Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review
Abstract
:1. Introduction
2. Titanium Alloy and Its Classification and Properties
3. Tribocorrosion Behavior
- Corrosive medium
- Wear condition
- Material chemical composition and microstructure properties
- Electrochemical factors
4. Tribocorrosion Behavior of Titanium Alloy
4.1. Tribocorrosion Behavior of Titanium Alloys in the Marine Environment
4.2. Tribocorrosion Behavior of Titanium Alloys in the Human Body Environment
5. Surface Modification Methods
5.1. Chemical Heat Treatment
5.2. Plasma Electrolytic Oxidation
5.3. Physical Vapor Deposition
5.4. Laser Cladding
5.5. Duplex Treatment
6. Conclusions
- There are many factors affecting tribocorrosion. The interaction between corruption and wear cannot be superimposed by the loss caused by a single element. It is necessary to conduct damage evaluation device construction, evaluation method establishment, and research revealing the damage mechanism of titanium metal materials under extreme environments, complex working conditions, and multi-factor strong coupling.
- The traditional research and development system is mostly based on the ‘empirical design–experimental verification’ mode, and the composition and structural design of the auxiliary protective layer are less calculated based on molecular dynamics and first principles. The application of big data engineering, such as high-throughput computing and machine learning in coating research, development, and design, should be strengthened to fully explore the mapping relationship between the composition, organization, and performance of the coating. This will improve the design and development efficiency of high-performance protective layers.
- Traditional surface treatment technology has many technical difficulties that make it unsuitable for titanium metal treatment. A primary research direction is developing technology and equipment suitable for titanium metal surface treatment. The composite application of various surface treatment technologies, the design and preparation of multi-element, multilayer gradient structures, and ultra-thick surface modification layers meet the surface protection requirements of titanium metal in harsh environments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muthaiah, V.M.S.; Indrakumar, S.; Suwas, S.; Chatterjee, K. Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: A review of recent developments. Bioprinting 2022, 25, e00180. [Google Scholar] [CrossRef]
- Gao, A.; Hang, R.; Bai, L.; Tang, B.; Chu, P.K. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochim. Acta 2018, 271, 699–718. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef]
- Gupta, M.K.; Etri, H.E.; Korkmaz, M.E.; Ross, N.S.; Krolczyk, G.M.; Gawlik, J.; Yaşar, N.; Pimenov, D.Y. Tribological and surface morphological characteristics of titanium alloys: A review. Arch. Civ. Mech. Eng. 2022, 22, 72. [Google Scholar] [CrossRef]
- Li, G.; Chandra, S.; Rahman Rashid, R.A.; Palanisamy, S.; Ding, S. Machinability of additively manufactured titanium alloys: A comprehensive review. J. Manuf. Process. 2022, 75, 72–99. [Google Scholar] [CrossRef]
- Kang, L.; Yang, C. A Review on High-Strength Titanium Alloys: Microstructure, Strengthening, and Properties. Adv. Eng. Mater. 2019, 21, 1801359. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Wang, Z.M. Titanium alloys and their machinability—A review. J. Mater. Process. Technol. 1997, 68, 262–274. [Google Scholar] [CrossRef]
- Hourmand, M.; Sarhan, A.A.D.; Sayuti, M.; Hamdi, M. A Comprehensive Review on Machining of Titanium Alloys. Arab. J. Sci. Eng. 2021, 46, 7087–7123. [Google Scholar] [CrossRef]
- Pasang, T.; Budiman, A.S.; Wang, J.C.; Jiang, C.P.; Boyer, R.; Williams, J.; Misiolek, W.Z. Additive manufacturing of titanium alloys—Enabling re-manufacturing of aerospace and biomedical components. Microelectron. Eng. 2023, 270, 111935. [Google Scholar] [CrossRef]
- Yue, D.; Jiang, X.; Yu, H.; Sun, D. In-situ fabricated hierarchical nanostructure on titanium alloy as highly stable and durable super-lubricated surface for anti-biofouling in marine engineering. Chem. Eng. J. 2023, 463, 142389. [Google Scholar] [CrossRef]
- Gummadi, J.; Alanka, S. A review on titanium and titanium alloys with other metals for biomedical applications prepared by powder metallurgy techniques. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Gurrappa, I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater. Charact. 2003, 51, 131–139. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, J.; Huang, H.; Xue, X.; Wang, Y.; Zhang, B.; Jiang, P.; Wang, C.; Kou, H.; Li, J. Creep anisotropy characteristics and microstructural crystallography of marine engineering titanium alloy Ti6321 plate at room temperature. Mater. Sci. Eng. A 2022, 854, 143728. [Google Scholar] [CrossRef]
- Kappenthuler, S.; Seeger, S. Holistic evaluation of the suitability of metal alloys for sustainable marine construction from a technical, economic and availability perspective. Ocean Eng. 2021, 219, 108378. [Google Scholar] [CrossRef]
- Nichul, U.; Hiwarkar, V. Carbon dot complimentary green corrosion inhibitor for crystallographically textured Beta C titanium alloy for marine application: A state of art. J. Alloys Compd. 2023, 962, 171116. [Google Scholar] [CrossRef]
- Leonov, V.P.; Mikhaylov, V.I. Technological and constructional features of welding titanium alloys for marine structures. Weld. Int. 2016, 30, 403–407. [Google Scholar] [CrossRef]
- Lee Williams, W. Development of structural titanium alloys for marine applications. Ocean Eng. 1969, 1, 375–383. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Chen, X.; Xu, D.; Qiu, D.; Wang, F.; Easton, M. Laser directed energy deposited, ultrafine-grained functional titanium-copper alloys tailored for marine environments: Antibacterial and anti-microbial corrosion studies. J. Mater. Sci. Technol. 2023, 166, 21–33. [Google Scholar] [CrossRef]
- Sánchez, N.A.; Rincón, C.; Zambrano, G.; Galindo, H.; Prieto, P. Characterization of diamond-like carbon (DLC) thin films prepared by r.f. magnetron sputtering. Thin Solid Film. 2000, 373, 247–250. [Google Scholar] [CrossRef]
- Ulusaloğlu, A.C.; Atici, T.; Ermutlu, C.; Akesen, S. Evaluation of titanium release from titanium alloy implants in patients with spinal instrumentation. J. Int. Med. Res. 2021, 49, 0300060520984931. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, S.; Tsoi, J.K.H.; Matinlinna, J.P. Binary titanium alloys as dental implant materials—A review. Regen. Biomater. 2017, 4, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, S.; Sotova, C.; Vereschaka, A.; Uglov, V.; Cherenda, N. Modifying Coatings for Medical Implants Made of Titanium Alloys. Metals 2023, 13, 718. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.; Wang, H.; Ren, L.; Yang, K. Study on mechanical behavior of Cu-bearing antibacterial titanium alloy implant. J. Mech. Behav. Biomed. Mater. 2022, 125, 104926. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, J.M.; Beline, T.; Ribeiro, A.L.R.; Rangel, E.C.; da Cruz, N.C.; Landers, R.; Faverani, L.P.; Vaz, L.G.; Fais, L.M.G.; Vicente, F.B.; et al. Development of binary and ternary titanium alloys for dental implants. Dent. Mater. 2017, 33, 1244–1257. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Wang, Q.; Zhao, L.; Pan, A.; Ding, X.; Gao, W.; Song, Y.; Zhang, X. A Review of Additive Manufacturing Techniques and Post-Processing for High-Temperature Titanium Alloys. Metals 2023, 13, 1327. [Google Scholar] [CrossRef]
- Chowdhury, S.; Arunachalam, N. Surface functionalization of additively manufactured titanium alloy for orthopaedic implant applications. J. Manuf. Process. 2023, 102, 387–405. [Google Scholar] [CrossRef]
- Alipour, S.; Moridi, A.; Liou, F.; Emdadi, A. The Trajectory of Additively Manufactured Titanium Alloys with Superior Mechanical Properties and Engineered Microstructures. Addit. Manuf. 2022, 60, 103245. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Aversa, A.; Marchese, G.; Lombardi, M.; Biamino, S.; Ugues, D.; Manfredi, D. Additive manufacturing of titanium alloys in the biomedical field: Processes, properties and applications. J. Appl. Biomater. Funct. Mater. 2017, 16, 57–67. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Liu, Y.; Li, S.; Hao, Y. Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Adv. Eng. Mater. 2018, 20, 1700842. [Google Scholar] [CrossRef]
- Wang, B.; Lan, J.; Qiao, H.; Xie, L.; Yang, H.; Lin, H.; Li, X.; Huang, Y. Porous surface with fusion peptides embedded in strontium titanate nanotubes elevates osteogenic and antibacterial activity of additively manufactured titanium alloy. Colloids Surf. B Biointerfaces 2023, 224, 113188. [Google Scholar] [CrossRef] [PubMed]
- Kwak, T.Y.; Yang, J.Y.; Heo, Y.B.; Kim, S.J.; Kwon, S.Y.; Kim, W.J.; Lim, D.H. Additive manufacturing of a porous titanium layer structure Ti on a Co–Cr alloy for manufacturing cementless implants. J. Mater. Res. Technol. 2021, 10, 250–267. [Google Scholar] [CrossRef]
