Effects of Multidimensional Carbon-Based Nanomaterials on the Low-Carbon and High-Performance Cementitious Composites: A Critical Review
Abstract
:1. Introduction
2. Zero-Dimension Nanocarbon Material
2.1. Fullerenes
2.2. Manufacturing Process
2.3. Mechanical Properties
3. One-Dimension Nanocarbon Material
3.1. Carbon Nanotubes
3.2. Manufacturing Process
3.3. Mechanical Properties
4. Two-Dimension Nanocarbon Material
4.1. Graphene
4.2. Manufacturing Process
4.3. Mechanical Properties
Serial Number | Compressive Strength | Flexural Strength | Tensile Strength | Water/ Binder | Refs. | |||
---|---|---|---|---|---|---|---|---|
GO (wt%) | Increase (%) | GO (wt%) | Increase (%) | GO (wt%) | Increase (%) | |||
1 | 0.01 | 5.16 | 0.03 | 21.86 | - | - | 0.35 | [95] |
2 | 0.01 | 13.4 | 0.01 | 51.7 | 0.01 | 47 | 0.367 | [90] |
3 | 0.01 | 29 | - | - | 0.01 | 26 | 0.5 | [96] |
4 | 0.02 | 23.2 | - | - | 0.04 | 38.5 | 0.43 | [97] |
5 | 0.02 | 20 | 0.02 | 32 | - | - | 0.5 | [98] |
6 | 0.02 | 27.64 | - | - | - | - | 0.5 | [99] |
7 | 0.02 | 25 | 0.02 | 15 | 0.02 | 15 | 0.4 | [100] |
8 | 0.02 | 25.9 | 0.02 | 14.8 | 0.02 | 18 | 0.4 | [101] |
9 | 0.022 | 34.1 | 0.022 | 34 | - | - | 0.4 | [102] |
10 | 0.022 | 27 | 0.022 | 26 | - | - | 0.42 | [103] |
11 | 0.022 | 25.6 | - | - | - | - | 0.29 | [104] |
12 | 0.022 | 25.8 | - | - | - | - | 0.36 | [104] |
13 | 0.022 | 24.6 | - | - | - | - | 0.45 | [105] |
14 | 0.025 | 14.9 | 0.025 | 23.6 | 0.025 | 15.2 | 0.5 | [106] |
15 | - | - | 0.03 | 13.7 | - | - | 0.43 | [107] |
16 | 0.03 | 38.9 | 0.03 | 60.7 | 0.03 | 78.6 | 0.367 | [90] |
17 | 0.03 | 20.3 | 0.03 | 32 | - | - | 0.5 | [108] |
18 | - | - | 0.03 | 77.7 | - | - | 0.36 | [109] |
19 | 0.03 | 12.4 | 0.03 | 12.08 | - | - | 0.4 | [110] |
20 | 0.03 | 45.1 | - | - | 0.03 | 60.7 | 0.37 | [111] |
21 | 0.03 | 30 | 0.03 | 18.7 | 0.45 | [91] | ||
22 | 0.03 | 31 | 0.03 | 18 | 0.45 | [112] | ||
23 | 0.03 | 28 | - | - | - | - | 0.36 | [113] |
24 | 0.04 | 13.4 | - | - | 0.04 | 9.9 | 0.4 | [114] |
25 | 0.04 | 44 | - | - | - | - | 0.38 | [115] |
26 | 0.04 | 40.41 | - | - | - | - | 0.4 | [116] |
27 | 0.04 | 29.3 | 0.04 | 15 | 0.04 | 15 | 0.4 | [117] |
28 | 0.04 | 42.2 | 0.04 | 30.5 | 0.04 | 36.6 | 0.367 | [90] |
29 | 0.04 | 46.34 | - | - | - | - | 0.5 | [99] |
30 | 0.04 | 47.61 | - | - | - | - | 0.36 | [109] |
31 | 0.044 | 29.5 | - | - | - | - | 0.5 | [104] |
32 | 0.05 | 24.4 | 0.05 | 70.5 | - | - | 0.37 | [118] |
33 | 0.05 | 32 | - | - | - | - | 0.5 | [119] |
34 | 0.05 | 43.2 | 0.05 | 106.4 | - | - | 0.37 | [111] |
35 | 0.05 | 47.9 | 0.05 | 30.2 | 0.05 | 35.8 | 0.367 | [90] |
36 | 0.05 | 24.4 | 0.05 | 70.5 | - | - | 0.37 | [120] |
37 | 0.05 | 32 | - | - | - | - | 0.5 | [12] |
38 | 0.05 | 11.05 | 0.05 | 16.1 | - | - | 0.4 | [110] |
39 | 0.06 | 29.5 | 0.06 | 30.7 | - | - | 0.3 | [121] |
40 | 0.1 | 13 | 0.01 | 23.4 | - | - | 0.48 | [122] |
41 | 0.1 | 77.7 | 0.1 | 77.7 | 0.1 | 37.5 | 0.485 | [123] |
42 | 0.125 | 40 | - | - | - | - | 0.45 | [124] |
43 | 0.125 | 35.1 | - | - | 0.125 | 96 | 0.45 | [125] |
44 | 0.125 | 110 | - | - | - | - | 0.45 | [126] |
45 | 0.2 | 16.4 | 0.2 | 41.3 | - | - | 0.66 | [127] |
46 | 0.5 | 126.6 | - | - | - | - | 0.3 | [128] |
47 | 0.5 | 126.6 | - | - | - | - | 0.3 | [129] |
48 | 1.0 | 77.8 | - | - | - | - | 0.45 | [126] |
49 | 1.0 | 63 | - | - | - | - | 0.45 | [130] |
50 | 1.0 | 77.3 | - | - | 1.0 | 15 | - | [131] |
51 | 1.0 | 86 | - | - | 1.0 | 15 | 0.45 | [96] |
52 | - | - | - | - | 1.5 | 48 | 0.4 | [2] |
53 | - | - | 1.5 | 51.2 | - | - | 0.3 | [132] |
5. Three-Dimension Nanocarbon Material
5.1. Graphite
5.2. Manufacturing Process
5.3. Mechanical Properties
6. Overall Assessment
6.1. Assessment of Property
6.2. Analyses of Mechanism
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, B.; Wang, Y.; Dong, S.; Zhang, L.; Ding, S.; Yu, X.; Ou, J. Smart concretes and structures: A review. J. Intell. Mater. Syst. Struct. 2015, 26, 1303–1345. [Google Scholar] [CrossRef]
