Photoluminescence Study of Undoped and Eu-Doped Alkali-Niobate Aluminosilicate Glasses and Glass-Ceramics
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Absorption and Photoluminescence Study of Alkali-Niobate Aluminosilicate Glasses
3.2. Photoluminescence of Eu-Doped Alkali-Niobate Aluminosilicate Glasses
3.2.1. Eu-Doped Pristine Glasses
3.2.2. Eu-Doped Niobate Glasses
3.2.3. Eu-Doped Glass-Ceramics
- -
- The excitation spectra of the GC66.17-10 sample (Figure S5A) show a strong change in the relative intensities of the Eu3+ main transitions, with the and lines (respectively at 21,510 cm−1 and 18,845 cm−1) having a much higher relative intensity compared to the parent glass. A more detailed discussion of the different excitation lines in this sample is reported below.
- -
- The peralkaline GC shows a higher emission intensity than the parent glass, whereas the crystallized samples from the polymerized compositions (GC66.17) show a strong decrease in emission intensity. The reduced intensity in the latter sample is partially caused by the occurrence of reduced Eu2+ species, attested by the presence of the broad excitation and emission bands centered respectively at ~26,920 cm−1 and 21,475 cm−1 (Figure S5B).
- -
- In both GCs, the transitions become structured and narrow, and show strong Stark splitting into two or more distinct bands, showing the partial incorporation of Eu3+ ions into the crystalline phase.
- -
- GCs show weak contributions at higher frequencies (inset in Figure 8) associated with the emission from higher excited levels [30,43], supporting the conclusion that Eu3+ ions are incorporated into a lower phonon energy environment (such as the niobate crystals), reducing non-radiative energy relaxation.
- -
- The transition in the peralkaline GC66.10 is split into two components, indicating the presence of (at least) two distinct populations. Remarkably, this band is not clearly visible in the sample GC66.17-10. Since this transition is an indicator of site symmetry, it can be concluded that in the transparent GC66.17-10, the Eu3+ ions occupy sites with a higher degree of symmetry.
- -
- The fluorescence lifetime (Figure 8B) decreases in both GCs compared to the parent glasses, and the two GCs decay curves show the occurrence of fast and long decay components. A double exponential function appropriately describes the decay curves collected at the maximum of the emission band (λem = 616 nm), resulting in a lifetime of 1.89 ± 0.07 ms and 0.86 ± 0.01 ms, respectively, for long and fast decay of the GC66.10 sample. The polymerized GC66.17 has a complex decay with a prominent fast decay, and the best fit that provided randomly distributed residuals, and a χ2 of 1.1 was obtained with three exponential decay components. The results indicate the presence of two short contributions (~20 μs and 90 ± 4 μs) and a longer one of 1.12 ± 0.03 ms. In both GCs, the long decay component resembles the ones in the parent glasses, suggesting that some of the Eu ions are still in the residual glass. Note that the shortest lifetime value estimated, here, must be carefully considered, because of the limitation of the setup used to collect the data (Xe-lamp).
