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Abstract: This study introduces a Radial Basis Function-Genetic Algorithm-Back Propagation-Importance
Sampling (RBF-GA-BP-IS) algorithm for the multi-scale reliability analysis of Fiber-Reinforced Polymer
(FRP) composite structures. The proposed method integrates the computationally powerful RBF neural
network with GA, BP neural network and IS to efficiently calculate inner and outer optimization
problems for reliability analysis with hybrid random and interval uncertainties. The investigation
profoundly delves into incorporating both random and interval parameters in the reliability appraisal
of FRP constructs, ensuring fluctuating parameters within designated boundaries are meticulously
accounted for, thus augmenting analytic exactness. In application, the algorithm was subjected to
diverse structural evaluations, including a seven-bar planar truss, an architectural space dome truss,
and an intricate nonlinear truss bridge. Results demonstrate the algorithm’s exceptional performance in
terms of model invocation counts and accurate failure probability estimation. Specifically, within the
seven-bar planar truss evaluation, the algorithm exhibited a deviation of 0.08% from the established
failure probability benchmark.

Keywords: fiber-reinforced polymer composite; multi-scale reliability analysis; hybrid random and
interval uncertainties; metamodel; neural network; genetic algorithm; importance sampling

1. Introduction

FRP materials have received extensive attention in recent years due to their merits
on strength, lightweight and corrosion resistance [1]. Industry sectors such as automotive,
aerospace, marine, etc., have utilized these advantages to achieve significant breakthroughs
in performance and design [2—4], and the construction sector was inspired by these achieve-
ments to use FRP materials to enhance structural performance, durability and safety of
civil engineering structures [5,6]. For instance, FRP materials were used in truss bridges [7].
However, FRP materials have hierarchical structures consisting of multiple materials, and
their complicated manufacturing processes inevitably introduce uncertainties in material
properties, geometrical parameters, etc. In addition, these uncertainties may associate with
parameters at micro- or macro-scales [8-10]. Uncertainties at multiscale parameters also
introduce extra difficulties to quantify their influences on structural responses. In partic-
ular, these uncertainties may include both aleatory and epistemic variations in material
properties. Hence, it is desirable to develop an efficient uncertainty quantification method
to measure variations in structural performance of composite structures due to hybrid
uncertainties in micro- and macro-scale parameters [11,12].

Notably, FRP’s multi-scale nature, especially its material phases across different scales,
profoundly affects the safety and performance of the resulting structures [11,12]. In addi-
tion, variations in fiber volume fraction, material composition arising from manufacturing
processes also significantly influence the design of FRP structures with clearly defined
safety [8,13]. While traditional reliability analysis methods are relatively mature for con-
ventional materials, their application to FRP structures often overlooks or overly simplifies
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micro-scale uncertainties [14]. Current methodologies remain limited, especially when ad-
dressing FRP composites” microstructures and manufacturing defects [15]. To aptly address
the challenges above, adopting multi-scale approaches is essential for the uncertainty anal-
ysis of FRP structures. These approaches include experimental studies, micro-mechanical
modeling, and the combination of homogenization methods with stochastic finite element
methods [16]. Uncertainty quantification techniques propagating uncertainties from the
constituent material level to the structural level offer profound insights into the behavior
of FRP structures [17]. Furthermore, given the high computational costs of conventional
methods such as Monte Carlo simulations [18], efficient numerical approaches based on
surrogate models have emerged as focal research areas [19], offering not only more accurate
estimations for complex response surfaces, but also significantly reducing computational
time and cost [20]. A central challenge in reliability analysis is to precisely evaluate the
failure probability. This assessment encompasses many intricate factors, such as material
properties, connection strategies, and loading conditions. The calculation of failure proba-
bility has thus attracted attention. For instance, Nassirian [21] delved into the finite element
analysis of the tubular sections of FRP, Hassanzadeh [22] executed a comprehensive reli-
ability assessment of specific FRP structures based on the ACI 440.1R-15 guidelines, and
Hao [23] also systematically investigated structures potentially affected by explosive loads,
exploring the reliability of concrete columns under such loads when reinforced with FRP.
Uncertainties have been widely divided into two categories: aleatory, inherent random-
ness in systems or processes, and epistemic, stemming from knowledge inadequacies [24-27].
Usually, the aleatory uncertainty is represented by random variable, while the epistemic uncer-
tainty is described by interval variable. Unlike the reliability analysis with random variables
only, one must assess the lower or upper bounds of failure probability when involving both
random and interval uncertainties [28]. Conventional analysis methods, such as Monte Carlo
simulations [29] and the Unified Uncertainty Analysis method based on the first-order relia-
bility method [30] (abbreviated as UUA or FORM-UUA), each possess their unique strengths
and limitations. For instance, while Monte Carlo simulations are ubiquitously employed,
they necessitate many samples when addressing low-probability events, escalating compu-
tational costs. On the other hand, FORM-UUA may be constrained when confronted with
multi-variable and highly non-linear scenarios. In the face of these high-dimensional, intricate,
and intensely non-linear mixed uncertainty challenges, surrogate models progressively unveil
their inherent value, emerging as the tool of choice for mixed uncertainty analysis [31]. They
facilitate efficient uncertainty analysis within constrained computational resources.
Surrogate models have been introduced as efficient substitutes for the original Limit
State Functions (LSF) [32], and a variety of meta-models, including quadratic response
surfaces [33]], support vector machines [34-36], neural networks [37-39], Kriging meth-
ods [40], and other techniques, have been introduced. Notably, with their efficient learning
capabilities, potent non-linear mapping abilities, and exceptional scalability, neural net-
works have gained significant attention [41,42]. The primary objective of constructing
a meta-model is to ensure accurate evaluations of the actual performance function with
a minimal sample size. Hence, active learning methods are widely adopted, iteratively
optimizing the meta-model by selective sampling. Although active learning techniques
based on Kriging, such as ALK-DIS [43], AK-SS [32], and AK-LS [36], have seen widespread
application, ensuring model approximation accuracy remains a prominent challenge when
dealing with rare events or high-dimensional issues. Typically, this necessitates the intro-
duction of additional samples for meta-model updates. In this context, meta-heuristic algo-
rithms, like genetic algorithms [39], have demonstrated their worth, adeptly pinpointing
and augmenting critical samples, subsequently enhancing the meta-model’s construction
efficiency and predictive capability. To further mitigate computational demands associated
with meta-modeling [44], techniques like IS [43] and Subset Simulation [40] bolster the
predictive accuracy and stability of meta-models, guaranteeing their reliability in intricate
application scenarios for computational problems characterized by multiple failure region
features and low failure probabilities, Cadini et al. [45] introduced a technique leverag-
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ing the K-means algorithm to cluster meta-model predicted failure points multiple times.
While the resultant cluster count might exceed the actual identified failure regions by the
meta-model, this method has been validated as efficient and rational.