- Babak, F.; Abolfazl, H.; Alimorad, R.; Parviz, G. Preparation and mechanical properties of graphene oxide: Cement nanocomposites. Sci. World J. 2014, 2014, 276323. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W. Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Han, B.; Sun, S.; Ding, S.; Zhang, L.; Yu, X.; Ou, J. Review of nanocarbon-engineered multifunctional cementitious composites. Compos. Part A Appl. Sci. Manuf. 2015, 70, 69–81. [Google Scholar] [CrossRef]
- Han, B.; Zhang, L.; Zeng, S.; Dong, S.; Yu, X.; Yang, R.; Ou, J. Nano-core effect in nano-engineered cementitious composites. Compos. Part A Appl. Sci. Manuf. 2017, 95, 100–109. [Google Scholar] [CrossRef]
- Khitab, A.; Tausif Arshad, M. Nano construction materials. Rev. Adv. Mater. Sci. 2014, 38, 181–189. [Google Scholar]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater. 2011, 25, 582–590. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Wan, X.; Huang, Y.; Chen, Y. Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 2012, 45, 598–607. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Han, B.; Cui, X.X.; Ou, J. Graphene-engineered cementitious composites: Small makes a big impact. Nanomater. Nanotechnol. 2017, 7, 1847980417742304. [Google Scholar] [CrossRef]
- Costa, F.N.; Ribeiro, D.V. Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). J. Clean. Prod. 2020, 276, 123302. [Google Scholar] [CrossRef]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.C.; Kumar, R. Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2008, 2, 15–24. [Google Scholar]
- Dinadayalane, T.C.; Leszczynski, J. Remarkable diversity of carbon–carbon bonds: Structures and properties of fullerenes, carbon nanotubes, and graphene. Struct. Chem. 2010, 21, 1155–1169. [Google Scholar] [CrossRef]
- Zewail, A.H. Femtochemistry: Atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture). Angew. Chem. Int. Ed. 2000, 39, 2586–2631. [Google Scholar] [CrossRef]
- Diederich, F.; Whetten, R.L. Beyond C60: The higher fullerenes. Acc. Chem. Res. 1992, 25, 119–126. [Google Scholar] [CrossRef]
- Curl, R.F.; Smalley, R.E. Fullerenes. Sci. Am. 1991, 265, 54–63. [Google Scholar] [CrossRef]
- Schwerdtfeger, P.; Wirz, L.N.; Avery, J. The topology of fullerenes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 96–145. [Google Scholar] [CrossRef]
- Rao, A.M.; Dresselhaus, M.S. Nanostructured forms of carbon: An overview. Nanostructured Carbon for Advanced Applications. In Proceedings of the NATO Advanced Study Institute on Nanostructured Carbon for Advanced Applications Erice, Sicily, Italy, 19–31 July 2000; Volume 2001, pp. 3–24. [Google Scholar]
- Sheka, E.F.; Razbirin, B.S.; Nelson, D.K. Continuous symmetry of C60 fullerene and its derivatives. J. Phys. Chem. A 2011, 115, 3480–3490. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Srikanth, N.; Kong, L.B.; Zhou, K. Carbon nanomaterials in tribology. Carbon 2017, 119, 150–171. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Raimondo, M.; Barra, G.; Vertuccio, L.; Russo, S.; Lafdi, K.; Tucci, V.; Spinelli, G.; Lamberti, P. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology 2017, 28, 094001. [Google Scholar] [CrossRef] [PubMed]
- Araby, S.; Philips, B.; Meng, Q.; Ma, J.; Laoui, T.; Wang, C.H. Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos. Part B Eng. 2021, 212, 108675. [Google Scholar] [CrossRef]
- Kushnir, D.; Sandén, B.A. Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 2008, 12, 360–375. [Google Scholar] [CrossRef]
- Heidari, S.M.; Lee, E.; Cecil, B.; Anctil, A. Environmental, cost, and chemical hazards of using alternative green solvents for fullerene (C60) purification. Green Chem. 2023, 25, 4350–4361. [Google Scholar] [CrossRef]
