Effect of Sb Content on the Microstructure and Mechanical Properties of Eutectic SnPb Solder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solder Preparation
2.2. Microstructure Observation
2.3. Thermal and Mechanical Properties
3. Results
3.1. Characterization and Melting Properties of the As-Cast Solder
3.2. Tensile Properties of Solder
3.3. Creep Properties of Solder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, R.; Chen, S.; Feng, J.; Wang, S.; Hang, C.; Ding, Y.; Tian, Y. Mechanical properties degradation of Sn 37Pb solder joints caused by interfacial microstructure evolution under cryogenic temperature storage. Mater. Charact. 2023, 201, 112979. [Google Scholar] [CrossRef]
- Ji, X.; An, Q.; Xia, Y.; An, R.; Zheng, R.; Wang, C. Maximum shear stress-controlled uniaxial tensile deformation and fracture mechanisms and constitutive relations of Sn–Pb eutectic alloy at cryogenic temperatures. Mater. Sci. Eng. A 2021, 819, 141523. [Google Scholar] [CrossRef]
- Zhang, W.; Schwager, F. Effects of lead on tin whisker elimination—Efforts toward lead-free and whisker-free electrodeposition of tin. J. Electrochem. Soc. 2006, 153, C337–C343. [Google Scholar] [CrossRef]
- Xu, J.; Fu, Y.; Zhou, X.; Zhang, J.; Xue, S. Reliability of SnPbSb/Cu Solder Joint in the High-Temperature Application. Crystals 2022, 12, 1724. [Google Scholar] [CrossRef]
- Wu, X.; Sun, L.; Liu, Y.; Ye, Z.; Zhao, X.; Liu, Y. Preparation and performance of Sn-based composite solder joints by solid-liquid low-temperature solder bonding technology. J. Mater. Res. Technol. 2023, 24, 6378–6390. [Google Scholar] [CrossRef]
- Zarhanesh, N.; Sameezadeh, M.; Vaseghi, M. A novel thermal-gradient creep test to evaluate the creep Behavior of Sn-Pb eutectic alloy. Mater. High Temp. 2021, 38, 139–146. [Google Scholar] [CrossRef]
- Schoeller, H.; Bansal, S.; Knobloch, A.; Shaddock, D.; Cho, J. Effect of alloying elements on the creep behavior of high Pb-based solders. Mater. Sci. Eng. A 2011, 528, 1063–1070. [Google Scholar] [CrossRef]
- Elsukova, T.; Bol’Shanina, M.; Makogon, M.; Titova, K. Creep in lead alloys. II. Russ. Phys. J. 1973, 16, 1555–1558. [Google Scholar] [CrossRef]
- Elsukova, T.; Bol’Shanina, M.; Makogon, M.; Eliseeva, M. Creep of lead alloys. I. Russ. Phys. J. 1973, 16, 1254–1257. [Google Scholar]
- Yassin, A.; Reuben, R.; Saad, G.; Beshai, M.; Habib, S. Effect of annealing and microstructure on the creep behaviour of an Sn–10 wt% Sb alloy. Proc. Inst. Mech. Eng. Part L 1999, 213, 59–68. [Google Scholar]
- McCabe, R.J.; Fine, M.E. High creep resistance tin-based alloys for soldering applications. J. Electron. Mater. 2002, 31, 1276–1282. [Google Scholar] [CrossRef]
- Ren, G.; Collins, M. Effect of Sb additions on the creep behaviour of low temperature lead-free Sn–8Zn–3Bi solder alloy. Solder. Surf. Mt. Technol. 2020, 33, 159–169. [Google Scholar] [CrossRef]
- Yamauchi, A.; Kurose, M. Effect of Sb and Zn addition on the microstructures and tensile properties of Sn–Bi-based alloys. Materials 2022, 15, 884. [Google Scholar] [CrossRef] [PubMed]
- Fowler, H.N.; Puttur Lakshminarayana, S.A.; Lai, S.Y.; Tay, S.X.; Masaeng, A.; Subbarayan, G.; Blendell, J.E.; Handwerker, C.A. Effect of Sb and Ag Addition and Aging on the Microstructural Evolution, IMC Layer Growth, and Mechanical Properties of Near-Eutectic Sn-Bi Alloys. J. Electron. Mater. 2023, 53, 1284–1298. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.-d.; Qian, G.-t.; Zhou, J.; Xue, F. Effect of Sb content on properties of Sn—Bi solders. Trans. Nonferrous Met. Soc. China 2014, 24, 184–191. [Google Scholar] [CrossRef]
- Paixão, J.L.; Gomes, L.F.; Reyes, R.V.; Garcia, A.; Spinelli, J.E.; Silva, B.L. Microstructure characterization and tensile properties of directionally solidified Sn-52 wt% Bi-1wt% Sb and Sn-52wt% Bi-2wt% Sb alloys. Mater. Charact. 2020, 166, 110445. [Google Scholar] [CrossRef]