3.3. Rare Earth-Doped Self-Activated Glass Phosphor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bezdetny, N.M.; Zeinally, A.K.; Silvestrov, V.G. Photorefraction And Photoelectric Phenomena In Strontium Barium Niobate. Ferroelectrics 1982, 45, 77–82. [Google Scholar] [CrossRef]
- Weis, R.S.; Gaylord, T.K. Lithium Niobate: Summary of Physical Properties and Crystal Structure. Appl. Phys. A Solids Surf. 1985, 37, 191–203. [Google Scholar] [CrossRef]
- Fernandes Graça, M.P.; Valente, M.A. Ferroelectric Glass-Ceramics. MRS Bull. 2017, 42, 213–219. [Google Scholar] [CrossRef]
- Li, J.F.; Wang, K.; Zhu, F.Y.; Cheng, L.Q.; Yao, F.Z. (K,Na) NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges. J. Am. Ceram. Soc. 2013, 96, 3677–3696. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, T.; Wu, J. Lead-Free (K,Na)NbO 3-Based Materials: Preparation Techniques and Piezoelectricity. ACS Omega 2020, 5, 3099–3107. [Google Scholar] [CrossRef]
- Dussauze, M.; Cardinal, T. Nonlinear Optical Properties of Glass. In Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 193–225. [Google Scholar] [CrossRef]
- Cardinal, T.; Fargin, E.; Le Flem, G.; Leboiteux, S. Correlations between Structural Properties of Nb2O5-NaPO3-Na2B4O7 Glasses and Non-Linear Optical Activities. J. Non-Cryst. Solids 1997, 222, 228–234. [Google Scholar] [CrossRef]
- Lipovskii, A.A.A.; Tagantsev, D.K.K.; Vetrov, A.A.A.; Yanush, O.V.V. Raman Spectroscopy and the Origin of Electrooptical Kerr Phenomenon in Niobium Alkali-Silicate Glasses. Opt. Mater. 2003, 21, 749–757. [Google Scholar] [CrossRef]
- Koudelka, L.; Kalenda, P.; Mošner, P.; Montagne, L.; Revel, B. Potassium Niobato-Phosphate Glasses and Glass-Ceramics. J. Non-Cryst. Solids 2021, 572, 121091. [Google Scholar] [CrossRef]
- Komatsu, T.; Honma, T.; Tasheva, T.; Dimitrov, V. Structural Role of Nb2O5 in Glass-Forming Ability, Electronic Polarizability and Nanocrystallization in Glasses: A Review. J. Non-Cryst. Solids 2022, 581, 121414. [Google Scholar] [CrossRef]
- Cicconi, M.R.; Dobesh, D.K.; Schroeder, B.; Otsuka, T.; Hayakawa, T.; de Ligny, D. Alkali-Niobate Aluminosilicate Glasses: Structure and Properties. Opt. Mater. X 2023, 18, 100228. [Google Scholar] [CrossRef]
- Peng, X.; Pu, Y.; Du, X. Effect of K2O Addition on Glass Structure, Complex Impedance and Energy Storage Density of NaNbO3 Based Glass-Ceramics. J. Alloys Compd. 2019, 785, 350–355. [Google Scholar] [CrossRef]
- Chaliha, R.S.; Annapurna, K.; Tarafder, A.; Tiwari, V.S.; Gupta, P.K.; Karmakar, B. Structure, Dielectric and Optical Properties of Transparent Nd3+: KNbO3 Nanocrystalline Glass-Ceramics. Opt. Mater. 2010, 32, 1202. [Google Scholar] [CrossRef]
- Liu, C.; Xie, S.; Bai, H.; Yan, F.; Fu, T.; Shen, B.; Zhai, J. Excellent Energy Storage Performance of Niobate-Based Glass-Ceramics via Introduction of Nucleating Agent. J. Mater. 2022, 8, 763–771. [Google Scholar] [CrossRef]
- de Araújo, A.C.; Weber, I.; Fragoso, W.; de Mello Donegá, C. Luminescence and Properties of La2O3–B2O3–M2O5:Ln (M = Nb(V) or Ta(V)) and La2O3–B2O3–M2O5–PbO/Bi2O3 Glasses. J. Alloys Compd. 1998, 275–277, 738–741. [Google Scholar] [CrossRef]