- Xu, J.; Lu, Y.; Pan, X.; Zhan, D.; Wang, Q.; Zhang, N. Antibacterial performance of a porous Cu-bearing titanium alloy by laser additive manufacturing. Front. Bioeng. Biotechnol. 2023, 11, 1226745. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, Y.; Wang, Q.; Du, H.; Qiao, L. Effect of povidone–iodine deposition on tribocorrosion and antibacterial properties of titanium alloy. Appl. Surf. Sci. 2016, 363, 432–438. [Google Scholar] [CrossRef]
- Pejaković, V.; Berger, L.-M.; Thiele, S.; Rojacz, H.; Rodríguez Ripoll, M. Fine grained titanium carbonitride reinforcements for laser deposition processes of 316L boost tribocorrosion resistance in marine environments. Mater. Des. 2021, 207, 109847. [Google Scholar] [CrossRef]
- Feng, J.; Xiao, H. Tribocorrosion Behavior of Laser Cladded Ti-Al-(C, N) Composite Coatings in Artificial Seawater. Coatings 2022, 12, 187. [Google Scholar] [CrossRef]
- Peacock, D.K.; Corr, M.I. Effective Design of High Performance Corrosion Resistant Systems For Oceanic Environments Using Titanium. Corros. Rev. 2000, 18, 295–330. [Google Scholar] [CrossRef]
- Cui, N.; Chen, S.; Xu, T.; Sun, W.; Lv, B.; Zhang, S.; Niu, H.; Kong, F. The Microstructure, Mechanical Properties, and Corrosion Resistance of a Novel Extruded Titanium Alloy. Metals 2022, 12, 1564. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Dong, Y.; Xu, D.; Zhang, X.; Wu, J.; Gu, T.; Wang, F. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy. J. Mater. Sci. Technol. 2021, 71, 177–185. [Google Scholar] [CrossRef]
- Chen, W.; Li, R.; Liu, L.; Liu, R.; Cui, Y.; Chen, Z.; Wang, Q.; Wang, F. Effect of NaCl-rich environment on internal corrosion for Ti60 alloy at 600 °C. Corros. Sci. 2023, 220, 111307. [Google Scholar] [CrossRef]
- Prando, D.; Brenna, A.; Diamanti, M.V.; Beretta, S.; Bolzoni, F.; Ormellese, M.; Pedeferri, M. Corrosion of Titanium: Part 1: Aggressive Environments and Main Forms of Degradation. J. Appl. Biomater. Funct. Mater. 2017, 15, e291–e302. [Google Scholar] [CrossRef] [PubMed]
- Oryshchenko, A.S.; Gorynin, I.V.; Leonov, V.P.; Kudryavtsev, A.S.; Mikhailov, V.I.; Chudakov, E.V. Marine titanium alloys: Present and future. Inorg. Mater. Appl. Res. 2015, 6, 571–579. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Olguín-Coca, J.; López-Léon, L.D.; Flores-De los Rios, J.P.; Almeraya-Calderón, F. Electrochemical Noise Analysis of the Corrosion of Titanium Alloys in NaCl and H2SO4 Solutions. Metals 2021, 11, 105. [Google Scholar] [CrossRef]
- Pejaković, V.; Totolin, V.; Rodríguez Ripoll, M. Tribocorrosion behaviour of Ti6Al4V in artificial seawater at low contact pressures. Tribol. Int. 2018, 119, 55–65. [Google Scholar] [CrossRef]
- Ferreira, D.F.; Almeida, S.M.A.; Soares, R.B.; Juliani, L.; Bracarense, A.Q.; Lins, V.d.F.C.; Junqueira, R.M.R. Synergism between mechanical wear and corrosion on tribocorrosion of a titanium alloy in a Ringer solution. J. Mater. Res. Technol. 2019, 8, 1593–1600. [Google Scholar] [CrossRef]
- Licausi, M.P.; Igual Muñoz, A.; Amigó Borrás, V. Influence of the fabrication process and fluoride content on the tribocorrosion behaviour of Ti6Al4V biomedical alloy in artificial saliva. J. Mech. Behav. Biomed. Mater. 2013, 20, 137–148. [Google Scholar] [CrossRef]
- Brune, D.A.G.; Evje, D.A.G.; Melsom, S. Corrosion of gold alloys and titanium in artificial saliva. Eur. J. Oral Sci. 1982, 90, 168–171. [Google Scholar] [CrossRef]
- Hacisalihoglu, I.; Samancioglu, A.; Yildiz, F.; Purcek, G.; Alsaran, A. Tribocorrosion properties of different type titanium alloys in simulated body fluid. Wear 2015, 332–333, 679–686. [Google Scholar] [CrossRef]
- Kassapidou, M.; Hjalmarsson, L.; Johansson, C.B.; Hammarström Johansson, P.; Morisbak, E.; Wennerberg, A.; Franke Stenport, V. Cobalt–chromium alloys fabricated with four different techniques: Ion release, toxicity of released elements and surface roughness. Dent. Mater. 2020, 36, e352–e363. [Google Scholar] [CrossRef]
- Saldaña, L.; Barranco, V.; García-Alonso, M.C.; Vallés, G.; Escudero, M.L.; Munuera, L.; Vilaboa, N. Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts. J. Biomed. Mater. Res. Part A 2006, 77A, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Noumbissi, S.; Scarano, A.; Gupta, S. A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry. Materials 2019, 12, 368. [Google Scholar] [CrossRef]
- Balachandran, S.; Zachariah, Z.; Fischer, A.; Mayweg, D.; Wimmer, M.A.; Raabe, D.; Herbig, M. Metallic Implants: Atomic Scale Origin of Metal Ion Release from Hip Implant Taper Junctions (Adv. Sci. 5/2020). Adv. Sci. 2020, 7, 2070027. [Google Scholar] [CrossRef]
- Ortiz, A.J.; Fernández, E.; Vicente, A.; Calvo, J.L.; Ortiz, C. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: Toxicity and DNA damage. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e115–e122. [Google Scholar] [CrossRef] [PubMed]
- Marian, M.; Berman, D.; Nečas, D.; Emami, N.; Ruggiero, A.; Rosenkranz, A. Roadmap for 2D materials in biotribological/biomedical applications—A review. Adv. Colloid Interface Sci. 2022, 307, 102747. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, W.; Li, B.; Wang, C.; Kuang, T.; Li, Y. Physical vapor deposition technology for coated cutting tools: A review. Ceram. Int. 2020, 46, 18373–18390. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, P. Effect of Nb Content on Phase Transformation and Comprehensive Properties of TiNb Alloy Coating. Coatings 2023, 13, 1186. [Google Scholar] [CrossRef]
- Chang, S.-H.; Tang, T.-C.; Huang, K.-T.; Liu, C.-M. Investigation of the characteristics of DLC films on oxynitriding-treated ASP23 high speed steel by DC-pulsed PECVD process. Surf. Coat. Technol. 2015, 261, 331–336. [Google Scholar] [CrossRef]
- Täfner, U.C.V.; Schäfer, U.; Handbook, A.S.M. Metallography and Microstructures; ASM International Materials Park: Novelty, OH, USA, 2004; Volume 9. [Google Scholar]
- Ribeiro, M.V.; Moreira, M.R.V.; Ferreira, J.R. Optimization of titanium alloy (6Al–4V) machining. J. Mater. Process. Technol. 2003, 143–144, 458–463. [Google Scholar] [CrossRef]
- Balachandran, S.; Mishra, R.S.; Banerjee, D. Friction stir processing of a metastable β titanium alloy in β and α + β phase fields. Mater. Sci. Eng. A 2020, 772, 138705. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, J.; Zhang, R.; Chen, J.; He, J.; Yuan, T. A new insight into the α phase precipitation in β titanium alloy. Vacuum 2021, 189, 110272. [Google Scholar] [CrossRef]
- Dash, B.; Jangid, R.; Koneru, S.R.; Pilchak, A.; Banerjee, D. The formation of α at triple junctions of parent β phase in titanium alloys. Philos. Mag. 2019, 99, 956–970. [Google Scholar] [CrossRef]
- Dong, R.; Kou, H.; Wu, L.; Yang, L.; Zhao, Y.; Hou, H. β to ω transformation strain associated with the precipitation of α phase in a metastable β titanium alloy. J. Mater. Sci. 2021, 56, 1685–1693. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.-Y.; Li, C.; Liu, C.; Zhou, K. A strengthening strategy for metastable β titanium alloys: Synergy effect of primary α phase and β phase stability. Mater. Sci. Eng. A 2022, 852, 143736. [Google Scholar] [CrossRef]
- Markovsky, P.E.; Bondarchuk, V.I. Influence of Strain Rate, Microstructure and Chemical and Phase Composition on Mechanical Behavior of Different Titanium Alloys. J. Mater. Eng. Perform. 2017, 26, 3431–3449. [Google Scholar] [CrossRef]
- Illarionov, A.G.; Nezhdanov, A.G.; Stepanov, S.I.; Muller-Kamskii, G.; Popov, A.A. Structure, Phase Composition, and Mechanical Properties of Biocompatible Titanium Alloys of Different Types. Phys. Met. Metallogr. 2020, 121, 367–373. [Google Scholar] [CrossRef]
- Zheng, Y.; Williams, R.E.A.; Nag, S.; Banerjee, R.; Fraser, H.L.; Banerjee, D. The effect of alloy composition on instabilities in the β phase of titanium alloys. Scr. Mater. 2016, 116, 49–52. [Google Scholar] [CrossRef]
- Liu, C.; Li, G.; Yuan, F.; Ali, M.; Han, F.; Zhang, Y.; Gu, H. Oxygen induced phase transformation in an α + β titanium alloy. Mater. Chem. Phys. 2019, 223, 75–77. [Google Scholar] [CrossRef]
- Cao, S.; Mischler, S. Modeling tribocorrosion of passive metals—A review. Curr. Opin. Solid State Mater. Sci. 2018, 22, 127–141. [Google Scholar] [CrossRef]
- Xiao, J.-K.; Xu, G.-M.; Chen, J.; Rusinov, P.; Zhang, C. Tribocorrosion behavior of TiZrHfNb-based refractory high-entropy alloys. Wear 2024, 536–537, 205158. [Google Scholar] [CrossRef]
- Liu, H.; Huang, X.; Huang, S.; Qiao, L.; Yan, Y. Anisotropy of wear and tribocorrosion properties of L-PBF Ti6Al4V. J. Mater. Res. Technol. 2023, 25, 2690–2701. [Google Scholar] [CrossRef]
- Wood, R.J.K. Marine wear and tribocorrosion. Wear 2017, 376–377, 893–910. [Google Scholar] [CrossRef]
- Yan, C.; Zeng, Q.; Xu, Y.; He, W. Microstructure, phase and tribocorrosion behavior of 60NiTi alloy. Appl. Surf. Sci. 2019, 498, 143838. [Google Scholar] [CrossRef]
- Correa, D.R.N.; Kuroda, P.A.B.; Grandini, C.R.; Rocha, L.A.; Oliveira, F.G.M.; Alves, A.C.; Toptan, F. Tribocorrosion behavior of β-type Ti-15Zr-based alloys. Mater. Lett. 2016, 179, 118–121. [Google Scholar] [CrossRef]
- Wang, W.; Wang, K.; Zhang, Z.; Chen, J.; Mou, T.; Michel, F.M.; Xin, H.; Cai, W. Ultrahigh tribocorrosion resistance of metals enabled by nano-layering. Acta Mater. 2021, 206, 116609. [Google Scholar] [CrossRef]