- Withers, J.; Pan, C.; Loutfy, R.O. Fullerenes Prices: How Low Will They Be. In Proceedings of Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials; Electrochemical Society Inc.: Pennington NJ, USA, 1994; pp. 24–94. [Google Scholar]
- Charitidis, C.A.; Georgiou, P.; Koklioti, M.A.; Trompeta, A.F.; Markakis, V. Manufacturing nanomaterials: From research to industry. Manuf. Rev. 2014, 1, 11. [Google Scholar] [CrossRef]
- Sekkal, W.; Zaoui, A. Novel properties of nano-engineered cementitious materials with fullerene buckyballs. Cem. Concr. Compos. 2021, 118, 103960. [Google Scholar] [CrossRef]
- Anwar, A.; Mohammed, B.S.; Wahab, M.A.; Liew, M.S. Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial—A review. Dev. Built Environ. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Shen, L.; Sheng, D. Piezoresistive behaviours of carbon black cement-based sensors with layer-distributed conductive rubber fibres. Mater. Des. 2019, 182, 108012. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Wang, K.; Guo, Y.; Sheng, D.; Shah, S.P. Piezoresistivity enhancement of functional carbon black filled cement-based sensor using polypropylene fibre. Powder Technol. 2020, 373, 184–194. [Google Scholar] [CrossRef]
- Li, W.; Dong, W.; Shen, L.; Castel, A.; Shah, S.P. Conductivity and piezoresistivity of nano-carbon black (NCB) enhanced functional cement-based sensors using polypropylene fibres. Mater. Lett. 2020, 270, 127736. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.G.; Ou, J.P. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites. Cem. Concr. Compos. 2006, 28, 824–828. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Lu, N.; Qu, F.; Vessalas, K.; Sheng, D. Piezoresistive behaviours of cement-based sensor with carbon black subjected to various temperature and water content. Compos. Part B Eng. 2019, 178, 107488. [Google Scholar] [CrossRef]
- Li, W.; Qu, F.; Dong, W.; Mishra, G.; Shah, S.P. A comprehensive review on self-sensing graphene/cementitious composites: A pathway toward next-generation smart concrete. Constr. Build. Mater. 2022, 331, 127284. [Google Scholar] [CrossRef]
- Reales, O.A.M.; Toledo, F.R.D. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Constr. Build. Mater. 2017, 154, 697–710. [Google Scholar] [CrossRef]
- Niyogi, S.; Hamon, M.A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M.E.; Haddon, R.C. Single-walled carbon nanotubes. In Springer Handbook of Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–146. [Google Scholar]
- Kukovecz, Á.; Kozma, G.; Kónya, Z. Multi-walled carbon nanotubes. In Springer Handbook of Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2013; pp. 147–188. [Google Scholar]
- Zheng, M.; Jagota, A.; Semke, E.D.; Diner, B.A.; McLean, R.S.; Lustig, S.R.; Richardson, R.E.; Tassi, N.G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J. Carbon nanotube in different shapes. Mater. Today 2009, 12, 12–18. [Google Scholar] [CrossRef]
- Muhammad, S.; Xu, H.L.; Zhong, R.L.; Su, Z.M.; Al-Sehemi, A.G.; Irfan, A. Quantum chemical design of nonlinear optical materials by sp2-hybridized carbon nanomaterials: Issues and opportunities. J. Mater. Chem. C 2013, 1, 5439–5449. [Google Scholar] [CrossRef]
- Bekyarova, E.; Sarkar, S.; Wang, F.; Itkis, M.E.; Kalinina, I.; Tian, X.; Haddon, R.C. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene. Acc. Chem. Res. 2013, 46, 65–76. [Google Scholar] [CrossRef]
- Umadevi, D.; Panigrahi, S.; Sastry, G.N. Noncovalent interaction of carbon nanostructures. Acc. Chem. Res. 2014, 47, 2574–2581. [Google Scholar] [CrossRef]
- Healy, M.L.; Dahlben, L.J.; Isaacs, J.A. Environmental assessment of single-walled carbon nanotube processes. J. Ind. Ecol. 2008, 12, 376–393. [Google Scholar] [CrossRef]
- Monthioux, M.; Serp, P.; Caussat, B. Carbon nanotubes. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 193–247. [Google Scholar]