This study aims to integrate variance reduction techniques with neural network
meta-models, further optimizing the meta-model using genetic algorithms and offering
an innovative approach for assessing the failure probability of FRP structures. Our pre-
liminary work employed the Latin hypercube sampling method to generate samples,
approximating the LSF using an RBF neural network. Building upon this foundation, the
meta-model is optimized through genetic algorithms, continuously adjusting the sample
set to elevate evaluation accuracy. An RBE-GA-BP-IS meta-model, combining the K-means
algorithm, importance sampling techniques, and a two-layer BP neural network, is devel-
oped to conduct the multi-scale reliability analysis with considerations of both random and
interval uncertainties.

2. Framework of a Metamodel-Based Multiscale Hybrid Reliability Analysis Method
2.1. Definition of Reliability Analysis Problem with Hybrid Random and Interval Uncertainties

In the reliability analysis of FRP structures, defining LSF G to depict the structural
response is a prerequisite. Various factors, such as displacement or buckling phenomena,
can influence this structural response. We have chosen the maximum displacement as the
primary criterion for the limit state function (LSF) due to its simplicity and computational
efficiency. However, this study acknowledges that other failure modes, particularly global
and local buckling, are critical in the reliability analysis of FRP structures and should be
considered. In real-world applications, a structure may exhibit multiple failure modes,
which can be interrelated and impact each other.

The displacement-based limit state function, in the presence of both micro- and macro-
scale parameters with random and interval uncertainties, can be expressed as follows:

Z =G(xy) 1)

where x denotes the vector of random variables, while y signifies the vector of interval
variables. Z is the response value of the function.

With involving interval variables, it is necessary to find the optimal combination of
interval variables y,, or y,, to maximize or minimize G(x,y). In practice, it is paramount
to determine the maximum of failure probability P}””x, or the minimum of reliability index
Br- This following context thereby focuses on calculating P}“’” or Br. The lower bound
of limit state function is determined first by using Genetic Algorithm to find the interval
value y,,,, and it will be used to finding the minimum of reliability index, .. The lower
bound of limit state function G(x, y,,) is defined as:

G(x,y,) <0 ()

Therefore, the FRP structure fails once G(x,y,,) is less than zero, and G(x,y,,) = 0is
the limit state between a failure domain G(x,y,,) < 0 and a safe domain G(x,y,,) > 0.

2.2. A Metamodel Based Reliability Calculation Method

To determine B; defined by the limit state function in Equation (2), a novel approach
based on integrating sampling techniques and metamodel generating methods is intro-
duced. Sampling techniques include Monte Carlo Simulation (MCS), Importance Sampling
(IS) and Genetic Algorithm (GA) are used, and metamodel methods include Radial Basis
Function (RBF) and Back Propagation (BP) are included as well. MCS was employed first
to facilitate comprehensive sampling, yielding a crucial set of sample points that laid the
groundwork for subsequent metamodel construction. Drawing upon this dataset, the
RBF neural network is used to establish a preliminary metamodel to capture the intrinsic
behavioral characteristics of the system, striving for enhanced estimation accuracy, once
the model met the predefined convergence criteria. IS is used to refine the sample set.
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Subsequently, to enhance precision of model, we opted for a dual-hidden layer BP neu-
ral network to construct a secondary metamodel. Throughout the research process, GA
played a pivotal role, particularly in supplementing sample points and determining interval
variable values, ensuring the efficiency and robustness of the overarching optimization
process. The proposed RBF-GA-BP-IS strategy offers a novel and efficacious computational
framework for the reliability analysis of FRP structures.

2.2.1. Construction of Neural Network for Limit State Function

In the reliability analysis for FRP structures, an accurate limit state function is of the
essence, as it directly pertains to estimating failure probabilities. Neural networks have
been heralded as potent tools that simulate intricate nonlinear relationships [46]. Traditional
mathematical models might be inadequate in capturing their inherent complexity for FRP
structures. RBF (Figure 1) neural networks are tailor-made for local learning, especially
during the preliminary stages [47]. For the RBF model, considering two inputs denoted as
x and y,,, where G(x,y,,) represents the output variable, the formula for the RBF Neural
Network can be articulated as:

Gl yy) = L wid ([ lown)” — e ©)

where w; signifies the weights, ¢ denotes the selected radial basis function (in this study,
Gaussian function), and ¢; stands as the center point, represented as a two-dimensional
vector. N stands for the number of center points.