- De Stefano, M.; Aliberti, S.M.; Ruggiero, A. (Bio)Tribocorrosion in Dental Implants: Principles and Techniques of Investigation. Appl. Sci. 2022, 12, 7421. [Google Scholar] [CrossRef]
- Li, Z.; Yu, H.; Sun, D. The tribocorrosion mechanism of aluminum alloy 7075-T6 in the deep ocean. Corros. Sci. 2021, 183, 109306. [Google Scholar] [CrossRef]
- Kosec, T.; Močnik, P.; Legat, A. The tribocorrosion behaviour of NiTi alloy. Appl. Surf. Sci. 2014, 288, 727–735. [Google Scholar] [CrossRef]
- Lei, M.K.; Ou, Y.X.; Wang, K.S.; Chen, L. Wear and corrosion properties of plasma-based low-energy nitrogen ion implanted titanium. Surf. Coat. Technol. 2011, 205, 4602–4607. [Google Scholar] [CrossRef]
- Sato, J.; Shima, M.; Takeuchi, M. Fretting wear in seawater. Wear 1986, 110, 227–238. [Google Scholar] [CrossRef]
- Soares, C.G.; Garbatov, Y.; Zayed, A.; Wang, G. Influence of environmental factors on corrosion of ship structures in marine atmosphere. Corros. Sci. 2009, 51, 2014–2026. [Google Scholar] [CrossRef]
- Noël, R.E.J.; Ball, A. On the synergistic effects of abrasion and corrosion during wear. Wear 1983, 87, 351–361. [Google Scholar] [CrossRef]
- Jiang, X. Progress in Research on Wear-corrosion. Mater. Rev. 2001, 15, 20–22. [Google Scholar]
- Sinnett-Jones, P.E.; Wharton, J.A.; Wood, R.J.K. Micro-abrasion–corrosion of a CoCrMo alloy in simulated artificial hip joint environments. Wear 2005, 259, 898–909. [Google Scholar] [CrossRef]
- Mathew, M.T.; Srinivasa Pai, P.; Pourzal, R.; Fischer, A.; Wimmer, M.A. Significance of Tribocorrosion in Biomedical Applications: Overview and Current Status. Adv. Tribol. 2009, 2009, 250986. [Google Scholar] [CrossRef]
- Mace, A.; Gilbert, J.L. A mass balance analysis of the tribocorrosion process of titanium alloys using a single micro-asperity: Voltage and solution effects on plastic deformation, oxide repassivation, and ion dissolution. J. Mech. Behav. Biomed. Mater. 2022, 136, 105531. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.T.; Barão, V.A.; Yuan, J.C.-C.; Assunção, W.G.; Sukotjo, C.; Wimmer, M.A. What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? J. Mech. Behav. Biomed. Mater. 2012, 8, 71–85. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Z.; Ma, Y.; Yan, Y.; Qiao, L. Tribocorrosion investigation of 316L stainless steel: The synergistic effect between chloride ion and sulfate ion. Mater. Res. Express 2021, 8, 086501. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Li, S.; Wang, R.; Guo, P.; Wang, A.; Ke, P. Accelerated deterioration mechanism of 316L stainless steel in NaCl solution under the intermittent tribocorrosion process. J. Mater. Sci. Technol. 2022, 121, 67–79. [Google Scholar] [CrossRef]
- López-Ortega, A.; Bayón, R.; Arana, J.L.; Arredondo, A.; Igartua, A. Influence of temperature on the corrosion and tribocorrosion behaviour of High-Strength Low-Alloy steels used in offshore applications. Tribol. Int. 2018, 121, 341–352. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, Y.; Zhang, X.; Yuan, X.; Ren, P.; Jin, Z. Mapping the fretting corrosion behaviors of 6082 aluminum alloy in 3.5% NaCl solution. Wear 2021, 482, 203975. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q. Effect of electrochemical state on corrosion–wear behaviors of TC4 alloy in artificial seawater. Trans. Nonferrous Met. Soc. China 2016, 26, 1011–1018. [Google Scholar] [CrossRef]
- Ding, H.; Dai, Z.; Xu, T. Fretting Wear Mechanism of Titaniumin Water. Lubr. Eng. 2005, 6, 28–29+32. [Google Scholar]
- Xu, Y.; Qi, J.; Nutter, J.; Sharp, J.; Bai, M.; Ma, L.; Rainforth, W.M. Correlation between the formation of tribofilm and repassivation in biomedical titanium alloys during tribocorrosion. Tribol. Int. 2021, 163, 107147. [Google Scholar] [CrossRef]
- Zhao, Q.; Ueno, T.; Wakabayashi, N. A review in titanium-zirconium binary alloy for use in dental implants: Is there an ideal Ti-Zr composing ratio? Jpn. Dent. Sci. Rev. 2023, 59, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Siony, N.; Vuong, L.; Lundaajamts, O.; Kadkhodaei, S. Computational design of corrosion-resistant and wear-resistant titanium alloys for orthopedic implants. Mater. Today Commun. 2022, 33, 104465. [Google Scholar] [CrossRef]
- Shah, S.D.; Zheng, F.; Seghi, R.R.; Lee, D.J. Strength of titanium-zirconium alloy implants with a conical connection after implantoplasty. J. Prosthet. Dent. 2022, in press. [Google Scholar] [CrossRef]
- Afzali, P.; Ghomashchi, R.; Oskouei, R.H. On the Corrosion Behaviour of Low Modulus Titanium Alloys for Medical Implant Applications: A Review. Metals 2019, 9, 878. [Google Scholar] [CrossRef]
- Bédouin, Y.; Gordin, D.-M.; Pellen-Mussi, P.; Pérez, F.; Tricot-Doleux, S.; Vasilescu, C.; Drob, S.I.; Chauvel-Lebret, D.; Gloriant, T. Enhancement of the biocompatibility by surface nitriding of a low-modulus titanium alloy for dental implant applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1483–1490. [Google Scholar] [CrossRef]
- Gibson, L.J. Cellular Solids. MRS Bull. 2003, 28, 270–274. [Google Scholar] [CrossRef]
- Wauthle, R.; Vrancken, B.; Beynaerts, B.; Jorissen, K.; Schrooten, J.; Kruth, J.-P.; Van Humbeeck, J. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit. Manuf. 2015, 5, 77–84. [Google Scholar] [CrossRef]
- Guo, S.; Meng, Q.; Zhao, X.; Wei, Q.; Xu, H. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength. Sci. Rep. 2015, 5, 14688. [Google Scholar] [CrossRef]
- Xiang, T.; Chen, J.; Bao, W.; Zhong, S.; Du, P.; Xie, G. Fabrication of porous TiZrNbTa high-entropy alloys/Ti composite with high strength and low Young’s modulus using a novel MgO space holder. J. Mater. Sci. Technol. 2023, 167, 59–73. [Google Scholar] [CrossRef]
- Li, S.; Lee, W.-T.; Yeom, J.-T.; Kim, J.G.; Oh, J.S.; Lee, T.; Liu, Y.; Nam, T.-H. Towards bone-like elastic modulus in TiNbSn alloys with large recovery strain for biomedical applications. J. Alloys Compd. 2022, 925, 166724. [Google Scholar] [CrossRef]
- Krishna, B.V.; Bose, S.; Bandyopadhyay, A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 2007, 3, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Chen, X.; Liu, P. Facile fabrication of nanoporous structure on β titanium alloy to eliminate stress shielding for bone implant. J. Vac. Sci. Technol. B 2022, 40, 050601. [Google Scholar] [CrossRef]
- Arias-González, F.; Rodríguez-Contreras, A.; Punset, M.; Manero, J.M.; Barro, Ó.; Fernández-Arias, M.; Lusquiños, F.; Gil, J.; Pou, J. Laser-Deposited Beta Type Ti-42Nb Alloy with Anisotropic Mechanical Properties for Pioneering Biomedical Implants with a Very Low Elastic Modulus. Materials 2022, 15, 7172. [Google Scholar] [CrossRef]
- Cai, D.; Zhao, X.; Yang, L.; Wang, R.; Qin, G.; Chen, D.-f.; Zhang, E. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus. J. Mater. Sci. Technol. 2021, 81, 13–25. [Google Scholar] [CrossRef]
- Ito, K.; Mori, Y.; Kamimura, M.; Koguchi, M.; Kurishima, H.; Koyama, T.; Mori, N.; Masahashi, N.; Hanada, S.; Itoi, E.; et al. β-type TiNbSn Alloy Plates with Low Young Modulus Accelerates Osteosynthesis in Rabbit Tibiae. Clin. Orthop. Relat. Res. 2022, 480, 1817–1832. [Google Scholar] [CrossRef]
- Singh, D.; Garg, B.; Pandey, P.M.; Kalyanasundaram, D. Design and development of 3D printing assisted microwave sintering of elbow implant with biomechanical properties similar tohuman elbow. Rapid Prototyp. J. 2022, 28, 390–403. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Y.; Wang, M.; Liu, Z.; Liu, C. Parametric Design of Hip Implant With Gradient Porous Structure. Front. Bioeng. Biotechnol. 2022, 10, 850184. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef]
- Song, C.; Liu, L.; Deng, Z.; Lei, H.; Yuan, F.; Yang, Y.; Li, Y.; Jiakuo, Y. Research progress on the design and performance of porous titanium alloy bone implants. J. Mater. Res. Technol. 2023, 23, 2626–2641. [Google Scholar] [CrossRef]
- Guo, A.X.Y.; Cheng, L.; Zhan, S.; Zhang, S.; Xiong, W.; Wang, Z.; Wang, G.; Cao, S.C. Biomedical applications of the powder-based 3D printed titanium alloys: A review. J. Mater. Sci. Technol. 2022, 125, 252–264. [Google Scholar] [CrossRef]
- Kostornov, A.G.; Akhmedov, M.K. Physicomechanical properties of porous materials of VT6 titanium alloy fibers. Powder Metall. Met. Ceram. 1995, 33, 426–430. [Google Scholar] [CrossRef]
- Bai, X.; Li, J.; Zhao, Z.; Wang, Q.; Lv, N.; Wang, Y.; Gao, H.; Guo, Z.; Li, Z. In vivo evaluation of osseointegration ability of sintered bionic trabecular porous titanium alloy as artificial hip prosthesis. Front. Bioeng. Biotechnol. 2022, 10, 928216. [Google Scholar] [CrossRef]
- Wang, R.; Ni, S.; Ma, L.; Li, M. Porous construction and surface modification of titanium-based materials for osteogenesis: A review. Front. Bioeng. Biotechnol. 2022, 10, 973297. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, Q.; Sun, M.; Wu, M.; Sun, X.; Wang, Q.; Tong, S. Effects of hydroxyapatite-coated porous titanium scaffolds functionalized by exosomes on the regeneration and repair of irregular bone. Front. Bioeng. Biotechnol. 2023, 11, 1283811. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Rastogi, V.; Ginn, M. A review on 3D printing techniques for medical applications. Curr. Opin. Chem. Eng. 2020, 28, 152–157. [Google Scholar] [CrossRef]