- Azam, M.A.; Zulkapli, N.N.; Nawi, Z.M.; Azren, N.M. Systematic review of catalyst nanoparticles synthesized by solution process: Towards efficient carbon nanotube growth. J. Sol-Gel Sci. Technol. 2015, 73, 484–500. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Durbach, S.; Coville, N.J. Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst. Nanomaterials 2017, 7, 284. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, J.Q.; Qian, W.Z.; Zhang, Y.Y.; Wei, F. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 2013, 9, 1237–1265. [Google Scholar] [CrossRef]
- Rahatwan, I.D.; Wulan, P.P.; Solahudin, M. Techno-economic analysis of pilot scale carbon nanotube production from LPG with Fe-Co-Mo/MgO catalyst in Indonesia. AIP Conf. Proc. 2020, 2230, 030013. [Google Scholar]
- Bharj, J.; Singh, S.; Chander, S.; Singh, R. Role of dispersion of multiwalled carbon nanotubes on compressive strength of cement paste. Int. J. Mater. Metall. Eng. 2014, 8, 340–343. [Google Scholar]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Luo, J.; Duan, Z.; Li, H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys. Status Solidi (A) 2009, 206, 2783–2790. [Google Scholar] [CrossRef]
- Kang, S.T.; Seo, J.Y.; Park, S.H. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Nasibulina, L.I.; Anoshkin, I.V.; Nasibulin, A.G.; Cwirzen, A.; Penttala, V.; Kauppinen, E.I. Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite. J. Nanomater. 2012, 2012, 169262. [Google Scholar] [CrossRef]
- Kang, S.T.; Seo, J.Y.; Park, S.H. The characteristics of CNT/cement composites with acid-treated MWCNTs. Adv. Mater. Sci. Eng. 2015, 2015, 308725. [Google Scholar] [CrossRef]
- Morsy, M.S.; Alsayed, S.H.; Aqel, M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 2011, 25, 145–149. [Google Scholar] [CrossRef]
- Kumar, S.; Kolay, P.; Malla, S.; Mishra, S. Effect of multiwalled carbon nanotubes on mechanical strength of cement paste. J. Mater. Civ. Eng. 2012, 24, 84–91. [Google Scholar] [CrossRef]
- Hamzaoui, R.; Guessasma, S.; Mecheri, B.; Eshtiaghi, A.M.; Bennabi, A. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes. Mater. Des. (1980–2015) 2014, 56, 60–68. [Google Scholar] [CrossRef]
- Kim, G.M.; Naeem, F.; Kim, H.K.; Lee, H.K. Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Compos. Struct. 2016, 136, 162–170. [Google Scholar] [CrossRef]
- Kim, H.K.; Nam, I.W.; Lee, H.K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos. Struct. 2014, 107, 60–69. [Google Scholar] [CrossRef]
- Nam, I.W.; Lee, H.K.; Jang, J.H. Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1110–1118. [Google Scholar] [CrossRef]
- Kim, G.M.; Nam, I.W.; Yang, B.; Yoon, H.N.; Lee, H.K.; Park, S. Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Compos. Struct. 2019, 227, 111244. [Google Scholar] [CrossRef]
- Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.M.; Duan, W.H. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 2015, 85, 212–220. [Google Scholar] [CrossRef]
- Luo, J.L.; Duan, Z.D.; Zhao, T.J.; Li, Q.Y. Effect of multi-wall carbon nanotube on fracture mechanical property of cement-based composite. Adv. Mater. Res. 2011, 146, 581–584. [Google Scholar] [CrossRef]
- Konsta, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Bianco, A.; Cheng, H.; Enoki, T.; Gogotsi, Y.; Hurt, R.H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C.R.; Tascon, J.M.D.; et al. All in the graphene family—A recommended nomenclature for two-dimensional carbon materials. Carbon 2013, 65, 1–6. [Google Scholar] [CrossRef]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Lambert, T.N.; Chavez, C.A.; ernandez-Sanchez, B.; Lu, P.; Bell, N.S.; Ambrosini, A. Synthesis and characterization of titania−graphene nanocomposites. J. Phys. Chem. C 2009, 113, 19812–19823. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K.A.J.N. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Huang, P.; Jing, L.; Zhu, H.; Gao, X. Diazonium functionalized graphene: Microstructure, electric, and magnetic properties. Acc. Chem. Res. 2013, 46, 43–52. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Zhang, Y.I.; Zhang, L.; Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Kumar, R.; Singh, D.P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016, 6, 64993–65011. [Google Scholar] [CrossRef]