Basis function width

basis function o, |lx—c ||
center -t
X]_‘ ym K A/*;\\ 20-12
X2, Ym2, \ //\/ & ——h

euclidean

! \“gaussfuncﬁon
distance

X ~H Z
input layer hidden layer  output layer

Figure 1. RBF network structure.
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However, as training samples increase, RBF neural networks may become overly
complex and less efficient. To address this, we introduce the Bayesian Dual Hidden Layer
BP neural network (Figure 2). While this network may exhibit slower training speeds,
it provides a more precise modelling capability [48], which is particularly relevant for
capturing the complex behaviors of FRP structures. Our methodology, therefore, begins
with the RBF neural network for the initial training phases, especially when dealing with
smaller datasets. As the dataset grows, we transition to the Bayesian Dual Hidden Layer
BP neural network for more in-depth training. This hybrid approach amalgamates the
swiftness of the RBF network with the precision of the Bayesian BP network. The formula
for the Bayesian BP neural network can be presented as:

G(x, ym) = WzO’(Wl [x, ym}T + bl) + b2 (4)

where W; and W, denote weight matrices, while by and b, represent bias vectors. The
function ¢ denotes the activation function.

forward propagation of information

. H z
input layer hidden E\yer 1 hidden layer 2 output layer
-«

back propagation of error

Figure 2. BP network structure.

It is imperative to recognize that both the RBF and the BP neural networks employ the
mean squared error as their loss function. Within the RBF neural network, the MATLAB
function “newrb” is integrated with GA to optimize the network architecture, mainly
refining the width of the radial basis. In contrast, the BP neural network embraces a dual
hidden-layer structure, permitting experimentation with diverse node combinations. The
optimal node ensemble can be discerned by evaluating their performance on the loss
function (with a recommended node count of 40 and 20). Furthermore, the BP neural
network employs ReLU as the activation function for its hidden layers and designates
“trainbr” as its training function.

2.2.2. Structural Reliability Calculation with Importance Sampling

Given the micro- and macro-scale parameters of FRP structures, the fusion of the
Monte Carlo method with importance sampling offers a potent means to simulate and
evaluate the repercussions of these random and interval variables. MCS has been used to
estimate the failure probability [49] of FRP structures as follows:

p ! NMCSIG 5
= Ncs ; [G (%, Y1) )

where I[-] is the indicator function, and Nycs is the number of random samples.
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Importance sampling enables a more concentrated sampling of regions pivotal in
failure analysis, thereby enhancing the overall simulation efficiency. Figure 3 illustrates
the process of adding important sampling points, showing how this technique focuses
on critical areas for failure analysis. With multiple vital areas to consider, each failure
mode necessitates sampling at every design point. The expression for structural failure
probability is as follows:

» (0
Py = %fﬁ %I[G(x}i),ym)} M £ (1)

i (6)
ii=1j=1 lecvil H;\il hvlk (xj(l))

where x](.i) represents the vector of random variables for the j-th random sample under the

i-th failure mode; fx, (x](ll )) describes the probability density function for the I-th element
(i) (i)

in the vector of random variables x i hy, (x i ) denotes the sampling density function for

the /-th random variable in the k-th failure mode or importance sampling region, typically
considered the normal distribution probability density function for the FRP structure; N; is
the number of random samples under the i-th failure mode; M stands for the total number
of failure modes or importance sampling regions, and N represents the length of the vector
of random variables.

1 Original Samples
Importance Samples
+ MPFP
¢ Original sampling cept@r
0.5/ G=0
- Safe Region
Shift tonew center
0r °
Failure Region
-0.5 ‘ ‘

-0.6 -0.4 02 U, 0 0.2 0.4
Figure 3. The process of adding important sampling points.

2.2.3. Reliability Analysis with Multiscale and Hybrid Uncertainties

One must initially undertake an interval analysis based on metamodeling to ascertain
the maximum failure probability. At this juncture, diverse y values are meticulously
scrutinized. By leveraging genetic algorithms, we can pinpoint a specific y,, such that,
under this designated value, the metamodel manifests the zenith of failure probability.
Our study progresses by iteratively adding sample points, refining our meta-model and
enhancing its accuracy in capturing the nuances of interval uncertainties, ultimately leading
to more precise determinations of maximum failure probabilities.

Subsequently, to adeptly capture the contours of the Maximum Failure Probability
Points (MPFPs) [41], we transition to the phase of random variable analysis. During
this phase, we employ a sampling technique rooted in genetic algorithms. This method
offers precision in delineating the failure boundary and ensures a uniform distribution of
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samples. Consequently, a harmonious balance between accuracy and efficiency is achieved,
enhancing our approximation of the MPFPs’ boundaries.

min||u* — C||
u*

G(u*,y,,) =0
s.t. dmin >D (7)
|lw* — ¢l < LR

LR = \/xG99(N)
A in :nlz;n{Hu*—ukH}, k=1,2,-+, Ny (8)

where, in the standard normal space U, considering N independent and identically dis-
tributed standard normal random variables, the value of LR is derived by utilizing the
properties of the chi-squared distribution; C represents the sampling center coordinates of
the sample, u is the Gaussian variable derived from the Nataf transformation of sample
point x, and d,,;,, signifies the minimum distance from the new sample #" to the existing
Ny, sample points. G (u",y,,) = 0is the metamodel of the limit state function. The distance
threshold D [50] can be selected as the maximum of the minimum Euclidean distances
between the existing training samples, denoted as:

D = mux{Di

Di = mm{HXl — X]|

b i =12 Nue) ©)

As the number of new samples increases, D steadily decreases. For every incremental
reductionin D, several new samples can be added. Historically, reducing D was a method to
ensure feasible solutions to equations [42], though it was often time-consuming. Intending
to augment the sample density near MPFPs and ensure a more uniform sample distribution,
this paper introduces a constrained optimization problem. This problem is pivotal for

approximating the LSE.
ml,;n(dmin)
u
G, y,) =0 (10)
s.t.
Ju — | < LR

During IS phases, it is paramount to recalibrate the sampling center of the samples.
This adjustment becomes even more crucial when considering the complex nature of FRP
structures. Due to the potential multiplicity of failure modes inherent to such structures,
identifying individual failure domains and the associated Closest Failure Points (CFPs)
within each becomes a daunting challenge.

While algorithmic, this entire procedure can be visualized as the unfolding of a binary
tree structure. At the heart of this tree lies the node us < 0, acting as the foundational root.
Each segregation or bifurcation event yields two distinct nodes, #,egative 1 a0d Upegative 11,
which emerge as the left and right offspring of s < 0. As the process advances, every sub-
sequent split operation performed on #,e¢ative 1 a0 Upegative 11 €ngenders further branching,
resulting in additional child nodes. This recursive strategy, intricate as it sounds, beautifully
mirrors a depth-first traversal on this binary tree. The entire sequence, from the initial
sampling to the final categorization, can be vividly illustrated as depicted in Figure 4.

dnegative_min = min{””i — UCFps ”}' i=12-- anegutive

(11)
dnegutiveﬁmin <LR

where dmgatm_min represents the minimum distance from the CFPs of the partitioned failure
domain to the other samples in the failure domain Njegative, and ucrps is the coordinate of
the CFPs in the current partitioned failure domain.
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negative| min<=LR dnegative|min<=LR

negative_ min>LR

dnegative_min<=LR negative| min<=LR
dnepative_min>LR

Figure 4. Find a binary tree diagram of multiple failure domains.

2.3. Procedure of Numerical Implementation

This section aims to elucidate the steps of the proposed RBF-GA-BP-IS reliability
analysis method. As shown in Figure 5, a schematic representation of the algorithm is
depicted in the flowchart provided. The algorithm encompasses two primary challenges:
determining the interval variables y,, and conducting a stochastic variable analysis. After
each post metamodel reconstruction, interval variables are ascertained using a genetic
algorithm. The stochastic variable analysis is bifurcated into two stages:

Generation of Nycs by LHS for MCS,
Ncount=0,N_negative=0,
C takes the origin in the standard normal space as the
sampling center coordinate

Double hidden layer BP
model G(u, y,,) construction
for approximation

Initialize Ngoe Samples by LHS
for design of experimen
S={(uhG(Uay)l|i=1,2,...,Nme}

A 4
Use the improved K-means algorithm
to search for CFPs, the number of

‘ RBF model G(u,y) construction for approximation

I CFPs:N_CFPs
Find y,, such that: y,, =argmin G(x, y) ‘ Ncount=0,
J N_negative=N_negative+1, 4

C takes the N_negative CFPs as
Identification of next “potential® the sampling center coordinates
MPP/new sample u* using GA for Eq.(7) No

Identification of next
“potential” Output (P)um and Nege.
MPP/new sample u* The algorithm is stopped. ~ No
using GA X
for Eq.(10) e Yes
S_add={(u*,G(u*ym)}
\—, S=SUS_add <
Neoe= Naoe+1
Reconstruction of neural Yes

network model
v 4-»
neural network model based failure

probability evaluation using MCS

(P )sum = (B )sum + (B Do

P )new = (B dota| ! (Pr)aig <&
See <0.0

Ncount=0 }<—NO

Yes

Ncount=Ncount+1

Figure 5. The flow chart of RBF-GA-BP-IS.
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Stage 1 (RBF-GA): The RBF is a surrogate for intricate finite element model anal-
yses. A preliminary reliability metamodel is established in conjunction with the GA
sampling strategy.

Stage 2 (RBF-GA-BP-IS, RBF-GA-BP-IS?): During this stage, which can be further sub-
divided into RBF-GA-BP-IS and RBF-GA-BP-IS?, the distance-limited K-means algorithm
is employed to pinpoint CFPs as sampling centers for importance sampling. Subsequently,
a dual-hidden layer BP is combined with GA sampling to refine the metamodel. The
distinction between RBF-GA-BP-IS and RBF-GA-BP-IS? is the re-determination of CFPs
in the latter, building upon the foundation of the former’s metamodel. The subsequent
steps for both are analogous. When multiple failure modes manifest in stage 2, it is further
segmented into sub-stages, for instance: stage 2I-1, stage 21-2.

The efficacy of RBF-GA-BP-IS is exemplified through various case studies, all of which
employ FRP materials, underscoring the method’s utility in the reliability analysis of FRP
materials. Initially, an exemplar featuring a seven-bar planar truss was tested. Its selection
was predicated on its explicit limit state function and its amenability to demonstrate the
addition of sample points. Subsequently, the method was applied to a space dome truss
structure. Despite its implicit limit state function expression, its structural simplicity and
the brevity of computational time in ANSYS made it an apt choice. Both these cases are
conducive to generating a plethora of sample points. Lastly, the method was executed on
a high-dimensional nonlinear truss bridge, affirming the feasibility of RBF-GA-BP-IS for
reliability analysis in FRP truss bridges.