- Wachtel, A. Self-Activated Luminescence of M2+ Niobates and Tantalates. J. Electrochem. Soc. 1964, 111, 534. [Google Scholar] [CrossRef]
- Blasse, G. Fluorescence of Niobium-Activated Antimonates and an Empirical Criterion for the Occurrence of Luminescence. J. Chem. Phys. 1968, 48, 3108–3114. [Google Scholar] [CrossRef]
- Blasse, G.; Bril, A. The Influence of Crystal Structure on the Fluorescence of Oxidic Niobates and Related Compounds. Z. Phys. Chem. 1968, 57, 187–202. [Google Scholar] [CrossRef]
- Blasse, G. Optical Electron Transfer between Metal Ions and Its Consequences. In Complex Chemistry. Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 1991; pp. 153–187. [Google Scholar]
- Zhang, J.; Song, Z.; Cai, P.; Wang, X. Structures, Photoluminescence, and Principles of Self-Activated Phosphors. Phys. Chem. Chem. Phys. 2022, 25, 1565–1587. [Google Scholar] [CrossRef]
- Allsopp, B.L.; Christopoulou, G.; Brookfield, A.; Forder, S.D.; Bingham, P.A. Optical and Structural Properties of d0 Ion-Doped Silicate Glasses for Photovoltaic Applications. Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B 2018, 59, 193–202. [Google Scholar] [CrossRef]
- Blasse, G.; De Haart, L.G.J. The Nature of the Luminescence of Niobates MNbO3 (M = Li, Na, K). Mater. Chem. Phys. 1986, 14, 481–484. [Google Scholar] [CrossRef]
- Hazenkamp, M.F.; Strijbosch, A.W.P.M.; Blasse, G. Anomalous Luminescence of Two d0 Transition-Metal Complexes: KVOF4 and K2NbOF5·H2O. J. Solid State Chem. 1992, 97, 115–123. [Google Scholar] [CrossRef]
- Blasse, G. The Influence of Crystal Structure on the Luminescence of Tantalates and Niobates. J. Solid State Chem. 1988, 72, 72–79. [Google Scholar] [CrossRef]
- Fragoso, W.D.; de Mello Donegá, C.; Longo, R.L. Luminescence and Energy Transfer in La2O3-Nb2O5-B2O3:M3+ (M = Bi, Eu, Dy) Glasses. J. Lumin. 2003, 105, 97–103. [Google Scholar] [CrossRef]
- Blasse, G.; Dirksen, G.J.; Brixner, L.H. The Influence of Structural Disorder on the Luminescence of Niobates: Scandium Niobate (ScNbO4) and Magnesium Niobate (MgNb2O6). Mater. Chem. Phys. 1986, 14, 485–494. [Google Scholar] [CrossRef]
- Blasse, G.; Brixner, L.H. Luminescence of Perovskite-like Niobates and Tantalates. Mater. Res. Bull. 1989, 24, 363–366. [Google Scholar] [CrossRef]
- Otsuka, T.; Cicconi, M.R.; Dobesh, D.; Schroeder, B.; Hayakawa, T. 93Nb NMR Study of (K, Na)NbO3-Doped SiO2–Na2O–Al2O3 Glasses. Phys. Status Solidi Basic Res. 2022, 259, 2200016. [Google Scholar] [CrossRef]
- Lipovskii, A.A.A.; Kaganovskii, Y.; Melehin, V.G.G.; Tagantsev, D.K.K.; Yanush, O.V.V. Electrooptical Kerr Phenomenon and Raman Spectroscopy of One Lithium–Niobium–Silicate Glass-Forming System. J. Non-Cryst. Solids 2008, 354, 1245–1249. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of Europium(III) Spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Reisfeld, R.; Zigansky, E.; Gaft, M. Europium Probe for Estimation of Site Symmetry in Glass Films, Glasses and Crystals. Mol. Phys. 2004, 102, 1319–1330. [Google Scholar] [CrossRef]