- Manawi, Y.M.; Ihsanullah; Samara, A.; Al-Ansari, T.; Atieh, M.A. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 2018, 11, 822. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170. [Google Scholar] [CrossRef]
- Ouyang, L.; Cao, Z.; Wang, H.; Hu, R.; Zhu, M. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials—A review. J. Alloys Compd. 2017, 691, 422–435. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, Y.; Yu, J. Cobalt phosphide nanoparticles supported by vertically grown graphene sheets on carbon black with n-doping treatment as bifunctional electrocatalysts for overall water splitting. Energy Fuels 2023, 37, 19156–19165. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Xue, H.; Pang, H.; Xu, Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027. [Google Scholar] [CrossRef]
- de Souza, F.B.; Yao, X.; Gao, W.; Duan, W. Graphene opens pathways to a carbon-neutral cement industry. Sci. Bull. 2022, 67, 5–8. [Google Scholar] [CrossRef]
- Papanikolaou, I.; Arena, N.; Al-Tabbaa, A. Graphene nanoplatelet reinforced concrete for self-sensing structures—A lifecycle assessment perspective. J. Clean. Prod. 2019, 240, 118202. [Google Scholar] [CrossRef]
- Sharma, K.R. Graphene Nanomaterials; Momentum Press: New York, NY, USA, 2014. [Google Scholar]
- Wu, T.; Zhang, X.F.; Yuan, Q.; Xue, J.; Lu, G.; Liu, Z.; Wang, H.; Wang, H.; Ding, F.; Yu, Q.; et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 2016, 15, 43–47. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Qiu, L.; Zhuang, J.; Zhang, L.; Wang, H.; Liao, C.; Song, H.; Qiao, R.; Gao, P.; et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930–935. [Google Scholar] [CrossRef]
- Wu, X.; Zhong, G.; D’Arsié, L.; Sugime, H.; Esconjauregui, S.; Robertson, A.W.; Robertson, J. Growth of continuous monolayer graphene with millimeter-sized domains using industrially safe conditions. Sci. Rep. 2016, 6, 21152. [Google Scholar] [CrossRef]
- Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 2013, 49, 121–127. [Google Scholar] [CrossRef]
- Lv, S.; Ting, S.; Liu, J.; Zhou, Q. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. CrystEngComm 2014, 16, 8508–8516. [Google Scholar] [CrossRef]
- Pan, Z.; Wenhui, D.U.A.N.; Li, D.; Collins, F. Graphene Oxide Reinforced Cement and Concrete. WO2013096990A1, 4 July 2013. [Google Scholar]
- Jiang, W.; Li, X.; Lv, Y.; Zhou, M.; Liu, Z.; Ren, Z.; Yu, Z. Cement-based materials containing graphene oxide and polyvinyl alcohol fiber: Mechanical properties, durability, and microstructure. Nanomaterials 2018, 8, 638. [Google Scholar] [CrossRef]
- Uygunoğlu, T.; Şimşek, B.; Ceran, Ö.B.; Eryeşil, Ö. Novel hybrid fiber reinforced mortar production using polyvinyl alcohol with a blend of graphene oxide and silver nanoparticles. J. Build. Eng. 2021, 44, 102641. [Google Scholar] [CrossRef]
- Peng, H.; Ge, Y.; Cai, C.S.; Zhang, Y.; Liu, Z. Mechanical properties and microstructure of graphene oxide cement-based composites. Constr. Build. Mater. 2019, 194, 102–109. [Google Scholar] [CrossRef]
- Anwar, A.; Liu, X.; Zhang, L. Nano-cementitious composites modified with graphene oxide—A review. Thin-Walled Struct. 2023, 183, 110326. [Google Scholar] [CrossRef]
- Bhatrola, K.; Maurya, S.K.; Kothiyal, N.C. An updated review on scientometric analysis and physico-mechanical performance of nanomaterials in cementitious composites. Structures 2023, 58, 105421. [Google Scholar] [CrossRef]