3. Multiscale Finite Element Method for FRP Composite Structures

A pivotal challenge in the reliability of FRP is establishing a cohesive link between
microscale parameters and the macroscopic structural response. The complexity of this
analysis mandates the consideration of numerous uncertainties introduced during the
manufacturing process [51]. Employing micromechanics and homogenization techniques
becomes particularly crucial in multiscale finite element analyses. As highlighted in
studies [52], leveraging these techniques facilitates the effective transfer of uncertainties
from the microscale, culminating in a quantitative assessment of their impact on the
macroscopic mechanical performance.

The Mori-Tanaka Homogenization Method [53-55], a seminal contribution to homog-
enization theories, overcomes the inherent shortcomings of the Rule of Mixtures (RM).
While the RM is lauded for its straightforwardness, it frequently misjudges the transverse
directional properties [56]. In contrast, the Mori-Tanaka method offers a refined technique
by accounting for the mechanical interplay among distinct phases—a facet conspicuously
missing in RM. Drawing from Eshelby’s strain-concentration tensor, this approach pivots
on an ellipsoidal inclusion encapsulated within a matrix, furnishing a comprehensive
perception of composite rigidity. Crucially, it amalgamates microscale and macroscale
parameters, underscoring the profound influence of micro-parameters, such as material
properties and microstructural configurations, on macroscopic mechanical attributes. This
harmonious integration materializes through a meticulous homogenization procedure.

Mathematically, the overarching composite stiffness tensor, Cpr, is articulated as follows:

EMT =Cy+ Vf (Cf — Cm)AMT (12)

with 1
AMT = AEshelby {le + VfAEshelby} (13)

where Aggperpy = {I + ES (C r+ Cm)} ' is Eshelby’s strain-concentration tensor, I repre-
sent the identity tensor. E; is the Eshelby tensor, contingent solely upon the inclusion’s
aspect ratio and the matrix’s elastic constants. Herein, S and C signify the compliance and
stiffness tensors, respectively.
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The Mori-Tanaka tensor, delineated for unidirectional fiber-reinforced composites
(comprising transversely isotropic fibers and an isotropic matrix), is depicted as:

Ay Ap Az 0 0 0
Ay Ax Ax 0 0 0
A A A 0 0 0
MT _ 31 Az Ass
AT = 0 0 0 Ay O 0 (14)
0 0 0 0 Ass 0
0 0 0 0 0 Ag

The non-zero elements of this tensor emanate from the intrinsic properties of the
materials involved, namely, the elastic modulus E, Poisson ratio v, and shear modulus G.
Subsequently, Equation (15) detail these elements.

i m .f
N
AH_%P+OWWHM1

A o A . ﬂ 7}”7(170]2{3> _ ﬂ v{z + oM
12 = 4413 gf, 20+om)(1=om) — pf (o) (1=o") " 2(1-o")

f
_ _ E™ T
AZl - A31 - E{l 2(T+0™)(1—o™)
Ay dn e B (578 g o (o7+1) (427 5) (15)
22 = 433 = gL BT 1) T g 21T T 8@ D)0 +1)
Az = Ay = E- (35-1) =L (0" 4+1)(1-40")
32 = 423 = g, 8D (@"+1) T g 2N +1) T 80"-1)(0"+)
_ o1 (3—40™)
Ay = G, 41—om) + 4(1—om)
f
G"+G
Ass = Agg = 12
55 66 2],

Consequently, formulas for the five independent equivalent elastic parameters of
isotropic fiber-reinforced composites are derived Equation (12).

4. Numerical Examples
4.1. A Seven-Bar Planar FRP Truss Structure

This section introduces the application of the RBF-GA-BP-IS methodology in the
reliability analysis of a seven-bar FRP planar truss, as shown in Figure 6. It is used to
demonstrate applicability of the proposed method by comparing with the conventional
method based on the Monte Carlo simulation. Middle span deflection has been considered,
and the limit state function is defined as [57,58]:

o (1+v2) 2P + P + P3)
G(x/ ]/) = dyax — d(x/ ]/) = dmax — ﬂ = dmax — EA (16)

where neglecting the self-weight of the members, nodes 4, 5, and 2 are subjected to con-
centrated loads represented by P;, P», and P3, respectively. The term d,,,y designates the
maximum permissible displacement, set at 40 mm. E stands for Young’s modulus, where
Ef and E;, represent the elastic moduli of the fiber and matrix, respectively. A denotes
the cross-sectional area with a value of 0.1 m?, and d(x, y) is the analytical expression for
mid-span displacement.
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Figure 6. The schematic view of planar 7-bar structure /m.

The truss is fabricated from GFRP and contemplates various parameter combinations.
As listed in Table 1, specific parameters, like the fiber and matrix elastic moduli, are
perceived as random variables. Meanwhile, others, such as Vf and Ps, are regarded as
interval variables.

Table 1. Results of different methods (stage RBF-PSO).

