprylate | Novozym® 435 immobilized Candida antarctica lipase B | Batch reactor (with mechanical agitation and bubbling) and fluidized bed reactor (batch operation) Volume BR: Duran bottle (unknown volume) FBR: 20 mm i.d. × 35 cm Solvent: solvent-free Water removal: dry N2 bubbling Conversion: ≈100% after 20 h and 22 h Better results with N2 bubbling | [135] |
Ester | Biocatalyst | Characteristics | Reference |
---|---|---|---|
Hexyl acetate | Fusarium solani pisi cutinase cloned and expressed in Escherichia coli | Membrane reactor stainless-steel monochannel ultrafiltration module (continuous) Volume: 100 mL Membrane area: 38 cm2 Homogenization achieved through partial recirculation Flow rate: 0.1 mL/min Solvent: iso-octane (reversed micelles) Mathematical model (reactor design) Good performance of the MR | [136] |
Isoamyl acetate | Novozym® 435 immobilized Candida antarctica lipase B | Packed-bed microreactor (microchannel, continuous) 1 cm width × 450 µm height × 75 mm length Solvent: ionic liquid Conversion: 92% in 15 min (multiple runs for 2 weeks) | [137] |
Eugenyl esters | Novozym® 435 immobilized Candida antarctica lipase B Lipozyme® RM IM immobilized Rhizomucor miehei lipase | Packed-bed microreactor (continuous) 0.5 cm i.d. × 5 cm Solvent: solvent-free Conversion: 82% N435 and 90% RM IM for 26 h (acetate) | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Requena, S.; Montiel, C.; Máximo, F.; Gómez, M.; Murcia, M.D.; Bastida, J. Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis. Materials 2024, 17, 268. https://doi.org/10.3390/ma17010268
Ortega-Requena S, Montiel C, Máximo F, Gómez M, Murcia MD, Bastida J. Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis. Materials. 2024; 17(1):268. https://doi.org/10.3390/ma17010268
Chicago/Turabian StyleOrtega-Requena, Salvadora, Claudia Montiel, Fuensanta Máximo, María Gómez, María Dolores Murcia, and Josefa Bastida. 2024. "Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis" Materials 17, no. 1: 268. https://doi.org/10.3390/ma17010268
APA StyleOrtega-Requena, S., Montiel, C., Máximo, F., Gómez, M., Murcia, M. D., & Bastida, J. (2024). Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis. Materials, 17(1), 268. https://doi.org/10.3390/ma17010268