- Cao, M.L.; Zhang, H.X.; Zhang, C. Effect of graphene on mechanical properties of cement mortars. J. Cent. South Univ. 2016, 23, 919–925. [Google Scholar] [CrossRef]
- Chintalapudi, K.; Pannem, R.M.R. The effects of graphene oxide addition on hydration process, crystal shapes, and microstructural transformation of Ordinary Portland Cement. J. Build. Eng. 2020, 32, 101551. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Pan, S.; Cui, X.; Corr, D.J.; Shah, S.P. Effect of graphene oxide on the hydration and microstructure of fly ash-cement system. Constr. Build. Mater. 2019, 198, 106–119. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Chuah, S.; Li, W.; Liu, Y.; Duan, W.H.; Li, Z. Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste. Compos. Part A Appl. Sci. Manuf. 2017, 100, 1–8. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.; Ge, C.; Li, Q.; Guo, L.; Shu, X.; Liu, J. Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites. Compos. Part B Eng. 2017, 113, 308–316. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.; Ge, C.; Li, Q.; Guo, L.; Shu, X.; Liu, J. Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Constr. Build. Mater. 2016, 113, 470–478. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.; Liu, Y.; Zhao, Y.; Chen, Z.; Zhang, Y.; Guo, L.; Shu, X.; Liu, J. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites. Constr. Build. Mater. 2018, 190, 150–163. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.; Liu, Y.; Ge, C.; Guo, L.; Shu, X.; Liu, J. Synergistic effects of silica nanoparticles/polycarboxylate superplasticizer modified graphene oxide on mechanical behavior and hydration process of cement composites. RSC Adv. 2017, 7, 16688–16702. [Google Scholar] [CrossRef]
- Liu, J.; Fu, J.; Yang, Y.; Gu, C. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Constr. Build. Mater. 2019, 199, 1–11. [Google Scholar] [CrossRef]
- Sobolev, K.; Shah, S.P. Characterization of cement-based materials modified with graphene-oxide. In Nanotechnology in Construction: Proceedings of NICOM5; Springer International Publishing: Cham, Switzerland, 2015; pp. 259–264. [Google Scholar]
- Devi, S.C.; Khan, R.A. Effect of graphene oxide on mechanical and durability performance of concrete. J. Build. Eng. 2020, 27, 101007. [Google Scholar] [CrossRef]
- Indukuri, C.S.R.; Nerella, R. Enhanced transport properties of graphene oxide based cement composite material. J. Build. Eng. 2021, 37, 102174. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wu, Y.Y.; Deng, X.; Zheng, Z. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures. Constr. Build. Mater. 2021, 288, 123059. [Google Scholar] [CrossRef]
- Yu, L.; Wu, R. Using graphene oxide to improve the properties of ultra-high-performance concrete with fine recycled aggregate. Constr. Build. Mater. 2020, 259, 120657. [Google Scholar] [CrossRef]
- Abdullah, A.; Taha, M.; Rashwan, M.; Fahmy, M. Efficient use of graphene oxide and silica fume in cement-based composites. Materials 2021, 14, 6541. [Google Scholar] [CrossRef] [PubMed]
- Kashif Ur Rehman, S.; Ibrahim, Z.; Memon, S.A.; Aunkor, M.T.H.; Faisal Javed, M.; Mehmood, K.; Shah, S.M.A. Influence of graphene nanosheets on rheology, microstructure, strength development and self-sensing properties of cement based composites. Sustainability 2018, 10, 822. [Google Scholar] [CrossRef]
- Li, C.Y.; Chen, S.J.; Li, W.G.; Li, X.Y.; Ruan, D.; Duan, W.H. Dynamic increased reinforcing effect of graphene oxide on cementitious nanocomposite. Constr. Build. Mater. 2019, 206, 694–702. [Google Scholar] [CrossRef]
- Sabziparvar, A.M.; Hosseini, E.; Chiniforush, V.; Korayem, A.H. Barriers to achieving highly dispersed graphene oxide in cementitious composites: An experimental and computational study. Constr. Build. Mater. 2019, 199, 269–278. [Google Scholar] [CrossRef]