Mean Value or Coefficient of

Variables Symbol Unit Central Value Variation or Interval Distribution Type
Radius

Fiber volume fraction Vf % 50 5 Interval
Elastic modulus of fibers Ef GPa 82.45 0.1 Normal
Elastic modulus of matrix En GPa 3.45 0.1 Normal
Point load P N 1.5 x 107 1.5 x 100 Interval
Point load Py N 107 0.1 Normal
Point load P, N 107 0.1 Normal

By partitioning the two interval variables, Vy and P;, into ten equal segments and
combining them pairwise, a total of 100 interval variable combinations were formed.
Each set randomly selected 5 x 10'? samples (Figure 7). The combination exhibits the
highest failure probability consists with Vy = 45% and P; = 1.65 X 107 N, resulting in
a benchmark failure probability of Py = 3.29%, and the reliability index, f = 1.8394.
This reaffirms that genetic algorithms adeptly identify combinations with the highest
failure probabilities. The RBF-GA-(BP-IS)? method deviates from the benchmark failure
probability by a mere 0.079%, making the RBF-GA-BP-IS approach superior in precision
to other methods. Figure 8 illustrates refining the accuracy of failure probability Pf by
increasing the number of sample points. Each phase improves the estimation of 15f by
incorporating additional sample points; initially, in Stage 1, there is considerable fluctuation,
but in subsequent stages, the Pf progressively stabilizes. Table 2 infers that RBF-GA-BP-IS
and RBF-GA-BP-IS? demonstrate significant advantages in model performance assessment.
Both methods exhibit enhanced efficiency regarding model invocation counts, especially
when contrasted with the computation-intensive MCS method. More critically, both excel
in estimating failure probability with remarkable accuracy.
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Figure 7. Reliability Indices for Seven-Bar Truss Structure.
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Figure 8. Failure Probability Convergence for Seven-Bar Truss.
Table 2. Performance Comparison for Seven-Bar Planar FRP Truss.
Method Ncan Pf (%) Ai)fl (%) Apfz (%) Af’f3 (%)
MCS 5x 1012 329 - - -
RBF-GA 30+20 3.34 1.48 - -
IS 5 x 10° 3.29 - - -
RBF-GA-BP-IS 30+20+5 3.29 0.002 0.002 -
Is? 5 x 10° 3.29 - - -
RBF-GA-BP-IS? 30+20+5+4 3.29 0.079 - 0.028

Note: IS refers to the critical sampling conducted at the center of CFPs under stage 2 I, where the probability of
failure is determined by inserting it into the limit state function. IS? indicates the critical sampling done at the
center of CFPs under stage 2 II, and the failure probability is computed similarly. APy, represents the percentage

error in the probability of failure compared to MCS. AP 1, Tepresents the percentage error in the probability of
failure compared to IS. AP '+, Tepresents the percentage error in the probability of failure when compared to I1S2.

Figures 9-11, which use H as the x-axis and EA as the y-axis, demonstrate the iterative
addition of sample points and their effects. Figures 10 and 11 reveal that via post-important
sampling, new sample points are more concentrated in critical regions that significantly
influence simulations. Within the sample space, “Initial points” manifest a dispersed distri-
bution, laying a solid foundation for constructing the first-stage metamodel. Subsequent
sample points are closely adjacent to the actual limit state interface, especially during the
second stage’s CFPs (encompassing stage 2 I and stage 2 II). When dimensions are rela-
tively low, the RBF-GA-BP-IS strategy already procures a fairly accurate failure probability,
attesting to the algorithm’s precision and robustness.
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4.2. A Space Dome Truss Structure

As shown in Figure 12, this study offers a meticulous analysis of the response of a
spatial truss composed of 24 members under seven distinct load scenarios. This instance
delves into a high-dimensional truss structure problem, particularly emphasizing its im-
plicit function limit state. This limit state is delineated based on the maximum displacement
of nodes in the z-direction under specific loads. LSF is defined as [59-61]:

G = 0.0092 — ‘A@l

(18)

where ‘Af;l ‘ signifies the maximum displacement in the z-direction, the problem encom-

passes ten random variables, including loads P; — P;, fiber volume fraction Vs, elastic
moduli E f and E,; Their statistical characteristics are detailed in Table 3.

—aP ;
P2 P3 P4 P5 P6 P.,
— Area of 0.013m? (43.3,25,-8.216)
—— Area 0f 0.01m?(0,50,-8.216) e (25,0,-2) P o
0~ Areaof 0.016m° <* : 12. 1.65,-&' S )
g [ Constraint point =
N (-43.3,25,-8.2]
-10
Y/m -50  -50 X/m
Figure 12. Schematic view of elements, applied loads and geometry of space truss.
Table 3. Statistical properties of random variables for space truss structure.
Mean Value Coefficient of Variation
Variables Symbol Unit or or Distribution Type
Central Value Interval Radius
Fibre volume fraction Vf % 50 5 Interval
Elastic modulus of fibres Ef GPa 82.45 0.1 Normal
Elastic modulus of matrix Em GPa 3.45 0.1 Normal
Point load Py N 4000 500 Interval
Point load Py~Py N 3000 0.2 Normal

For the spatial truss structure depicted, relying on the performance above function,
the maximum displacement constraint is 0.0092 m. This displacement is derived from
ten random variables. To further scrutinize this displacement, the finite element analysis
integrating MATLAB and ANSYS is used to conduct a parametric analysis model. Notably,
leveraging MATLAB and ANSYS’s prowess in handling text files, efficient data exchange
between the software suites is achieved as elaborated in Figure 13. The schematic represen-
tation of nodal displacements under applied loads is showcased in Figure 14, where Vy is
at its minimum, Pj at its zenith, and other random variables at their mean values, resulting

in a maximum z-direction displacement of |A}, | = 7.27 x 1073 m.
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Figure 14. Schematic view of deformation shape based on finite element model for space truss.