- Yang, G.; Liu, H.; Li, A.; Liu, T.; Lu, Q.; He, F. Antibacterial Structure Design of Porous Ti6Al4V by 3D Printing and Anodic Oxidation. Materials 2023, 16, 5206. [Google Scholar] [CrossRef]
- Sun, X.; Tong, S.; Yang, S.; Guo, S. The Effects of Graphene on the Biocompatibility of a 3D-Printed Porous Titanium Alloy. Coatings 2021, 11, 1509. [Google Scholar] [CrossRef]
- Wang, C.; Yu, D. Comparison of electron beam melting fabrication of irregularity porous Ti-6Al-4V and Ti-24Nb-4Zr-8Sn titanium alloy Scaffolds: Cytocompatibility and osteogenesis. Clin. Oral Implant. Res. 2020, 31, 110. [Google Scholar] [CrossRef]
- Kuryło, P.; Cykowska-Błasik, M.; Tertel, E.; Pałka, Ł.; Pruszyński, P.; Klekiel, T. Novel Development of Implant Elements Manufactured through Selective Laser Melting 3D Printing. Adv. Eng. Mater. 2021, 23, 2001488. [Google Scholar] [CrossRef]
- Okazaki, Y.; Nishimura, E.; Nakada, H.; Kobayashi, K. Surface analysis of Ti–15Zr–4Nb–4Ta alloy after implantation in rat tibia. Biomaterials 2001, 22, 599–607. [Google Scholar] [CrossRef]
- Kazantseva, N.V.; Krakhmalev, P.V.; Yadroitsava, I.A.; Yadroitsev, I.A. Laser Additive 3D Printing of Titanium Alloys: Current Status, Problems, Trends. Phys. Met. Metallogr. 2021, 122, 6–25. [Google Scholar] [CrossRef]
- Montufar, E.B.; Tkachenko, S.; Casas-Luna, M.; Škarvada, P.; Slámečka, K.; Diaz-de-la-Torre, S.; Koutný, D.; Paloušek, D.; Koledova, Z.; Hernández-Tapia, L.; et al. Benchmarking of additive manufacturing technologies for commercially-pure-titanium bone-tissue-engineering scaffolds: Processing-microstructure-property relationship. Addit. Manuf. 2020, 36, 101516. [Google Scholar] [CrossRef]
- Yasin, M.S.; Soltani-Tehrani, A.; Shao, S.; Haghshenas, M.; Shamsaei, N. A Comparative Study on Fatigue Performance of Various Additively Manufactured Titanium Alloys. Procedia Struct. Integr. 2022, 38, 519–525. [Google Scholar] [CrossRef]
- Gao, Y.; Lalevée, J.; Simon-Masseron, A. An Overview on 3D Printing of Structured Porous Materials and Their Applications. Adv. Mater. Technol. 2023, 8, 2300377. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, Q.; Wang, J.; Li, D.; Song, Z.; Yu, J. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing. ACS Biomater. Sci. Eng. 2020, 6, 5181–5190. [Google Scholar] [CrossRef]
- Zhao, L.; Pei, X.; Jiang, L.; Hu, C.; Sun, J.; Xing, F.; Zhou, C.; Fan, Y.; Zhang, X. Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair. Compos. Part B Eng. 2019, 162, 154–161. [Google Scholar] [CrossRef]
- Mani, N.; Sola, A.; Trinchi, A.; Fox, K. Is there a future for additive manufactured titanium bioglass composites in biomedical application? A perspective. Biointerphases 2020, 15, 068501. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, B.; Addison, O.; Wang, X.; Hou, B.; Yu, F. Mechanically-assisted crevice corrosion and its effect on materials degradation. Corros. Commun. 2023, 11, 23–32. [Google Scholar] [CrossRef]
- Geringer, J.; Pellier, J.; Taylor, M.L.; Macdonald, D.D. Electrochemical Impedance Spectroscopy: Insights for fretting corrosion experiments. Tribol. Int. 2013, 68, 67–76. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; Urban, R.M.; Jacobs, J.J.; Gilbert, J.L. In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 88B, 206–219. [Google Scholar] [CrossRef]
- Witt, F.; Bosker, B.H.; Bishop, N.E.; Ettema, H.B.; Verheyen, C.C.P.M.; Morlock, M.M. The Relation between Titanium Taper Corrosion and Cobalt-Chromium Bearing Wear in Large-Head Metal-on-Metal Total Hip Prostheses: A Retrieval Study. JBJS 2014, 96, e157. [Google Scholar] [CrossRef]
- Vieira, A.C.; Ribeiro, A.R.; Rocha, L.A.; Celis, J.P. Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 2006, 261, 994–1001. [Google Scholar] [CrossRef]
- Mehkri, S.; Abishek, N.R.; Sumanth, K.S.; Rekha, N. Study of the Tribocorrosion occurring at the implant and implant alloy Interface: Dental implant materials. Mater. Today Proc. 2021, 44, 157–165. [Google Scholar] [CrossRef]
- Alves, S.A.; Beline, T.; Barão, V.A.R.; Sukotjo, C.; Mathew, M.T.; Rocha, L.A.; Celis, J.P.; Souza, J.C.M. Chapter 3—Degradation of titanium-based implants. In Nanostructured Biomaterials for Cranio-Maxillofacial and Oral Applications; Souza, J.C.M., Hotza, D., Henriques, B., Boccaccini, A.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 41–62. [Google Scholar]
- Chaturvedi, T.P. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2009, 20, 91–98. [Google Scholar] [CrossRef]
- Han, X.; Ma, J.; Tian, A.; Wang, Y.; Li, Y.; Dong, B.; Tong, X.; Ma, X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf. B Biointerfaces 2023, 227, 113339. [Google Scholar] [CrossRef]
- Makurat-Kasprolewicz, B.; Ossowska, A. Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods. Mater. Today Commun. 2023, 34, 105425. [Google Scholar] [CrossRef]
- Costa, T.N.Q.; Dotta, T.C.; Galo, R.; Soares, M.E.d.C.; Pedrazzi, V. Effect of tribocorrosion on surface-treated titanium alloy implants: A systematic review with meta-analysis. J. Mech. Behav. Biomed. Mater. 2023, 145, 106008. [Google Scholar] [CrossRef] [PubMed]
- Unune, D.R.; Brown, G.R.; Reilly, G.C. Thermal based surface modification techniques for enhancing the corrosion and wear resistance of metallic implants: A review. Vacuum 2022, 203, 111298. [Google Scholar] [CrossRef]
- Bai, H.; Zhong, L.; Kang, L.; Liu, J.; Zhuang, W.; Lv, Z.; Xu, Y. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy. J. Alloys Compd. 2021, 882, 160645. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, F.; Wang, Q.; Zhang, M.; Zhou, Z. Electrochemical and tribocorrosion performances of CrMoSiCN coating on Ti-6Al-4V titanium alloy in artificial seawater. Corros. Sci. 2020, 165, 108385. [Google Scholar] [CrossRef]
- Hatem, A.; Lin, J.; Wei, R.; Torres, R.D.; Laurindo, C.; de Souza, G.B.; Soares, P. Tribocorrosion behavior of low friction TiSiCN nanocomposite coatings deposited on titanium alloy for biomedical applications. Surf. Coat. Technol. 2018, 347, 1–12. [Google Scholar] [CrossRef]
- Mendizabal, L.; Lopez, A.; Bayón, R.; Herrero-Fernandez, P.; Barriga, J.; Gonzalez, J.J. Tribocorrosion response in biological environments of multilayer TaN films deposited by HPPMS. Surf. Coat. Technol. 2016, 295, 60–69. [Google Scholar] [CrossRef]
- Grabarczyk, J.; Gaj, J.; Pazik, B.; Kaczorowski, W.; Januszewicz, B. Tribocorrosion behavior of Ti6Al4V alloy after thermo-chemical treatment and DLC deposition for biomedical applications. Tribol. Int. 2021, 153, 106560. [Google Scholar] [CrossRef]
- Manhabosco, T.M.; Tamborim, S.M.; dos Santos, C.B.; Müller, I.L. Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution. Corros. Sci. 2011, 53, 1786–1793. [Google Scholar] [CrossRef]
- Rahmatian, B.; Ghasemi, H.M.; Heydarzadeh Sohi, M.; De Baets, P. Tribocorrosion and corrosion behavior of double borided layers formed on Ti-6Al-4V alloy: An approach for applications to bio-implants. Corros. Sci. 2023, 210, 110824. [Google Scholar] [CrossRef]
- Cheng, K.-y.; Pagan, N.; Bijukumar, D.; Mathew, M.T.; McNallan, M. Carburized titanium as a solid lubricant on hip implants: Corrosion, tribocorrosion and biocompatibility aspects. Thin Solid Film. 2018, 665, 148–158. [Google Scholar] [CrossRef]
- Li, K.M.; Song, K.J.; Guan, J.; Yang, F.; Liu, J. Tribocorrosion behavior of a Ti6Al4V alloy electromagnetic induction nitride layer in a fluorine-containing solution. Surf. Coat. Technol. 2020, 386, 125506. [Google Scholar] [CrossRef]
- Çaha, I.; Alves, A.C.; Affonço, L.J.; Lisboa-Filho, P.N.; da Silva, J.H.D.; Rocha, L.A.; Pinto, A.M.P.; Toptan, F. Corrosion and tribocorrosion behaviour of titanium nitride thin films grown on titanium under different deposition times. Surf. Coat. Technol. 2019, 374, 878–888. [Google Scholar] [CrossRef]
- Bayón, R.; Igartua, A.; González, J.J.; Ruiz de Gopegui, U. Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys. Tribol. Int. 2015, 88, 115–125. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Dang, C.; Wang, Y.; Zhu, Y. Influence of carbon contents on the structure and tribocorrosion properties of TiSiCN coatings on Ti6Al4V. Tribol. Int. 2017, 109, 285–296. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, M.; Li, J.; Wang, L. The improved corrosion and tribocorrosion properties of TiSiN/Ag by thermal treatment. Surf. Coat. Technol. 2020, 385, 125437. [Google Scholar] [CrossRef]
- Dong, M.; Zhu, Y.; Xu, L.; Ren, X.; Ma, F.; Mao, F.; Li, J.; Wang, L. Tribocorrosion performance of nano-layered coating in artificial seawater. Appl. Surf. Sci. 2019, 487, 647–654. [Google Scholar] [CrossRef]
- Fazel, M.; Salimijazi, H.R.; Golozar, M.A. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Appl. Surf. Sci. 2015, 324, 751–756. [Google Scholar] [CrossRef]