- Chintalapudi, K.; Pannem, R.M.R. Enhanced strength, microstructure, and thermal properties of portland pozzolana fly ash-based cement composites by reinforcing graphene oxide nanosheets. J. Build. Eng. 2021, 42, 102521. [Google Scholar] [CrossRef]
- Lu, Z.; Hou, D.; Meng, L.; Sun, G.; Lu, C.; Li, Z. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Adv. 2015, 5, 100598–100605. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Lu, C.X.; Liu, B.W.; Zhang, K.; Li, C.Z. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Mater. 2015, 30, 349–356. [Google Scholar] [CrossRef]
- Kang, D.; Seo, K.S.; Lee, H.; Chung, W. Experimental study on mechanical strength of GO-cement composites. Constr. Build. Mater. 2017, 131, 303–308. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Panesar, D.K. Impact of graphene oxide and highly reduced graphene oxide on cement based composites. Constr. Build. Mater. 2019, 206, 71–83. [Google Scholar] [CrossRef]
- Lv, S.; Liu, J.; Sun, T.; Ma, Y.; Zhou, Q. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr. Build. Mater. 2014, 64, 231–239. [Google Scholar] [CrossRef]
- Abrishami, M.E.; Zahabi, V. Reinforcing graphene oxide/cement composite with NH2 functionalizing group. Bull. Mater. Sci. 2016, 39, 1073–1078. [Google Scholar] [CrossRef]
- Gholampour, A.; Kiamahalleh, M.V.; Tran, D.N.; Ozbakkaloglu, T.; Losic, D. Revealing the dependence of the physiochemical and mechanical properties of cement composites on graphene oxide concentration. RSC Adv. 2017, 7, 55148–55156. [Google Scholar] [CrossRef]
- Sharma, S.; Kothiyal, N.C. Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Constr. Build. Mater. 2016, 115, 256–268. [Google Scholar] [CrossRef]
- Sharma, S.; Susan, D.; Kothiyal, N.C.; Kaur, R. Graphene oxide prepared from mechanically milled graphite: Effect on strength of novel fly-ash based cementitious matrix. Constr. Build. Mater. 2018, 177, 10–22. [Google Scholar] [CrossRef]
- Kothiyal, N.C.; Sharma, S.; Mahajan, S.; Sethi, S. Characterization of reactive graphene oxide synthesized from ball–milled graphite: Its enhanced reinforcing effects on cement nanocomposites. J. Adhes. Sci. Technol. 2016, 30, 915–933. [Google Scholar] [CrossRef]
- Long, W.J.; Wei, J.J.; Ma, H.; Xing, F. Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cement composites. Nanomaterials 2017, 7, 407. [Google Scholar] [CrossRef]
- Qin, H.; Wei, W.; Hu, Y.H. Synergistic effect of graphene-oxide-doping and microwave-curing on mechanical strength of cement. J. Phys. Chem. Solids 2017, 103, 67–72. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.; Liu, Y.; Ge, C.; Chen, Z.; Guo, L.; Shu, X.; Liu, J. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution. Carbon 2018, 127, 255–269. [Google Scholar] [CrossRef]
- Sharma, S.; Kothiyal, N.C. Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties. RSC Adv. 2015, 5, 52642–52657. [Google Scholar] [CrossRef]
- Sharma, S.; Kothiyal, N.C.; Chitkara, M. Enhanced mechanical performance of cement nanocomposite reinforced with graphene oxide synthesized from mechanically milled graphite and its comparison with carbon nanotubes reinforced nanocomposite. RSC Adv. 2016, 6, 103993–104009. [Google Scholar] [CrossRef]
- Li, X.; Wei, W.; Qin, H.; Hu, Y.H. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement. J. Phys. Chem. Solids 2015, 85, 39–43. [Google Scholar] [CrossRef]
- Tamashausky, A.V. Graphite. Am. Ceram. Soc. Bull. 1998, 77, 102–104. [Google Scholar]
- García, P.G.; Ramírez-Aguilar, R.; Torres, M.; Franco-Urquiza, E.A.; May-Crespo, J.; Camacho, N. Mechanical and thermal behavior dependence on graphite and oxidized graphite content in polyester composites. Polymer 2018, 153, 9–16. [Google Scholar] [CrossRef]
- Tyler, P.M.I. Graphite; Department of Commerce, Bureau of Mines: Washington, DC, USA, 1929.