MCS was employed for algorithmic validation in this research endeavor. The fiber
volume fraction V; and the load P; were subdivided into ten segments, and their com-
binations yielded 100 interval variables. Each combination underwent 1 x 10° sampling
iterations. The simulation results are graphically represented in Figure 15. The combination
exhibiting the highest failure probability was V; = 45% and P; = 1.65 X 10”N, with a
failure probability reaching 1.51%. Due to simulation time constraints in ANSYS, MCS
with a large sample size is challenging. Thus, the Bayesian Backpropagation Neural Net-
work [62] has been used to approximate the samples with the highest failure probability,
obtaining a benchmark failure probability of 1.51% for this study. Table 4 presents the
comparative outcomes of various methodologies. It is evident that the RBF-GA-BP-IS
method’s deviation from the Bayesian Neural Network is only 1%, and the RBF-GA-BP-IS?
method’s deviation is even more negligible at 0.14%. The proposed RBF-GA-(BP-IS)?
algorithm demonstrates remarkable efficacy and accuracy. Figure 16 demonstrates that
with the increase in sample points, the failure probability converges and aligns closely
with the established benchmark failure probability. Despite the limitation in the number of
invocations, the approach consistently yields a failure probability comparable to that of
the Monte Carlo Simulation. It sustains a negligible error margin relative to the Bayesian
Neural Network. This provides an efficient and reliable methodology for assessing the
reliability of materials and structures.
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Figure 15. Reliability Indices for Space Dome Truss.
Table 4. Performance Comparison for Space Dome Truss.
Method Nean Pf(o/o) Apf(%)
MCS 1x10° 1.50 -
Bayesian regularization Neural Network 1% 10° 1.51 -
RBF-GA 30 + 50 1.34 11.06
RBF-GA-BP-IS 30 +50 + 21 1.49 1
RBF-GA-BP-IS? 30+50+21+10 151 0.14

Note: Apf represents the percentage error in the probability of failure compared to Bayesian regularization
Neural Network.
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Figure 16. Failure Probability Convergence for Space Dome Truss.

4.3. A GFRP Truss Bridge

With the rapid progression of composite material technology, GFRP truss bridges [63]
have found extensive applications in contemporary engineering projects. Due to their
unique material attributes and structural features, an accurate and efficient assessment of
their reliability becomes imperative. Given the complexity of these bridges, the analytical
derivation of their structural response is challenging. Hence, an interactive computation
method between MATLAB and ANSYS has been employed, as shown in Figure 13.
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4.3.1. Finite Element Analysis and Parametric Analysis of the GFRP Truss Bridge

A GFRP truss bridge with a span length of 36 m and a width of 8 m, as shown in
Figure 17, has been studied [57]. The top and bottom chords incorporate hollow rectangular
sections measuring 300 x 300 x 16 mm, while diagonal members and terminal crossbeams
adopt a 300 x 300 x 12 mm hollow rectangular section. Horizontal connections utilize an
I-shaped section of 300 x 200 x 15 mm. Each structural member comprises three layers
across the sectional depth. The first and third layers are 0/90° balanced layup with a fiber
content of 40% and a thickness of 0.4 mm. The intermediate layer is a fabric layer with a
fiber content of 55%, where fibers are aligned longitudinally. The microscopic parameters
are further detailed in Table 5.

Figure 17. Finite element model.

Table 5. Macro and micro mechanical properties of GFRP truss bridge.

Micro E (GPa) 1
parameters Fibre 82.45 0.20
Matrix 3.45 0.35
Macro Vf (0/0) 9(0) Ell (GPa) E22 (GPa) G12 (GPa) Hi2
parameters Fabric layer 55 0 46.92 10.16 3.94 0.26
Yarn layer 40 0/90 21.40 21.40 2.78 0.1
This study particularly emphasizes the impacts of multi-scale and multi-source un-
certainties on bridge reliability and the construction of metamodels. Relying on literature
references [57,64], we delve into the microscopic mechanical properties of the glass fiber
and matrix. As illustrated, considering all random and interval variables under imposed
load and self-weight at their mean or central values (Table 6), the maximum vertical
displacement is determined to be 0.0335 m(Figure 18).
Table 6. Statistics of uncertain parameters of the GFRP truss bridge.
Parameters Coefficient of T
Symbol Distribution T
Scale Name ymbo Mean/Central Value Variation/Interval Radius 1stribution Type
Density 0 1800 0.023 Normal
Macro Applied load 2200 0.10 Normal
pplied loa q . orma
Elastic modulus of fibres Ef 82.45 0.1 Normal
Elastic modulus of matrix En 3.45 0.1 Normal
Micro Fibre volume fraction V¢ 55 3 Interval
Poisson Ratio of Fibres My 0.2 0.02 Interval

Poisson Ratio of Matrix Wi 0.35 0.035 Interval
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-3.35 -2.6 -1.84 -0.71 -0.33
-2.97 =222 -1.46 -1.09 0.05

Figure 18. Deformed model with vertical displacement /cm.

4.3.2. Classification and Characteristics of Uncertainty Parameters

This research delves deeply into uncertainties across different length scales. These
uncertainties can be broadly categorized into two domains: macroscopic and microscopic.
At the macroscopic scale, uncertainties mainly pertain to the overall structural character-
istics, such as section dimensions and external loads. Given that abundant experimental
data and historical records typically support these parameters, they are considered random
variables. For instance, the density of fiberglass and pedestrian loads are random variables
based on a normal distribution [65]. Microscopic scale uncertainties pertain to intrinsic
material properties [66], such as elastic moduli of fibers and matrix, fiber volume fraction,
and Poisson’s ratio. Given the paucity of data on these microscopic parameters, they are
treated as interval variables, providing a probable range. Though GFRP truss bridge struc-
tures are not ubiquitous in real-world applications, their unique attributes and potential
applicability make them a focal point of research. Most existing studies concentrate on
their macroscopic mechanical properties [67], while investigations into their microscopic
attributes still need clarification.