- Parchur, A.K.; Ningthoujam, R.S. Behaviour of Electric and Magnetic Dipole Transitions of Eu3+, 5D0 → 7F0 and Eu–O Charge Transfer Band in Li+ Co-Doped YPO4:Eu3+. RSC Adv. 2012, 2, 10859–10868. [Google Scholar] [CrossRef]
- Muniz, R.F.; de Ligny, D.; Sandrini, M.; Zanuto, V.S.; Medina, A.N.; Rohling, J.H.; Aranda, N.B.; Baesso, M.L.; Guyot, Y. Fluorescence Line Narrowing and Judd-Ofelt Theory Analyses of Eu3+-Doped Low-Silica Calcium Aluminosilicate Glass and Glass-Ceramic. J. Lumin. 2018, 201, 123–128. [Google Scholar] [CrossRef]
- Cicconi, M.R.; Giuli, G.; Paris, E.; Ertel-Ingrisch, W.; Ulmer, P.; Dingwell, D.B. Europium Oxidation State and Local Structure in Silicate Glasses. Am. Mineral. 2012, 97, 918–929. [Google Scholar] [CrossRef]
- Cicconi, M.R.; Le Losq, C.; Henderson, G.S.; Neuville, D.R. The Redox Behavior of Rare Earth Elements. In Magma Redox Geochemistry; American Geophysical Union (AGU): Washington, DC, USA, 2021; pp. 381–398. ISBN 9781119473206. [Google Scholar]
- Srivastava, A.M.; Brik, M.G.; Beers, W.W.; Cohen, W. The Influence of nd0 Transition Metal Cations on the Eu3+ Asymmetry Ratio R = I (5D0 − 7F2)/I (5D0 − 7F1) and Crystal Field Splitting of 7F1 Manifold in Pyrochlore and Zircon Compounds. Opt. Mater. 2021, 114, 110931. [Google Scholar] [CrossRef]
- Lien, N.T.Q.; Trac, N.N.; Do, P.V.; Tuyen, H.V. Judd-Ofelt Analysis of Eu3+ and Adjustable Emission in Eu3+/Eu2+ Co-Doped Sodium Aluminosilicate Glasses. J. Phys. Chem. Solids 2022, 164, 110637. [Google Scholar] [CrossRef]
- Ray, S.; Pramanik, P.; Singha, A.; Roy, A. Optical Properties of Nanocrystalline Y2O3: Eu3+. J. Appl. Phys. 2005, 97, 94312. [Google Scholar] [CrossRef]
- Phatak, R.; Pathak, N.; Muhammed, S.; Das, A.; Sali, S.K. Probing Crystal Structure and Site-Selective Photo-Physical Properties of Various Eu3+-Doped Niobates. J. Am. Ceram. Soc. 2020, 103, 2617–2629. [Google Scholar] [CrossRef]
- Herrmann, A.; Kuhn, S.; Tiegel, M.; Rüssel, C.; Körner, J.; Klöpfel, D.; Hein, J.; Kaluza, M.C. Structure and Fluorescence Properties of Ternary Aluminosilicate Glasses Doped with Samarium and Europium. J. Mater. Chem. C 2014, 2, 4328–4337. [Google Scholar] [CrossRef]
- Kumar, G.M.; Rao, D.N.; Agarwal, G.S. Measurement of Local Field Effects of the Host on the Lifetimes of Embedded Emitters. Phys. Rev. Lett. 2003, 91, 203903. [Google Scholar] [CrossRef]
- Oomen, E.W.J.L.; van Dongen, A.M.A. Europium (III) in Oxide Glasses. Dependence of the Emission Spectrum upon Glass Composition. J. Non-Cryst. Solids 1989, 111, 205–213. [Google Scholar] [CrossRef]
- Méndez-Ramos, J.; Lavín, V.; Martín, I.R.; Rodríguez-Mendoza, U.R.; Rodríguez, V.D.; Lozano-Gorrín, A.D.; Núñez, P. Site Selective Study of Eu3+-Doped Transparent Oxyfluoride Glass Ceramics. J. Appl. Phys. 2003, 94, 2295–2301. [Google Scholar] [CrossRef]
- Hayakawa, T.; Kamata, N.; Yamada, K. Visible Emission Characteristics in Tb3+-Doped Fluorescent Glasses under Selective Excitation. J. Lumin. 1996, 68, 179–186. [Google Scholar] [CrossRef]
