Enhancing Mechanical Properties and Microstructures of Mass-Manufactured Sand Concrete by Incorporating Granite Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mixture Proportion
2.2. Experimental Methods
2.2.1. Mechanical Properties Testing
2.2.2. Heat of Hydration Measurement
2.2.3. Autogenous Shrinkage Measurement
2.2.4. Pore Structure Analysis
2.2.5. Microstructure Characterization
3. Results
3.1. Mechanical Properties
3.1.1. Compressive Strength
3.1.2. Flexural Strength
3.2. Heat of Hydration
3.3. Autogenous Shrinkage
3.4. Microstructure Analysis
3.4.1. Pore Structure
3.4.2. SEM
3.4.3. XRD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Bao, S.; Zhang, Y. Recycling of granite powder and waste marble produced from stone processing for the preparation of architectural glass–ceramic. Constr. Build. Mater. 2022, 346, 128408. [Google Scholar] [CrossRef]
- Jia, L.; Huang, M.; Huang, M.; Luo, Y.; Zhang, X.; Liao, X.; Bao, S. Preparation of granite powder–based geopolymer by synergistic action of calcination and phosphoric acid. J. Am. Ceram. Soc. 2024, 107, 501–513. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H.; Ou, Z. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 2018, 181, 659–672. [Google Scholar] [CrossRef]
- Campos, H.; Klein, N.; Marques Filho, J. Proposed mix design method for sustainable high-strength concrete using particle packing optimization. J. Clean. Prod. 2020, 265, 121907. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Z.; Ni, C.; Shi, H.; Shen, X. Effects of limestone powder on the hydration and microstructure development of calcium sulphoaluminate cement under long-term curing. Constr. Build. Mater. 2019, 199, 688–695. [Google Scholar] [CrossRef]
- Moon, G.; Oh, S.; Jung, S.; Choi, Y. Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Constr. Build. Mater. 2017, 135, 129–136. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Tan, Y.; Kwan, A.; Li, L. Adding granite dust as paste replacement to improve durability and dimensional stability of mortar. Powder Technol. 2018, 333, 269–276. [Google Scholar] [CrossRef]
- Jain, K.; Sancheti, G.; Gupta, L. Durability performance of waste granite and glass powder added concrete. Constr. Build. Mater. 2020, 252, 119075. [Google Scholar] [CrossRef]
- Singh, C.; Aggarwal, V. Experimental investigation of concrete strength properties by partial replacement of cement-sand with marble-granite powder. Mater. Today Proc. 2022, 62, 3734–3737. [Google Scholar] [CrossRef]
- Singh, S.; Khan, S.; Khandelwal, R.; Chugh, A.; Nagar, R. Performance of sustainable concrete containing granite cutting waste. J. Clean. Prod. 2016, 119, 86–98. [Google Scholar] [CrossRef]
- Shwetha, K.; Mahesh, K.; Dalawai, V.; Anadinni, S.; Sowjanya, G. Comparative study on strengthening of concrete using granite waste. Mater. Today Proc. 2022, 62, 5317–5322. [Google Scholar] [CrossRef]
- Wu, L.; Farzadnia, N.; Shi, C.; Zhang, Z.; Wang, H. Autogenous shrinkage of high-performance concrete: A review. Constr. Build. Mater. 2017, 149, 62–75. [Google Scholar] [CrossRef]
- Chouhan, H.; Kalla, P.; Nagar, R.; Gautam, P. Influence of dimensional stone waste on mechanical and durability properties of mortar: A review. Constr. Build. Mater. 2019, 227, 116662. [Google Scholar] [CrossRef]
- Mashaly, A.; Shalaby, B.; Rashwan, M.; Pradeep, K. Performance of mortar and concrete incorporating granite sludge as cement replacement. Constr. Build. Mater. 2018, 169, 800–818. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.; Salim, M.; Fediuk, R.; Waqas, R. Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges. J. Build. Eng. 2021, 44, 102600. [Google Scholar] [CrossRef]
- Medina, G.; Bosque, I.; Frías, M.; Rojas, M.; Medina, C. Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations. J. Clean. Prod. 2017, 148, 467–476. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, P.; Wang, Y. Hydration behaviors of portland cement with different lithologic stone powders. Int. J. Concr. Struct. Mater. 2015, 9, 55–60. [Google Scholar] [CrossRef]
- Li, T.; Tier, L. Microscopic mechanism analysis of the influence of stone powder with different replacement ratio on concrete performance. Arab. J. Geosci. 2022, 16, 1132–1142. [Google Scholar] [CrossRef]
- Li, H.; Huang, F.; Cheng, G.; Xie, Y.; Tan, Y.; Li, L.; Yi, Z. Effect of granite dust on mechanical and some durability properties of manufactured sand concrete. Constr. Build. Mater. 2016, 109, 41–46. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, J.; Wang, W. Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete. Materials 2023, 16, 522. [Google Scholar] [CrossRef]
- Shen, W.; Yang, Z.; Cao, L.; Cao, L.; Liu, Y.; Yang, H.; Liu, Z.; Bai, J. Characterization of manufactured sand: Particle shape, surface texture and behavior in concrete. Constr. Build. Mater. 2016, 114, 595–601. [Google Scholar] [CrossRef]
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Ministry of Housing and Construction, People’s Republic of China: Beijing, China, 2019.