- de Viteri, V.S.; Bayón, R.; Igartua, A.; Barandika, G.; Moreno, J.E.; Peremarch, C.P.-J.; Pérez, M.M. Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO2 coatings developed by plasma electrolytic oxidation. Appl. Surf. Sci. 2016, 367, 1–10. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, T.; Yu, P.; Zhao, Z.; Chen, X.; Zhang, Y.; Chen, F. Effect of graphene oxide additive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy. Appl. Surf. Sci. 2019, 480, 26–34. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, H.; Man, C.; Liu, F.; Pang, K.; Ma, G.; Chen, H.; Cui, Z. The tribocorrosion resistance of TiN + TiB/TC4 composite coatings and the synergistic strengthening effects of multi-level reinforcements. Corros. Sci. 2023, 219, 111224. [Google Scholar] [CrossRef]
- Kovács, D.; Quintana, I.; Dobránszky, J. Effects of Different Variants of Plasma Nitriding on the Properties of the Nitrided Layer. J. Mater. Eng. Perform. 2019, 28, 5485–5493. [Google Scholar] [CrossRef]
- Kertscher, R.; Brunatto, S.F. On the kinetics of nitride and diffusion layer growth in niobium plasma nitriding. Surf. Coat. Technol. 2020, 401, 126220. [Google Scholar] [CrossRef]
- Miao, B.; Chai, Y.; Wei, K.; Hu, J. A novel duplex plasma treatment combining plasma nitrocarburizing and plasma nitriding. Vacuum 2016, 133, 54–57. [Google Scholar] [CrossRef]
- Sun, J.; Yao, Q.T.; Zhang, Y.H.; Du, X.D.; Wu, Y.C.; Tong, W.P. Simultaneously improving surface mechanical properties and in vitro biocompatibility of pure titanium via surface mechanical attrition treatment combined with low-temperature plasma nitriding. Surf. Coat. Technol. 2017, 309, 382–389. [Google Scholar] [CrossRef]
- Yang, W.; He, X.; Li, H.; Dong, J.; Chen, W.; Xin, H.; Jin, Z. A tribological investigation of SLM fabricated TC4 titanium alloy with carburization pre-treatment. Ceram. Int. 2020, 46, 3043–3050. [Google Scholar] [CrossRef]
- Zhao, Z.; Hui, P.; Wang, T.; Wang, X.; Xu, Y.; Zhong, L.; Zhao, M. New strategy to grow TiC coatings on titanium alloy: Contact solid carburization by cast iron. J. Alloys Compd. 2018, 745, 637–643. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J. Intermittent vacuum gas nitriding of TB8 titanium alloy. Vacuum 2019, 163, 52–58. [Google Scholar] [CrossRef]
- Luk’yanenko, A.G.; Pohrelyuk, I.M.; Shlyakhetka, K.S.; Skrebtsov, A.A.; Kravchyshyn, T.M. Nitriding of Sintered VT1-0 Titanium Alloy. Powder Metall. Met. Ceram. 2020, 59, 249–260. [Google Scholar] [CrossRef]
- Pohrelyuk, I.M.; Tkachuk, O.V.; Proskurnyak, R.V.; Boiko, N.M.; Kluchivska, O.Y.; Stoika, R.S. Effect of Thermodiffusion Nitriding on Cytocompatibility of Ti-6Al-4V Titanium Alloy. JOM 2016, 68, 1109–1115. [Google Scholar] [CrossRef]
- Sun, H.-z.; Zheng, J.; Song, Y.; Chi, J.; Fu, Y.-d. Effect of the deformation on nitrocarburizing microstructure of the cold deformed Ti-6Al-4V alloy. Surf. Coat. Technol. 2019, 362, 234–238. [Google Scholar] [CrossRef]
- Darmawan, A.S.; Siswanto, W.A.; Purboputro, P.I.; Febriantoko, B.W.; Sujitno, T.; Hamid, A. Predicting Surface Hardness of Commercially Pure Titanium Under Plasma Nitrocarburizing Based on Experimental Data. IOP Conf. Ser. Mater. Sci. Eng. 2020, 990, 012022. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Wang, W.; Mao, J.; Zhang, L.; Zhu, Y.; Ye, Q. Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior. J. Mater. Eng. Perform. 2018, 27, 948–960. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, K.; Gao, Y. Columnar and nanocrystalline combined microstructure of the nitrided layer by active screen plasma nitriding on surface-nanocrystalline titanium alloy. Appl. Surf. Sci. 2023, 617, 156614. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; Yi, X.; Yan, J.; Xiu, J.; Fang, D.; Shao, M.; Ren, P.; He, Y.; Qiu, J. Improved seawater corrosion resistance of electron beam melting Ti6Al4V titanium alloy by plasma nitriding. Vacuum 2023, 216, 112463. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Li, J.; Yang, X.; Hu, J. Comparative study of plasma oxynitriding and plasma nitriding for AISI 4140 steel. J. Alloys Compd. 2016, 680, 642–645. [Google Scholar] [CrossRef]
- Fernandes, F.A.P.; Heck, S.C.; Picone, C.A.; Casteletti, L.C. On the wear and corrosion of plasma nitrided AISI H13. Surf. Coat. Technol. 2020, 381, 125216. [Google Scholar] [CrossRef]
- Wang, X.; Bai, S.; Li, F.; Li, D.; Zhang, J.; Tian, M.; Zhang, Q.; Tong, Y.; Zhang, Z.; Wang, G.; et al. Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium. J. Prosthet. Dent. 2016, 116, 450–456. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Zhang, S.; Wang, W.; Zhu, Y. Microstructure and corrosion resistance of nitrogen-rich surface layers on AISI 304 stainless steel by rapid nitriding in a hollow cathode discharge. Appl. Phys. A 2017, 124, 65. [Google Scholar] [CrossRef]
- Wang, C.; Huang, H.; Wu, H.; Hong, J.; Zhang, L.; Yan, J. Ultra-low wear of titanium alloy surface under lubricated conditions achieved by laser texturing and simultaneous nitriding. Surf. Coat. Technol. 2023, 474, 130083. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; He, Y. Solid Lubrication System and Its Plasma Surface Engineering: A Review. Lubricants 2023, 11, 473. [Google Scholar] [CrossRef]
- Yan, J.; Shao, M.; Zhou, Z.; Zhang, Z.; Yi, X.; Wang, M.; Xie, B.; He, Y.; Li, Y. Electrochemical Corrosion Behavior of Ti-N-O Modified Layer on the TC4 Titanium Alloy Prepared by Hollow Cathodic Plasma Source Oxynitriding. Metals 2023, 13, 1083. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Shao, M.; Zhang, Z.; Wang, C.; Yan, J.; Lu, J.; Zhang, L.; Xie, B.; He, Y.; et al. Characterization and electrochemical behavior of a multilayer-structured Ti–N layer produced by plasma nitriding of electron beam melting TC4 alloy in Hank’s solution. Vacuum 2023, 208, 111737. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Hu, Y.; Luo, L.; Jiang, C.; Liu, F.; Jin, W.; Zhu, K.; Long, Z.; Liu, K. Effect of hydrogen on microstructure and mechanical properties of plasma-nitrided pure titanium by cathodic cage plasma nitriding. Surf. Coat. Technol. 2023, 456, 129231. [Google Scholar] [CrossRef]
- Braz, J.K.F.S.; Martins, G.M.; Morales, N.; Naulin, P.; Fuentes, C.; Barrera, N.P.; Vitoriano, J.O.; Rocha, H.A.O.; Oliveira, M.F.; Alves, C.; et al. Live endothelial cells on plasma-nitrided and oxidized titanium: An approach for evaluating biocompatibility. Mater. Sci. Eng. C 2020, 113, 111014. [Google Scholar] [CrossRef] [PubMed]
- El-Hossary, F.M.; Negm, N.Z.; Abd El-Rahman, A.M.; Raaif, M.; Seleem, A.A.; Abd El-Moula, A.A. Tribo-mechanical and electrochemical properties of plasma nitriding titanium. Surf. Coat. Technol. 2015, 276, 658–667. [Google Scholar] [CrossRef]
- She, D.; Yue, W.; Fu, Z.; Wang, C.; Yang, X.; Liu, J. Effects of nitriding temperature on microstructures and vacuum tribological properties of plasma-nitrided titanium. Surf. Coat. Technol. 2015, 264, 32–40. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, M.; Zhang, Z.; Yi, X.; Yan, J.; Zhou, Z.; Fang, D.; He, Y.; Li, Y. Corrosion Behavior of Nitrided Layer of Ti6Al4V Titanium Alloy by Hollow Cathodic Plasma Source Nitriding. Materials 2023, 16, 2961. [Google Scholar] [CrossRef]
- Fujita, K.; Ijiri, M.; Inoue, Y.; Kikuchi, S. Rapid Nitriding of Titanium Alloy with Fine Grains at Room Temperature. Adv. Mater. 2021, 33, 2008298. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Liu, J.; Ye, Z.; Hu, Y.; Wu, J.; Liu, K.; Cai, Z. Enhancing the tribological properties of TA1 pure titanium by modulating the energy of pulsed laser nitriding. Opt. Laser Technol. 2024, 169, 110118. [Google Scholar] [CrossRef]
- Zhao, G.-H.; Aune, R.E.; Espallargas, N. Tribocorrosion studies of metallic biomaterials: The effect of plasma nitriding and DLC surface modifications. J. Mech. Behav. Biomed. Mater. 2016, 63, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Jiang, X.; Xiang, Q.; Yang, F.; Liu, J. Corrosion and tribocorrosion behavior of titanium surfaces designed by electromagnetic induction nitriding for biomedical applications. Surf. Coat. Technol. 2021, 409, 126844. [Google Scholar] [CrossRef]
- Fan, W.; Wang, Q.; Yan, Y.; Li, X. Distinctive performance evolution of surface layer in TC4 alloy oxidized at high temperature: Softening or hardening? J. Alloys Compd. 2023, 968, 172125. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, G.-R.; Zhang, X.-C.; Li, S.; Tu, S.-T. Thermal oxidation of Ti-6Al–4V alloy and pure titanium under external bending strain: Experiment and modelling. Corros. Sci. 2017, 122, 61–73. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhang, C.; Liao, Z.; Liu, W. The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation. Tribol. Int. 2014, 79, 174–182. [Google Scholar] [CrossRef]
- Januszewicz, B.; Siniarski, D. The glow discharge plasma influence on the oxide layer and diffusion zone formation during process of thermal oxidation of titanium and its alloys. Vacuum 2006, 81, 215–220. [Google Scholar] [CrossRef]
- Bailey, R.; Sun, Y. Corrosion and Tribocorrosion Performance of Thermally Oxidized Commercially Pure Titanium in a 0.9% NaCl Solution. J. Mater. Eng. Perform. 2015, 24, 1669–1678. [Google Scholar] [CrossRef]
- Cheraghali, B.; Ghasemi, H.M.; Abedini, M.; Yazdi, R. Functionally graded oxygen-containing coating on CP-titanium for bio-applications: Characterization, biocompatibility and tribocorrosion behavior. J. Mater. Res. Technol. 2022, 21, 104–120. [Google Scholar] [CrossRef]