- James, D.K.; Tour, J.M. Graphene: Powder, flakes, ribbons, and sheets. Acc. Chem. Res. 2013, 46, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Dhakate, S.R.; Chauhan, N.; Sharma, S.; Tawale, J.; Singh, S.; Sahare, P.D.; Mathur, R.B. An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 2011, 49, 1946–1954. [Google Scholar] [CrossRef]
- Hansora, D.P.; Shimpi, N.G.; Mishra, S. Graphite to graphene via graphene oxide: An overview on synthesis, properties, and applications. JOM 2015, 67, 2855–2868. [Google Scholar] [CrossRef]
- Hod, O. Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. Chem. Theory Comput. 2012, 8, 1360–1369. [Google Scholar] [CrossRef]
- Coscia, U.; Palomba, M.; Ambrosone, G.; Barucca, G.; Cabibbo, M.; Mengucci, P.; De Asmundis, R.; Carotenuto, G. A new micromechanical approach for the preparation of graphene nanoplatelets deposited on polyethylene. Nanotechnology 2017, 28, 194001. [Google Scholar] [CrossRef] [PubMed]
- Umair, A.; Raza, T.Z.; Raza, H. Ultrathin pyrolytic carbon films on a magnetic substrate. Mater. Res. Express 2016, 3, 075601. [Google Scholar] [CrossRef]
- Nieto, A.; Bisht, A.; Lahiri, D.; Zhang, C.; Agarwal, A. Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev. 2017, 62, 241–302. [Google Scholar] [CrossRef]
- Ampah, A.D.; Pagone, E.; Salonitis, K. Life cycle assessment of graphene as heating element. Sustainable Design and Manufacturing 2019. In Proceedings of the 6th International Conference on Sustainable Design and Manufacturing (KES-SDM 19); Springer: Singapore, 2019; pp. 283–297. [Google Scholar]
- Pizza, A.; Metz, R.; Hassanzadeh, M.; Bantignies, J.L. Life cycle assessment of nanocomposites made of thermally conductive graphite nanoplatelets. Int. J. Life Cycle Assess. 2014, 19, 1226–1237. [Google Scholar] [CrossRef]
- Schulte, K. Production of CNTs and risks to health. In Carbon Nanotube Reinforced Composites: CNR Polymer Science and Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 103–123. [Google Scholar]
- Ahmad, F.; Qureshi, M.I.; Ahmad, Z. Influence of nano graphite platelets on the behavior of concrete with E-waste plastic coarse aggregates. Constr. Build. Mater. 2022, 316, 125980. [Google Scholar] [CrossRef]
- Sharma, S.; Kothiyal, N.C. Synergistic effect of zero-dimensional spherical carbon nanoparticles and one-dimensional carbon nanotubes on properties of cement-based ceramic matrix: Microstructural perspectives and crystallization investigations. Compos. Interfaces 2015, 22, 899–921. [Google Scholar] [CrossRef]
- Chougan, M.; Marotta, E.; Lamastra, F.R.; Vivio, F.; Montesperelli, G.; Ianniruberto, U.; Ghaffar, S.H.; Al-kheetan, M.J.; Bianco, A. High performance cementitious nanocomposites: The effectiveness of nano-Graphite (nG). Constr. Build. Mater. 2020, 259, 119687. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, Q.; Yu, Q.; Gao, R.; Tong, T. Experimental investigation on mechanical and piezoresistive properties of cementitious materials containing graphene and graphene oxide nanoplatelets. Constr. Build. Mater. 2016, 127, 565–576. [Google Scholar] [CrossRef]
- Yang, M.; Chen, G.; Cao, N.; Zhang, Y.; Wang, Y. Effect of graphenene nanoplatelets on microstructure and properties of cement mortar under simulated acid rain. IOP Conf. Ser. Mater. Sci. Eng. 2019, 631, 022036. [Google Scholar] [CrossRef]
- Ahmad, F.; Jamal, A.; Iqbal, M.; Alqurashi, M.; Almoshaogeh, M.; Al-Ahmadi, H.M.; Hussein, E.E. Performance evaluation of cementitious composites incorporating nano graphite platelets as additive carbon material. Materials 2021, 15, 290. [Google Scholar] [CrossRef]
- Trikkaliotis, D.G.; Mitropoulos, A.C.; Kyzas, G.Z. Low-cost route for top-down synthesis of over-and low-oxidized graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124928. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B 2021, 272, 115341. [Google Scholar] [CrossRef]
- Meng, T.; Hong, Y.; Wei, H.; Xu, Q. Effect of nano-SiO2 with different particle size on the hydration kinetics of cement. Thermochim. Acta 2019, 675, 127–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Fang, W.; Li, W.; Wang, P.; Khan, K.; Tang, Y.; Wang, T. Effects of Multidimensional Carbon-Based Nanomaterials on the Low-Carbon and High-Performance Cementitious Composites: A Critical Review. Materials 2024, 17, 2196. https://doi.org/10.3390/ma17102196
Gao X, Fang W, Li W, Wang P, Khan K, Tang Y, Wang T. Effects of Multidimensional Carbon-Based Nanomaterials on the Low-Carbon and High-Performance Cementitious Composites: A Critical Review. Materials. 2024; 17(10):2196. https://doi.org/10.3390/ma17102196
Chicago/Turabian StyleGao, Xiumei, Wujun Fang, Weiwen Li, Peng Wang, Kashan Khan, Yihong Tang, and Teng Wang. 2024. "Effects of Multidimensional Carbon-Based Nanomaterials on the Low-Carbon and High-Performance Cementitious Composites: A Critical Review" Materials 17, no. 10: 2196. https://doi.org/10.3390/ma17102196
APA StyleGao, X., Fang, W., Li, W., Wang, P., Khan, K., Tang, Y., & Wang, T. (2024). Effects of Multidimensional Carbon-Based Nanomaterials on the Low-Carbon and High-Performance Cementitious Composites: A Critical Review. Materials, 17(10), 2196. https://doi.org/10.3390/ma17102196