- Shafiq, I.; Chan, Y.C.; Wong, N.B.; Yung, W.K.C. Influence of small Sb nanoparticles additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. J. Mater. Sci. Mater. Electron. 2012, 23, 1427–1434. [Google Scholar] [CrossRef]
- Lee, H.T.; Yang, C.L.; Chen, M.H.; Li, C.S. Effect of Sb Addition on Microstructure and Shear Strength of Sn-Ag Solder Joints. Key Eng. Mater. 2004, 261–263, 501–506. [Google Scholar] [CrossRef]
- Lee, H.-T.; Hu, S.-Y.; Hong, T.-F.; Chen, Y.-F. The Shear Strength and Fracture Behavior of Sn-Ag-xSb Solder Joints with Au/Ni-P/Cu UBM. J. Electron. Mater. 2008, 37, 867–873. [Google Scholar] [CrossRef]
- Mahmudi, R.; Mahin-Shirazi, S. Effect of Sb addition on the tensile deformation behavior of lead-free Sn–3.5Ag solder alloy. Mater. Des. 2011, 32, 5027–5032. [Google Scholar] [CrossRef]
- Lee, H.-T.; Lin, H.-S.; Lee, C.-S.; Chen, P.-W. Reliability of Sn–Ag–Sb lead-free solder joints. Mater. Sci. Eng. A 2005, 407, 36–44. [Google Scholar] [CrossRef]
- Belyakov, S.A.; Coyle, R.J.; Arfaei, B.; Xian, J.W.; Gourlay, C.M. Microstructure and Damage Evolution During Thermal Cycling of Sn-Ag-Cu Solders Containing Antimony. J. Electron. Mater. 2020, 50, 825–841. [Google Scholar] [CrossRef]
- Tomlinson, W.; Bryan, N. The strength of brass/Sn-Pb-Sb solder joints containing 0 to 10% Sb. J. Mater. Sci. 1986, 21, 103–109. [Google Scholar] [CrossRef]
- Hu, X.W.; Li, S.M.; Gao, S.F.; Liu, L.; Fu, H.Z. Research on lamellar structure and microhardness in directionally solidified ternary Sn–40.5Pb–2.6Sb eutectic alloy. J. Alloys Compd. 2010, 493, 116–121. [Google Scholar] [CrossRef]
- Liu, S.; McDonald, S.; Sweatman, K.; Nogita, K. The effects of precipitation strengthening and solid solution strengthening on strain rate sensitivity of lead-free solders: Review. Microelectron. Reliab. 2018, 84, 170–180. [Google Scholar] [CrossRef]
- McCabe, R.J.; Fine, M.E. Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin. Metall. Mater. Trans. A 2002, 33, 1531–1539. [Google Scholar] [CrossRef]
- Schoeller, H.; Bansal, S.; Knobloch, A.; Shaddock, D.; Cho, J. Microstructure Evolution and the Constitutive Relations of High-Temperature Solders. J. Electron. Mater. 2009, 38, 802–809. [Google Scholar] [CrossRef]
- Mohamed, F.A.; Langdon, T.G. The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metall. 1974, 22, 779–788. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, Z.; Becker, K.; Wilde, J. Applying Anand model to represent the viscoplastic deformation behavior of solder alloys. J. Electron. Packag. 2001, 123, 247–253. [Google Scholar] [CrossRef]
- Bang, W.; Oh, K.; Jung, J.; Morris, J.; Hua, F. The correlation between stress relaxation and steady-state creep of eutectic Sn-Pb. J. Electron. Mater. 2005, 34, 1287–1300. [Google Scholar] [CrossRef]
- Kashyap, B.; Murty, G. Experimental constitutive relations for the high temperature deformation of a PbSn eutectic alloy. Mater. Sci. Eng. 1981, 50, 205–213. [Google Scholar] [CrossRef]
- Lam, S.; Arieli, A.; Mukherjee, A. Superplastic behavior of PbSn eutectic alloy. Mater. Sci. Eng. 1979, 40, 73–79. [Google Scholar] [CrossRef]
- Ye, X.; Li, Y.; Weng, J.; Cai, L.; Liu, C. Research status on strengthening mechanism of particle-reinforced metal matrix composites. J. Mater. Eng. 2018, 46, 28–37. [Google Scholar]
- Fujiwara, M.; Otsuka, M. Indentation creep of β-Sn and Sn–Pb eutectic alloy. Mater. Sci. Eng. A 2001, 319, 929–933. [Google Scholar] [CrossRef]
- Mahmudi, R.; Rezaee-Bazzaz, A.; Banaie-Fard, H.R. Investigation of stress exponent in the room-temperature creep of Sn–40Pb–2.5Sb solder alloy. J. Alloys Compd. 2007, 429, 192–197. [Google Scholar] [CrossRef]
- Mahmudi, R.; Rezaee-Bazzaz, A. Superplastic indentation creep of Sn–Pb–Sb peritectic. Mater. Lett. 2005, 59, 1705–1708. [Google Scholar] [CrossRef]