- ASTM C78; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM C186; Standard Test Method for Heat of Hydration of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C1698; Standard Test Method for Autogenous Strain of Cement Paste and Mortar. ASTM International: West Conshohocken, PA, USA, 2019.
Items | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|
Cement | 59.3 | 21.28 | 5.99 | 3.31 | 2.16 | 0.13 | 0.49 |
Granite powder | 2.18 | 70.36 | 14.56 | 2.41 | 1.22 | 5.37 | 2.51 |
Sieve Opening (mm) | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | Fineness Modulus |
---|---|---|---|---|---|---|---|---|---|
MS | 100 | 95.1 | 65.2 | 49.8 | 31.2 | 14.2 | 8.2 | 3.6 | 3.28 |
FS | 100 | 100 | 100 | 100 | 98.1 | 54.0 | 12.6 | 1.3 | 1.35 |
Items | Cementitious Materials | Coarse Aggregate | Fine Aggregate | Water | Superplasticizer | ||
---|---|---|---|---|---|---|---|
Cement | Granite Powder | Fly Ash | |||||
AGP0 | 338.40 | 0 | 59.4 | 1056 | 704 | 151.2 | 0.75 |
AGP5 | 321.48 | 16.92 | 59.4 | 1056 | 704 | 151.2 | 0.75 |
AGP10 | 304.56 | 33.84 | 59.4 | 1056 | 704 | 151.2 | 0.75 |
AGP15 | 287.64 | 50.76 | 59.4 | 1056 | 704 | 151.2 | 0.75 |
Mixture | Hydration Heat (J/g) | Relative Increase (%) |
---|---|---|
AGP0 | 250.98 | 0 |
AGP5 | 245.88 | −2.03 |
AGP10 | 240.38 | −4.22 |
AGP15 | 232.84 | −7.23 |
Mixture | Total Pore Volume (mL/g) | Total Hole Area (m2/g) | Average Pore Size (nm) | Porosity (%) |
---|---|---|---|---|
AGP0 | 0.0535 | 6.009 | 15.35 | 11.9 |
AGP5 | 0.055 | 8.623 | 21.51 | 9.58 |
AGP10 | 0.036 | 7.734 | 15.68 | 6.50 |
AGP15 | 0.0694 | 13.74 | 19.51 | 11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Xu, G.; Chen, S.; Yu, D.; Fu, T.; Feng, C.; Wang, Y. Enhancing Mechanical Properties and Microstructures of Mass-Manufactured Sand Concrete by Incorporating Granite Powder. Materials 2024, 17, 2234. https://doi.org/10.3390/ma17102234
Huang J, Xu G, Chen S, Yu D, Fu T, Feng C, Wang Y. Enhancing Mechanical Properties and Microstructures of Mass-Manufactured Sand Concrete by Incorporating Granite Powder. Materials. 2024; 17(10):2234. https://doi.org/10.3390/ma17102234
Chicago/Turabian StyleHuang, Jian, Guangfeng Xu, Shujie Chen, Demei Yu, Tengfei Fu, Chao Feng, and Yulin Wang. 2024. "Enhancing Mechanical Properties and Microstructures of Mass-Manufactured Sand Concrete by Incorporating Granite Powder" Materials 17, no. 10: 2234. https://doi.org/10.3390/ma17102234
APA StyleHuang, J., Xu, G., Chen, S., Yu, D., Fu, T., Feng, C., & Wang, Y. (2024). Enhancing Mechanical Properties and Microstructures of Mass-Manufactured Sand Concrete by Incorporating Granite Powder. Materials, 17(10), 2234. https://doi.org/10.3390/ma17102234