As listed in Table 6, statistics of uncertainty parameters are elaborately detailed [55,57].
The reliability of structural systems always corresponds to performance or limit state
functions. To circumvent superfluous computations, only those uncertainty parameters
with significant impact are considered, leading to the following LSF:

G(x/y) = dmax _d(p/ q/ Ef/ EI’I’I/ Vf/ ;’lf/ Fm) (19)

where d,,0x represents the limit value of bridge displacement, which is set at the stipulated
deflection of truss bridges, L/800. The material density p is calculated based on a permissi-
ble deviation of 7% in unit area mass as stipulated in reference [57] and converted into a
variation coefficient of 0.023 using the 3o rule. The volume fraction of fibers Vy is governed
by the regulations in [57], with an allowable deviation of +3% for glass fiber content. For
the remaining parameters, there is limited experimental data, so assumptions are made
based on the data shown in the table.

4.3.3. Reliability Analysis of GFRP Truss Bridge

In this study, the Bayesian Regularization Neural Network has been used to fit
3000 random sample points to ascertain the limit state function. Considering the vol-
ume fraction of fibers V; and the fiber Poisson’s ratio yiy and matrix Poisson’s ratio p, as
interval variables, we divided them into ten equal-length intervals, resulting in 1000 sets of
interval variables. We randomly selected 1 x 10° samples for each set and inputted them
into the Bayesian Regularization Neural Network for computation. Post-analysis revealed
that the combination with the highest failure probability was Vy = 52%, py = 0.22 and
tim = 0.32. This aligns closely with the interval variables derived from the RBF-GA-BP-1S?
metamodel method, as listed in Table 7.
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Table 7. Interval analysis results of reliability indices with displacement-based limit state functions.

Interval Variables V¢ Hf Hm
Results 0.52000 0.21985 0.31503
Upper/Lower limit Lower Upper Lower

Under the combination with the highest failure probability, we revisited the Bayesian
Regularization Neural Network, this time fitting 3000 sample points and then using
1 x 10° sample points to determine the failure probability. Based on this, we regarded
the failure probability obtained from the Bayesian Regularization Neural Network as the
benchmark failure probability. As shown in Table 8, the RBF-GA-BP-IS method’s fail-
ure probability was close to the benchmark, with a marginal error of 0.06. As shown in
Figure 19, with the increment in initial sample points, the failure probability Pf derived
from our research methodology gradually stabilizes, converging closer to the comparative
solution. It is imperative to note that due to the model’s intricacy, the Bayesian Regular-
ization Neural Network underwent only 3000 simulations in ANSYS. Hence, there is a
constraint on the precision of the failure probability, allowing us only to approximate the
accuracy of truss bridges under RBF-GA-BP-IS?.

Table 8. Performance Comparison for GFRP Truss Bridge.

Method Nean Pf APf

Bayesian regularization Neural Network 3 x 103 1.29 -
RBF-GA 70 + 32 1.27 1.44
RBF-GA-BP-IS 70+32+5 1.29 0.06
RBF-GA-BP-1S? 70+32+5+5 1.29 0.08

Note: AP; represents the percentage error in the probability of failure compared to Bayesian regularization
Neural Network.
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Figure 19. Failure Probability Convergence for GFRP Truss Bridge.

In the current study, we recognize that due to considerations of computational effi-
ciency and the curse of dimensionality, our model does not directly account for fabrication
defects [68] that may occur, such as imperfections in joints or struts. While these defects
could significantly impact the structural performance and reliability, at this stage, we have
chosen to focus on our current model’s core functionalities and efficiency. Future work
will further consider these additional factors to enhance the model’s comprehensiveness
and accuracy.
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5. Conclusions

This study introduces a new multi-scale reliability analysis method based on a meta-
model, which combines the RBF neural network, GA sampling, BP neural network, and
IS, for FRP truss structures. It merges the quick processing of the RBF network with the
accuracy of the Bayesian BP network, providing a refined homogenization method for
composite materials and structures. While applying the Mori-Tanaka method in this re-
search allows for consideration of the mechanical interaction among distinct phases in the
composite material, the proposed method provides a comprehensive understanding of
composite structures comparing with traditional methods, such as Rule of Mixture. In
addition, the present study enables to simultaneously consider both random and interval
variables in the reliability analysis of FRP structures. This inclusive approach ensures that
fluctuating parameters within a specific range are considered, enhancing the accuracy of
the analysis.

The proposed method has been successfully applied to multiple case studies, including
a seven-bar planar truss, a space dome truss structure, and a complex nonlinear truss bridge.
The results attest to the algorithm’s superior performance in model invocation counts and
precise failure probability estimation. For instance, in the seven-bar planar truss case,
the RBF-GA-BP-IS approach showed a minimal error of 0.002%, indicating its precision.
Applying the RBF-GA-BP-IS method to the analysis of FRP truss bridges represents a
significant step forward. This case study highlights the algorithm’s practical utility and
contributes to the growing body of research on the reliability analysis of such structures.
Worth noting is that the algorithm’s failure probability was close to the benchmark, with a
minor error of 0.06%, affirming its reliability.

In conclusion, the RBF-GA-BP-IS algorithm presented in this study is valuable to the
toolkit for multi-scale reliability analysis of FRP materials and structures. Its ability to
handle both random and interval variables effectively and its successful application to
various case studies marks it as a helpful tool for future research in this field.
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