- Zhang, N.X.; Chinh, N.Q.; Kawasaki, M.; Huang, Y.; Langdon, T.G. Self-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion. Mater. Sci. Eng., A 2016, 666, 350–359. [Google Scholar] [CrossRef]
- Solomon, H. Creep, strain rate sensitivity and low cycle fatigue of 60/40 solder. Brazing Solder. 1986, 11, 68–75. [Google Scholar]
- Tomlinson, W.J.; Fullylove, A. Strength of tin-based soldered joints. J. Mater. Sci. 1992, 27, 5777–5782. [Google Scholar] [CrossRef]
- Mayo, M.; Nix, W. A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall. 1988, 36, 2183–2192. [Google Scholar] [CrossRef]
- Mostafa, M.M. Steady state creep characteristics of the eutectic Pb–Sb alloy. Phys. B 2004, 349, 56–61. [Google Scholar] [CrossRef]
- DING, Z.; SU, H. Dislocation configuration in DZ125 Ni-based superalloy after high temperature stress rupture. Acta Metall. Sin. 2011, 47, 47–52. [Google Scholar]
- Xu, S.; Jing, X.; Zhu, P.; Jin, H.; Paik, K.-W.; He, P.; Zhang, S. Equilibrium phase diagram design and structural optimization of SAC/Sn-Pb composite structure solder joint for preferable stress distribution. Mater. Charact. 2023, 206, 113389. [Google Scholar] [CrossRef]
- Grivas, D.; Murty, K.; Morris Jr, J. Deformation of Pb Sn eutectic alloys at relatively high strain rates. Acta Metall. 1979, 27, 731–737. [Google Scholar] [CrossRef]
- Mei, Z.; Morris, J.; Shine, M.; Summers, T. Effects of cooling rate on mechanical properties of near-eutectic tin-lead solder joints. J. Electron. Mater. 1991, 20, 599–608. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Hu, F.Q.; Song, Z.L.; Zhang, Z.F. Viscoplastic creep and microstructure evolution of Sn-based lead-free solders at low strain. Mater. Sci. Eng. A 2017, 701, 187–195. [Google Scholar] [CrossRef]
- Pan, D.; Dutta, I.; Jadhav, S.; Raiser, G.; Ma, S. Impression creep characterization of 90Pb-10Sn microelectronic solder balls at subsolvus and supersolvus temperatures. J. Electron. Mater. 2005, 34, 1040–1046. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, C.; Mingyu, L.; Han-Sur, B. Aging effects on fracture behavior of 63Sn37Pb eutectic solder during tensile tests under the SEM. Mater. Sci. Eng. A 2004, 384, 314–323. [Google Scholar] [CrossRef]
- Ashby, M.; Verrall, R. Diffusion-accommodated flow and superplasticity. Acta Metall. 1973, 21, 149–163. [Google Scholar] [CrossRef]
- Gu, T.; Gourlay, C.M.; Britton, T.B. Evaluating Creep Deformation in Controlled Microstructures of Sn-3Ag-0.5Cu Solder. J. Electron. Mater. 2018, 48, 107–121. [Google Scholar] [CrossRef]
Sn (wt.%) | Pb (wt.%) | Sb (wt.%) | |
---|---|---|---|
SnPb | 63.0 | 37.0 | 0 |
0.3 wt.% Sb | 62.8 | 36.9 | 0.3 |
1.7 wt.% Sb | 61.9 | 36.4 | 1.7 |
3.3 wt.% Sb | 60.9 | 35.8 | 3.3 |
5.0 wt.% Sb | 59.9 | 35.1 | 5.0 |
Tm (°C) | Tx (°C) | ΔTs (°C) | |
---|---|---|---|
SnPb | 183.3 | 159.3 | 3.2 |
0.3 wt.% Sb | 183.6 | 160.1 | 3.2 |
1.7 wt.% Sb | 186.1 | 164.6 | 4.6 |
3.3 wt.% Sb | 188.1 | 189.8 | 9.4 |
5.0 wt.% Sb | 188.5 | 189.8 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Chang, J.; Wu, X.; Ye, Z.-T.; Chen, W.; Xie, X. Effect of Sb Content on the Microstructure and Mechanical Properties of Eutectic SnPb Solder. Materials 2024, 17, 2233. https://doi.org/10.3390/ma17102233
Zhao X, Chang J, Wu X, Ye Z-T, Chen W, Xie X. Effect of Sb Content on the Microstructure and Mechanical Properties of Eutectic SnPb Solder. Materials. 2024; 17(10):2233. https://doi.org/10.3390/ma17102233
Chicago/Turabian StyleZhao, Xiuchen, Jiahui Chang, Xuefeng Wu, Zi-Ting Ye, Weiwei Chen, and Xiaochen Xie. 2024. "Effect of Sb Content on the Microstructure and Mechanical Properties of Eutectic SnPb Solder" Materials 17, no. 10: 2233. https://doi.org/10.3390/ma17102233
APA StyleZhao, X., Chang, J., Wu, X., Ye, Z. -T., Chen, W., & Xie, X. (2024). Effect of Sb Content on the Microstructure and Mechanical Properties of Eutectic SnPb Solder. Materials, 17(10), 2233. https://doi.org/10.3390/ma17102233