- Si, Y.; Liu, H.; Yu, H.; Jiang, X.; Sun, D. A heterogeneous TiO2/SrTiO3 coating on titanium alloy with excellent photocatalytic antibacterial, osteogenesis and tribocorrosion properties. Surf. Coat. Technol. 2022, 431, 128008. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Dai, S.; Zhu, L. Research Progress in Electrospark Deposition Coatings on Titanium Alloy Surfaces: A Short Review. Coatings 2023, 13, 1473. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Molaei, M.; Nouri, M.; Babaei, K. Review of the role of graphene and its derivatives in enhancing the performance of plasma electrolytic oxidation coatings on titanium and its alloys. Appl. Surf. Sci. Adv. 2021, 6, 100140. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Liu, P.; Qi, S.; Li, W.; Zhang, K.; Chen, X. Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications. J. Alloys Compd. 2023, 948, 169773. [Google Scholar] [CrossRef]
- Nikoomanzari, E.; Karbasi, M.; Melo, W.C.; Moris, H.; Babaei, K.; Giannakis, S.; Fattah-alhosseini, A. Impressive strides in antibacterial performance amelioration of Ti-based implants via plasma electrolytic oxidation (PEO): A review of the recent advancements. Chem. Eng. J. 2022, 441, 136003. [Google Scholar] [CrossRef]
- Moga, S.; Malinovschi, V.; Marin, A.; Coaca, E.; Negrea, D.; Craciun, V.; Lungu, M. Mechanical and corrosion-resistant coatings prepared on AZ63 Mg alloy by plasma electrolytic oxidation. Surf. Coat. Technol. 2023, 462, 129464. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.; Zou, Y.; Chen, G.; Wang, Y.; Ouyang, J.; Jia, D.; Zhou, Y. One-step fabrication of amorphous/ITO-CNTs coating by plasma electrolytic oxidation with particle addition for excellent wear resistance. Appl. Surf. Sci. 2023, 640, 158274. [Google Scholar] [CrossRef]
- Lukiyanchuk, I.V.; Tarkhanova, I.G.; Vasilyeva, M.S.; Yarovaya, T.P.; Ustinov, A.Y.; Vyaliy, I.E.; Kuryavyi, V.G. Plasma electrolytic formation of TiO2-VOx-MoOy-P2O5 coatings on titanium and their application as catalysts for the oxidation of S- and N-containing substances. Mater. Chem. Phys. 2024, 311, 128520. [Google Scholar] [CrossRef]
- Maciej, A.; Marny, M.; Sowa, M.; Blacha-Grzechnik, A.; Stolarczyk, A.; Michalska, J.; Simka, W. Microstructure and corrosion resistance of Ti and Ti-40Nb alloy modified by plasma electrolytic oxidation in tricalcium phosphate suspension. Electrochim. Acta 2023, 468, 143185. [Google Scholar] [CrossRef]
- White, L.; Koo, Y.; Neralla, S.; Sankar, J.; Yun, Y. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO). Mater. Sci. Eng. B 2016, 208, 39–46. [Google Scholar] [CrossRef]
- Farhadi, S.S.; Aliofkhazraei, M.; Barati Darband, G.; Abolhasani, A.; Sabour Rouhaghdam, A. Wettability and Corrosion Behavior of Chemically Modified Plasma Electrolytic Oxidation Nanocomposite Coating. J. Mater. Eng. Perform. 2017, 26, 4797–4806. [Google Scholar] [CrossRef]
- Yavari, S.A.; Necula, B.S.; Fratila-Apachitei, L.E.; Duszczyk, J.; Apachitei, I. Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys. Surf. Eng. 2016, 32, 411–417. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, Z.; Chen, Y.; Li, H.; Zhao, Q.; Xu, Y.; Zhan, H.; Hao, J.; Zhao, Y. One-step plasma electrolytic oxidation with Graphene oxide for Ultra-low porosity Corrosion-resistant TiO2 coatings. Appl. Surf. Sci. 2022, 594, 153477. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Qin, H.; Wu, M.; Yan, Z. Formation process of in situ oxide coatings with high porosity using one-step plasma electrolytic oxidation. Appl. Surf. Sci. 2016, 366, 432–438. [Google Scholar] [CrossRef]
- Alves, S.A.; Bayón, R.; Igartua, A.; Saénz de Viteri, V.; Rocha, L.A. Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants. Lubr. Sci. 2014, 26, 500–513. [Google Scholar] [CrossRef]
- Laurindo, C.A.H.; Bemben, L.M.; Torres, R.D.; Mali, S.A.; Gilbert, J.L.; Soares, P. Influence of the annealing treatment on the tribocorrosion properties of Ca and P containing TiO2 produced by plasma electrolytic oxidation. Mater. Technol. 2016, 31, 719–725. [Google Scholar] [CrossRef]
- Sukuroglu, E.E.; Farzi, H.; Sukuroglu, S.; Totik, Y.; Arslan, E.; Efeoglu, I. The effect of plasma electrolytic oxidation process parameters on the tribocorrosion properties of TiO2 coatings. J. Adhes. Sci. Technol. 2017, 31, 1361–1373. [Google Scholar] [CrossRef]
- He, B.; Xin, C.; Chen, Y.; Xu, Y.; Zhao, Q.; Hou, Z.; Tang, Y.; Liu, H.; Su, X.; Zhao, Y. Biological performance and tribocorrosion behavior of in-situ synthesized CuxO/TiO2 coatings. Appl. Surf. Sci. 2022, 600, 154096. [Google Scholar] [CrossRef]
- Krella, A. Resistance of PVD Coatings to Erosive and Wear Processes: A Review. Coatings 2020, 10, 921. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef]
- Inspektor, A.; Salvador, P.A. Architecture of PVD coatings for metalcutting applications: A review. Surf. Coat. Technol. 2014, 257, 138–153. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.J.G.; Porteiro, J.; Míguez, J.L.; Pinto, G.; Fernandes, L. On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manuf. 2018, 17, 746–757. [Google Scholar] [CrossRef]
- Oskirko, V.O.; Goncharenko, I.M.; Arestov, S.I.; Semenov, V.A.; Azhgikhin, M.I.; Pavlov, A.P.; Solovyev, A.A. Short pulse-enhanced vacuum arc evaporation. Vacuum 2022, 205, 111459. [Google Scholar] [CrossRef]
- Staszuk, M.; Pakuła, D.; Chladek, G.; Pawlyta, M.; Pancielejko, M.; Czaja, P. Investigation of the structure and properties of PVD coatings and ALD + PVD hybrid coatings deposited on sialon tool ceramics. Vacuum 2018, 154, 272–284. [Google Scholar] [CrossRef]
- Bobzin, K.; Brögelmann, T.; Gillner, A.; Kruppe, N.C.; He, C.; Naderi, M. Laser-structured high performance PVD coatings. Surf. Coat. Technol. 2018, 352, 302–312. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Möbius, M.P. Triboactive CrAlN + MoWS coatings deposited by pulsed arc PVD. Surf. Coat. Technol. 2023, 475, 130178. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Carlet, M.; Schulze, C. From cathode to substrate: Plasma diagnostics on high power pulsed magnetron sputtering deposition of titanium nitride. Thin Solid Film. 2022, 755, 139331. [Google Scholar] [CrossRef]
- Bai, X.; Xu, L.; Shi, X.; Ren, J.; Xu, L.; Wang, Q.; Li, B.; Liu, Z.; Zheng, C.; Fu, Q. Hydrothermal oxidation improves corrosion and wear properties of multi-arc ion plated titanium nitride coating for biological application. Vacuum 2022, 198, 110871. [Google Scholar] [CrossRef]
- Bello, M.; Shanmugan, S. Achievements in mid and high-temperature selective absorber coatings by physical vapor deposition (PVD) for solar thermal Application—A review. J. Alloys Compd. 2020, 839, 155510. [Google Scholar] [CrossRef]
- Vorobyova, M.; Biffoli, F.; Giurlani, W.; Martinuzzi, S.M.; Linser, M.; Caneschi, A.; Innocenti, M. PVD for Decorative Applications: A Review. Materials 2023, 16, 4919. [Google Scholar] [CrossRef]
- Navinšek, B. Improvement of cutting tools by TIN PVD hard coating. Mater. Manuf. Process. 1992, 7, 363–382. [Google Scholar] [CrossRef]
- Sathish, M.; Radhika, N.; Saleh, B. A critical review on functionally graded coatings: Methods, properties, and challenges. Compos. Part B Eng. 2021, 225, 109278. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Z.; Li, K.; Chen, Q.; Gong, F.; Chen, Y.; Feng, B.; Hu, S.; Chen, Y.; Han, B.; et al. Microstructure, wear and oxidation resistance of CrWN glass molding coatings synthesized by plasma enhanced magnetron sputtering. Vacuum 2020, 174, 109206. [Google Scholar] [CrossRef]
- Xie, Q.; Sun, G.; Fu, Z.; Kang, J.; Zhu, L.; She, D.; Lin, S. Comparative study of titanium carbide films deposited by plasma-enhanced and conventional magnetron sputtering at various methane flow rates. Ceram. Int. 2023, 49, 25269–25282. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.-W.; Gao, J.-B.; Zhao, Z.-W.; Guo, Y.-Y.; Xie, Z.-W.; Kelly, P. Effect of the filament discharge current on the microstructure and performance of plasma-enhanced magnetron sputtered TiN coatings. J. Alloys Compd. 2017, 725, 877–883. [Google Scholar] [CrossRef]
- El-Rahman, A.M.A.; Wei, R. A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti–Si–C–N nanocomposite coatings. Surf. Coat. Technol. 2014, 241, 74–79. [Google Scholar] [CrossRef]
- Choi, Y.H.; Huh, J.Y.; Baik, Y.J. Radial microstructural nonuniformity of boron nitride films deposited on a wafer scale substrate by unbalanced magnetron sputtering. Thin Solid Film. 2023, 769, 139753. [Google Scholar] [CrossRef]
- Rosaz, G.; Bartkowska, A.; Carlos, C.P.A.; Richard, T.; Taborelli, M. Niobium thin film thickness profile tailoring on complex shape substrates using unbalanced biased High Power Impulse Magnetron Sputtering. Surf. Coat. Technol. 2022, 436, 128306. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Q.; Yu, S.; Zhang, G. Development of latent fingermarks by unbalanced magnetron sputtering deposited ultra-thin metal film. Vacuum 2021, 194, 110577. [Google Scholar] [CrossRef]
- Shanker, G.; Prathap, P.; Srivatsa, K.M.K.; Singh, P. Effect of balanced and unbalanced magnetron sputtering processes on the properties of SnO2 thin films. Curr. Appl. Phys. 2019, 19, 697–703. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, F.; Zhang, M.; Wang, Q.; Zhou, Z. Structural, mechanical and tribocorrosion performances of CrMoSiN coatings with various Mo contents in artificial seawater. Appl. Surf. Sci. 2020, 525, 146629. [Google Scholar] [CrossRef]
- Challali, F.; Touam, T.; Bockelée, V.; Chauveau, T.; Chelouche, A.; Stephant, N.; Hamon, J.; Besland, M.-P. Comprehensive characterization of Al-doped ZnO thin films deposited in confocal radio frequency magnetron co-sputtering. Thin Solid Film. 2023, 780, 139947. [Google Scholar] [CrossRef]
- Aliasghari, S.; Avcu, E.; Skeldon, P.; Valizadeh, R.; Mingo, B. Abrasion resistance of a Nb3Sn magnetron-sputtered coating on copper substrates for radio frequency superconducting cavities. Mater. Des. 2023, 231, 112030. [Google Scholar] [CrossRef]
- Mian, M.S.; Nakano, T.; Okimura, K. Improvement of the uniformity of structural and electrical properties of transparent conductive Al-doped ZnO thin films by inductively coupled plasma-assisted radio frequency magnetron sputtering. Thin Solid Film. 2023, 769, 139752. [Google Scholar] [CrossRef]
- Stan, G.E.; Montazerian, M.; Shearer, A.; Stuart, B.W.; Baino, F.; Mauro, J.C.; Ferreira, J.M.F. Critical Advances in the Field of Magnetron Sputtered Bioactive Glass Thin-Films: An Analytical Review. Appl. Surf. Sci. 2023, 646, 158760. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Z.; Song, S.; Li, Y.; Lv, M.; Wu, Z.; Han, S. Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering. Vacuum 2008, 83, 257–260. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, Y.; Yuan, Z.; Li, J. Structure and tribocorrosion behavior of Ti/TiN multilayer coatings in simulated body fluid by arc ion plating. Surf. Coat. Technol. 2020, 403, 126399. [Google Scholar] [CrossRef]
- Cai, F.; Zhou, Q.; Chen, J.; Zhang, S. Effect of inserting the Zr layers on the tribo-corrosion behavior of Zr/ZrN multilayer coatings on titanium alloys. Corros. Sci. 2023, 213, 111002. [Google Scholar] [CrossRef]
- Behzadi, P.; Badr, M.; Zakeri, A. Duplex surface modification of pure Ti via thermal oxidation and gas nitriding: Preparation and electrochemical studies. Ceram. Int. 2022, 48, 34374–34381. [Google Scholar] [CrossRef]
- Kim, J.-I.; Lee, W.-Y.; Tokoroyama, T.; Umehara, N. Long-term low-friction of Ti-overcoated and-doped DLCs: Robustly developed carbonous transfer layer with titanium. Carbon 2023, 204, 268–283. [Google Scholar] [CrossRef]
- Łępicka, M.; Grądzka-Dahlke, M.; Zaborowska, I.; Górski, G.; Mosdorf, R. Recurrence analysis of coefficient of friction oscillations in DLC-coated and non-coated Ti6Al4V titanium alloy. Tribol. Int. 2022, 165, 107342. [Google Scholar] [CrossRef]
- Dhandapani, V.S.; Kang, K.-M.; Seo, K.-J.; Kim, C.-L.; Kim, D.-E. Enhancement of tribological properties of DLC by incorporation of amorphous titanium using magnetron sputtering process. Ceram. Int. 2019, 45, 11971–11981. [Google Scholar] [CrossRef]
- Bharathy, P.V.; Nataraj, D.; Chu, P.K.; Wang, H.; Yang, Q.; Kiran, M.S.R.N.; Silvestre-Albero, J.; Mangalaraj, D. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method. Appl. Surf. Sci. 2010, 257, 143–150. [Google Scholar] [CrossRef]
- Xu, Y.R.; Liu, H.D.; Chen, Y.M.; Yousaf, M.I.; Luo, C.; Wan, Q.; Hu, L.W.; Fu, D.J.; Ren, F.; Li, Z.G.; et al. In situ synthesized TiC–DLC nanocomposite coatings on titanium surface in acetylene ambient. Appl. Surf. Sci. 2015, 349, 93–100. [Google Scholar] [CrossRef]
- Hinüber, C.; Kleemann, C.; Friederichs, R.J.; Haubold, L.; Scheibe, H.J.; Schuelke, T.; Boehlert, C.; Baumann, M.J. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys. J. Biomed. Mater. Res. Part A 2010, 95A, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Arslan, E.; Totik, Y.; Efeoglu, I. The investigation of the tribocorrosion properties of DLC coatings deposited on Ti6Al4V alloys by CFUBMS. Prog. Org. Coat. 2012, 74, 768–771. [Google Scholar] [CrossRef]
- Manhabosco, T.M.; Müller, I.L. Tribocorrosion of Diamond-Like Carbon Deposited on Ti6Al4V. Tribol. Lett. 2009, 34, 229. [Google Scholar] [CrossRef]
- Sankar Kumar, A.; Jeeva, P.A.; Karthikeyan, S. Evaluation of wear resistance and microstructural properties of laser cladded martensitic and austenitic stainless steel. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Yang, H.; Shi, M.; Zhao, E.; Wang, Q.; Liu, H.; Hao, J. Microstructure evolution of laser cladded NiCrBSi coating assisted by an in-situ laser shock wave. J. Mater. Process. Technol. 2023, 321, 118132. [Google Scholar] [CrossRef]
- Li, R.; Feng, A.; Zhao, J.; Pan, X.; Zhang, G.; Zhu, Y.; Chen, C. Study on process optimization of WC-Ni60A cermet composite coating by laser cladding. Mater. Today Commun. 2023, 37, 107400. [Google Scholar] [CrossRef]
- Mohsan, A.U.H.; Zhang, M.; Wang, D.; Zhao, S.; Wang, Y.; Chen, C.; Zhang, J. State-of-the-art review on the Ultrasonic Vibration Assisted Laser Cladding (UVALC). J. Manuf. Process. 2023, 107, 422–446. [Google Scholar] [CrossRef]
- Sypniewska, J.; Szkodo, M. Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys&mdash: A Review. Coatings 2022, 12, 1371. [Google Scholar]
- Deng, C.; Yi, Y.; Jiang, M.; Hu, L.; Zhou, S. Microstructure and high-temperature resistance of Al2O3/CoNiCrAlY coatings by laser cladding. Ceram. Int. 2023, 49, 32885–32895. [Google Scholar] [CrossRef]
- Ding, H.; Cao, Y.; Hua, K.; Tong, Y.; Li, N.; Sun, L.; Li, X.; Wu, H.; Wang, H. Fretting wear resistance at ambient and elevated temperatures of 316 stainless steel improved by laser cladding with Co-based alloy/WC/CaF2 composite coating. Opt. Laser Technol. 2023, 163, 109428. [Google Scholar] [CrossRef]
- Wan, S.; Cui, X.; Liu, K.; Jin, G.; Wang, S.; Zhao, Y.; Li, J.; Yang, Y.; Guan, Y. Preparation of AlTiVNiCu/Cu–Al gradient functional coating via laser cladding for enhanced wear and corrosion resistance of MgLi alloy. Surf. Coat. Technol. 2023, 475, 130137. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, L.; Zhang, S.; Zhang, C.H.; Sun, X.Y.; Chen, H.T.; Bai, X.L.; Wu, C.L. Effect of synergistic cavitation erosion-corrosion on cavitation damage of CoCrFeNiMn high entropy alloy layer by laser cladding. Surf. Coat. Technol. 2023, 472, 129940. [Google Scholar] [CrossRef]
- Ding, H.; Yang, T.; Wang, W.; Zhu, Y.; Lin, Q.; Guo, J.; Xiao, Q.; Gan, L.; Liu, Q. Optimization and wear behaviors of 316L stainless steel laser cladding on rail material. Wear 2023, 523, 204830. [Google Scholar] [CrossRef]
- Ouyang, C.; Wang, R.; Zhao, C.; Wei, R.; Li, H.; Deng, R.; Bai, Q.; Liu, Y. Multi-layer laser cladding analysis and high-temperature oxidative wear behavior of cast iron with a low expansion coefficient. Surf. Coat. Technol. 2023, 474, 130079. [Google Scholar] [CrossRef]
- Obadele, B.A.; Andrews, A.; Olubambi, P.A.; Mathew, M.T.; Pityana, S. Tribocorrosion behaviour of laser cladded biomedical grade titanium alloy. Mater. Corros. 2015, 66, 1133–1139. [Google Scholar] [CrossRef]
- Zammit, A.; Attard, M.; Subramaniyan, P.; Levin, S.; Wagner, L.; Cooper, J.; Espitalier, L.; Cassar, G. Enhancing surface integrity of titanium alloy through hybrid surface modification (HSM) treatments. Mater. Chem. Phys. 2022, 279, 125768. [Google Scholar] [CrossRef]
- Sypniewska, J.; Szkodo, M.; Majkowska-Marzec, B.; Mielewczyk-Gryń, A. Effect of hybrid modification by ceramic layer formation in MAO process and laser remelting on the structure of titanium bio-alloy Ti13Nb13Zr. Ceram. Int. 2023, 49, 16603–16614. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Zhang, W.; Chen, Y.; Shan, D. Effect of power spinning and heat treatment on microstructure evolution and mechanical properties of duplex low-cost titanium alloy. J. Mater. Sci. Technol. 2023, 136, 121–139. [Google Scholar] [CrossRef]
- Czyrska-Filemonowicz, A.; Buffat, P.A.; Wierzchon, T. Microstructure and properties of hard layers formed by duplex surface treatment containing nickel and phosphorus on a titanium-base alloy. Scr. Mater. 2005, 53, 1439–1442. [Google Scholar] [CrossRef]
- Hamrahi, B.; Yarmand, B.; Massoudi, A. Improved in-vitro corrosion performance of titanium using a duplex system of plasma electrolytic oxidation and graphene oxide incorporated silane coatings. Surf. Coat. Technol. 2021, 422, 127558. [Google Scholar] [CrossRef]
- Padilha Fontoura, C.; Ló Bertele, P.; Machado Rodrigues, M.; Elisa Dotta Maddalozzo, A.; Frassini, R.; Silvestrin Celi Garcia, C.; Tomaz Martins, S.; Crespo, J.d.S.; Figueroa, C.A.; Roesch-Ely, M.; et al. Comparative Study of Physicochemical Properties and Biocompatibility (L929 and MG63 Cells) of TiN Coatings Obtained by Plasma Nitriding and Thin Film Deposition. ACS Biomater. Sci. Eng. 2021, 7, 3683–3695. [Google Scholar] [CrossRef] [PubMed]
- Cheraghali, B.; Ghasemi, H.M.; Abedini, M.; Yazdi, R. A functionalized duplex coating on CP-titanium for biomedical applications. Surf. Coat. Technol. 2020, 399, 126117. [Google Scholar] [CrossRef]
- ASTM F2129; Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices. ASTM International: West Conshohocken, PA, USA, 2019.
- Esfahani, E.A.; Bukuaghangin, O.; Banfield, S.; Vangölü, Y.; Yang, L.; Neville, A.; Hall, R.; Bryant, M. Surface engineering of wrought and additive layer manufactured Ti-6Al-4V alloy for enhanced load bearing and bio-tribocorrosion applications. Surf. Coat. Technol. 2022, 442, 128139. [Google Scholar] [CrossRef]
- Dong, M.; Zhu, Y.; Wang, C.; Shan, L.; Li, J. Structure and tribocorrosion properties of duplex treatment coatings of TiSiCN/nitride on Ti6Al4V alloy. Ceram. Int. 2019, 45, 12461–12468. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, W.; Wang, J.; Ju, J.; Li, J. A novel biomedical TiN-embedded TiO2 nanotubes composite coating with remarkable mechanical properties, corrosion, tribocorrosion resistance, and antibacterial activity. Ceram. Int. 2023, 49, 15629–15640. [Google Scholar] [CrossRef]
- Kao, W.H.; Su, Y.L.; Hsieh, Y.T. Effects of Duplex Nitriding and TiN Coating Treatment on Wear Resistance, Corrosion Resistance and Biocompatibility of Ti6Al4V Alloy. J. Mater. Eng. Perform. 2017, 26, 3686–3697. [Google Scholar] [CrossRef]
- Vella, K.A.; Buhagiar, J.; Cassar, G.; Pizzuto, M.M.; Bonnici, L.; Chen, J.; Zhang, X.; Huang, Z.; Zammit, A. The Effect of a Duplex Surface Treatment on the Corrosion and Tribocorrosion Characteristics of Additively Manufactured Ti-6Al-4V. Materials 2023, 16, 2098. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; Zhang, Y.; Liu, M.; Pang, Y.; Du, C. Enhanced corrosion and tribocorrosion properties of duplex TiN-MAO coating prepared on TC17 alloys. Surf. Coat. Technol. 2022, 444, 128662. [Google Scholar] [CrossRef]
- Hatem, A.; Lin, J.; Wei, R.; Torres, R.D.; Laurindo, C.; Soares, P. Tribocorrosion behavior of DLC-coated Ti-6Al-4V alloy deposited by PIID and PEMS+PIID techniques for biomedical applications. Surf. Coat. Technol. 2017, 332, 223–232. [Google Scholar] [CrossRef]
- Wei, R. Development of new technologies and practical applications of plasma immersion ion deposition (PIID). Surf. Coat. Technol. 2010, 204, 2869–2874. [Google Scholar] [CrossRef]
- Kong, W.; Li, K.; Hu, J. TEM Structure, Nanomechanical Property, and Adhesive Force of Magnetron-Sputtered Cr-DLC Coating on a Nitrided Ti6Al4V Alloy. J. Phys. Chem. C 2021, 125, 16733–16745. [Google Scholar]
Alloy Designation | Microstructure | Elastic Modulus E (GPa) | Yield Strength YS (MPa) | Ultimate Strength UTS (MPa) |
---|---|---|---|---|
CpTi | α | 105 | 485 | 580 |
Ti-3Al-2.5V | α | 118 | 550 | 620 |
Ti-2.5Al-2Zr-1Fe | α | 110 | 570 | 900 |
Ti-4Al-2V | α | 107 | 860 | 960 |
Ti-4Al-0.005B | α | 107 | 636 | 710 |
Ti-10V-2Fe-3Al | metastable β | 104 | 1063 | 1150 |
Ti-15V-3Cr-3Sn-3Al | metastable β | 80 | 742 | 785 |
Ti-15Mo-3Nb-0.3O | metastable β | 82 | 1020 | 1020 |
Ti-35Nb-5Ta-7Zr | metastable β | 55 | 530 | 590 |
Ti-35Nb-5Ta-7Zr-0.4O | metastable β | 66 | 976 | 1010 |
Ti-6Al-4V | α + β | 110 | 900 | 970 |
Ti-6Al-7Nb | α + β | 105 | 921 | 1024 |
Ti-6.5V-3.5Mo-1.5Zr-0.3Si | α + β | 110 | 900 | 1030 |
Ti-5Al-2.5Fe | α + β | 110 | 921 | 1024 |
Ti-13Nb-13Zr | α + β | 79 | 900 | 1030 |
Materials (Protective Layer) | Surface Treatment | Protective Layer Thickness [μm] | Environment | Counterpart | Load [N] | OCP Values (V) | Ecorr (V) | Icorr (A/cm2) | Friction Coefficient | Wear Coefficient [mm3/Nm] | Main Wear Mechanism | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fei Zhou [147] | Ti6Al4V | aerated artificial seawater | SiC Ball [8 mm] | 3 N | −0.8 | −0.53 | 1.86 × 10−5 | 0.23 | ||||
CrMoSiCN coatings | closed-field unbalanced magnetron sputtering | ~1 | −0.34 | −0.30 | 2.22 × 10−7 | 0.12 | three-body abrasion mechanism | |||||
Andre Hatem [148] | Ti6Al4V | phosphate-buffered saline (PBS) solution | Al2O3 Ball [6 mm] | 10 N | −0.95 | 7.4 × 10−6 | 0.4 | 2.61 × 10−4 | fatigue wear mechanism | |||
TiSiCN coatings | plasma-enhanced magnetron sputtering | 8–10 | −0.3 | 6.8 × 10−7 | 0.27 | 7.56 × 10−7 | silicon amorphous restrains the combined action of tribocorrosion | |||||
Lucia Mendizabal [149] | cp-Ti | PBS solution | Al2O3 Ball [10 mm] | 3 N | −1.07 | 0.58 | 4.9 × 10−8 | |||||
TaN | magnetron sputtering | 2.5 | −0.96 | 0.25 | 2.4 × 10−9 | |||||||
Jacek Grabarczyk [150] | Ti6Al4V | PBS solution | Al2O3 Ball | 10 N | −0.7 | 0.35 | 1.18 × 10−3 | mechanism of adhesive wear | ||||
DLC | magnetron sputtering | 1~1.5 | −0.1 | 0.08 | 4.8 × 10−6 | combination of adhesive and abrasive wear | ||||||
T.M. Manhabosco [151] | Ti6Al4V | PBS solution | Al2O3 Ball [5 mm] | 4 N | −0.8 | 6.2 × 10−7 | 0.3 | |||||
TiN, Ti2N | chemical heat treatment | ~1 | −0.4 | 5.8 × 10−5 | 0.45 | |||||||
B. Rahmatian [152] | Ti6Al4V | PBS solution | Al2O3 Ball [5 mm] | 15 N | −0.75 | −0.28 | 0.33 | 3 × 10−4 | ||||
TiB2, TiB | chemical heat treatment | ~7 | −0.6 | −0.1 | 0.37 | 1 × 10−5 | ||||||
Kai yuan Cheng [153] | Ti6Al4V | bovine-calf serum | Al2O3 Ball [14 mm] | 16 N | −1 | 0.556 | 3.8 × 10−8 | 0.45 | mechanism of adhesive wear | |||
TiC, TiO | chemical heat treatment | −0.15 | 0.466 | 7.18 × 10−7 | 0.18 | lubrication mechanism | ||||||
K.M. Li [154] | Ti6Al4V | HF + HNO3 corrosion solution | Al2O3 Ball [9 mm] | 5 N | −1 | −0.86 | 1.1 × 10−5 | 0.5 | ||||
TiN | chemical heat treatment | 65 | −0.6 | 4.3 × 10−6 | 0.25 | |||||||
I. Çaha [155] | cp-Ti | 0.9 wt.% NaCl | Al2O3 Ball [10 mm] | 1 N | −0.4 | −0.371 | 1.37 × 10−6 | 0.4 | 5.2 × 10−7 | combination of abrasive and adhesive wear | ||
TiN | chemical heat treatment | 0.3 | −0.3 | 0.009 | 7 × 10−8 | 0.6 | 7.4 × 10−8 | abrasive and adhesive wear, fatigue wear | ||||
R. Bayón [156] | Ti6Al4V | PBS solution | Al2O3 Ball [10 mm] | 5 N | −0.9 | 0.47 | 0.74 | corrosion–abrasion combination | ||||
DLC | arc ion plating | 3.03~3.86 | −0.06 | 0.18 | 4.4 × 10−4 | |||||||
Yue Wang [157] | Ti6Al4V | artificial seawater | ZrO2 [6 mm] | 5 N | −0.27 | 4.03 × 10−7 | 3.2 × 10−7 | |||||
TiSiCN | arc ion plating | 2.21~2.47 | −0.225 | −1.95 | 3.65 × 10−7 | 0.15 | 3.08 × 10−7 | sliding friction transforming to rolling friction | ||||
Yebiao Zhu [158] | Ti6Al4V | artificial seawater | SiC [6 mm] | 5 N | −0.66 | 9.4 × 10−6 | 2.46 × 10−4 | |||||
TiSiN/Ag | arc ion plating | 2 | −0.33 | 1.2 × 10−6 | 4 × 10−6 | |||||||
Minpeng Dong [159] | Ti6Al4V | artificial seawater | SiC [6 mm] | 5 N | ||||||||
TiSiCN/Ag | arc ion plating | 1.905~2.196 | −0.04 | −0.19 | 1.47 × 10−6 | |||||||
M. Faze [160] | Ti6Al4V | 0.9 wt.% NaCl | SiC [7 mm] | 5 N | −0.8 | −0.265 | 3.16 × 10−8 | 6.67 × 10−8 | ||||
TiO2 | PEO | 0.3 | 0.315 | 1.38 × 10−8 | 2.16 × 10−8 | |||||||
V. Sáenz de Viteri [161] | Ti6Al4V | PBS solution | Al2O3 Ball [10 mm] | 3 N | −0.357 | 0.472 | abrasive wear | |||||
Ca,I,P-TiO2 | PEO | 3.1~4.89 | −0.001 | 0.744 | adhesive wear | |||||||
You Zuo [162] | Ti6Al4V | 3.5 wt.% NaCl | Al2O3 Ball [6 mm] | 2 N | −0.1 | −0.25 | 6.27 × 10−9 | 0.3 | ||||
graphene oxide-TiO2 | PEO | 6.1 | 0.4 | 0.35 | 2.28 × 10−8 | 0.35 | ||||||
Hongwei Zhang [163] | Ti6Al4V | 3.5 wt.% NaCl | Si3N4 [6.35 mm] | 5 N | −0.72 | −0.9 | 6 × 10−5 | 0.4 | ||||
TiN + TiB | laser cladding technology | −0.2 | −0.6 | 2.6 × 10−5 | 0.55 |
Environment | Load [N] | Counterpart (Diameter) [mm] | Materials (Protective Layer) | Surface Treatment | OCP Values (V) | Ecorr (V) | Icorr (A/cm2) | Friction Coeffcient | Protective Layer Thickness [μm] | |
---|---|---|---|---|---|---|---|---|---|---|
B. Cheraghali [276] | PBS solution (Reference standards: ASTM F2129 America [277]) | 1.5 | Al2O3 [8 mm] | CP-Ti | −0.36 | 7.5 × 10−8 | 0.4 | |||
oxygen diffusion layers | thermal oxidation | −0.23 | 2.9 × 10−8 | 0.5 | 70 ± 5 | |||||
TiO2 | PEO, thermal oxidation | −0.03 | 2.4 × 10−9 | 0.4 | 2.3 ± 0.3 | |||||
Erfan Abedi Esfahani [278] | 25% foetal bovine serum diluted in PBS electrolyte | 5 | Ti6Al4V [25 mm] | Ti6Al4V | −0.2 | 0.15 | 1.5 × 10−9 | |||
oxygen diffusion layers, TiN [25 mm] | oxygen diffusion layers, TiN | plasma oxidation, plasma nitriding, electron-beam plasma-assisted PVD | −0.1 | −0.05 | 6 × 10−10 | 35~45 diffusion layer 3~6 TiN layer | ||||
Minpeng Dong [279] | Seawater at 18 ± 3 °C | 5 | SiC [5 mm] | Ti6Al4V | −0.83 | −0.58 | 1.9 × 10−5 | 0.38 | ||
TiSiCN | multi-arc ion plating | −0.02 | −0.12 | 1.1 × 10−6 | 0.28 | 2.8 | ||||
TiSiCN, TiN, Ti2N | multi-arc ion plating + gas nitriding | 0 | −0.13 | 1.7 × 10−6 | 0.25 | 50 µm diffusion layers | ||||
Chunlei Zhao [280] | PBS solution (ASTM F2129) | 2 | SiC [6 mm] | Ti6Al4V | −0.8 | −0.6 | 2.4 × 10−5 | 0.4~0.46 | ||
TiN | multi-arc ion plating | −0.05 | −0.16 | 1.1 × 10−6 | 0.3~0.32 | 5.6 | ||||
TiN to embed TiO2 nanotube coatings | multi-arc ion plating, electrochemical anodization | 0.1 | −0.02 | 3 × 10−7 | 0.18~0.26 | 5.6 | ||||
Jacek Grabarczyk [150] | PBS solution (ASTM F2129) | 2 | Al2O3 [5 mm] | Ti6Al4V | −0.7 | 0.3~0.4 | ||||
DLC layers | magnetron sputtering | −0.1 | 0.1 | 1~1.5 DLC layers | ||||||
oxygen compound layers | plasma oxidation | −0.7 | 0.4~0.7 | |||||||
oxygen compound layers, DLC layers | plasma oxidation, magnetron sputtering | 0 | 0.1 | 1~1.5 DLC layers | ||||||
carbon compound layers | gas carburizing | −0.3 | 0.5~0.6 | |||||||
carbon compound layers, DLC layers | gas carburizing, magnetron sputtering | −0.3~ −0.45 | 0.1~0.4 | 0.5~1.5 DLC layers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, Z.; He, Y. Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review. Materials 2024, 17, 65. https://doi.org/10.3390/ma17010065
Li Y, Zhou Z, He Y. Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review. Materials. 2024; 17(1):65. https://doi.org/10.3390/ma17010065
Chicago/Turabian StyleLi, Yang, Zelong Zhou, and Yongyong He. 2024. "Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review" Materials 17, no. 1: 65. https://doi.org/10.3390/ma17010065
APA StyleLi, Y., Zhou, Z., & He, Y. (2024). Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review. Materials, 17(1), 65. https://doi.org/10.3390/ma17010065