- Martín, I.R.; Rodríguez, V.D.; Rodríguez-Mendoza, U.R.; Lavín, V.; Montoya, E.; Jaque, D. Energy Transfer with Migration. Generalization of the Yokota-Tanimoto Model for Any Kind of Multipole Interaction. J. Chem. Phys. 1999, 111, 1191–1194. [Google Scholar] [CrossRef]
- Otsuka, T.; Oka, R.; Hayakawa, T. Eu3+ Site Distribution and Local Distortion of Photoluminescent Ca3WO6:(Eu3+, K+) Double Perovskites as High-Color-Purity Red Phosphors. Adv. Sci. 2023, 10, 2302559. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, A.; Roy, A.; Rai, S.B. Photoluminescence Behavior of Rare Earth Doped Self-Activated Phosphors (i.e., Niobate and Vanadate) and Their Applications. RSC Adv. 2023, 13, 16260–16271. [Google Scholar] [CrossRef]
- Dwivedi, A.; Singh, A.K.; Singh, S.K. Wide-Bandgap Lanthanide Niobates: Optical Properties and Applications. Mater. Res. Bull. 2020, 131, 110960. [Google Scholar] [CrossRef]
- Xiao, X.; Yan, B. Synthesis and Luminescent Properties of Novel RENbO4:Ln3+ (RE = Y, Gd, Lu; Ln = Eu, Tb) Micro-Crystalline Phosphors. J. Non-Cryst. Solids 2005, 351, 3634–3639. [Google Scholar] [CrossRef]
- Qiu, J.; Jiao, Q.; Zhou, D.; Yang, Z. Recent Progress on Upconversion Luminescence Enhancement in Rare-Earth Doped Transparent Glass-Ceramics. J. Rare Earths 2016, 34, 341–367. [Google Scholar] [CrossRef]
- Zhou, R.; Wei, X.; Huang, S.; Chen, Y.; Yin, M. Efficient Near-Infrared Quantum Cutting in Yb3+ Doped CaNb2O6 Phosphor Based on Energy Transfer. J. Alloys Compd. 2012, 537, 123–126. [Google Scholar] [CrossRef]
- Judd, B.R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
- Babu, P.; Jayasankar, C.K. Optical spectroscopy of Eu3+ ions in lithium borate and lithium fluoroborate glasses. Physica B 2000, 279, 262–281. [Google Scholar] [CrossRef]
- Walsh, B.M. Judd-Ofelt theory: Principles and practices. In Advances in Spectroscopy for Lasers and Sensing; Di Bartolo, B., Forte, O., Eds.; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Ebendorff-Heidepriem, H.; Ehrt, D. Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses. J. Non-Cryst. Solids 1996, 208, 205–216. [Google Scholar] [CrossRef]
- Maheswari, D.U.; Kumar, J.S.; Moorthy, L.R.; Jang, K.; Jayasimhadri, M. Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses. Physica B 2008, 403, 1690–1694. [Google Scholar] [CrossRef]
- Axe, J.D., Jr. Radiative transition probability within 4fn configurations: The fluorescence spectrum of Europium ethlysulfate. J. Chem. Phys. 1963, 39, 1154–1160. [Google Scholar] [CrossRef]
- Ikeshita, R.; Hayakawa, T.; Isogai, M.; Iwamoto, Y.; Duclère, J.-R.; Rémondière, F.; Thomas, P.; Lecomte, A. Novel method to control initial crystallization of Eu3+ doped ZrO2 nanophosphors derived from a sol-gel route based on HNO3 and their site-selective photoluminescence. J. Ceram. Soc. Jpn. 2018, 126, 551–556. [Google Scholar] [CrossRef]
Label | KNN Content (mol%) | Nb2O5 $ (mol%) | Max EM (cm−1) ±50 cm−1 | EM Intensity (CPS/μA) | EM FWHM (cm−1) | Max EX (cm−1) ± 250 cm−1 | Abs-Edge (cm−1) $ | Stokes Shifts (cm−1) |
---|---|---|---|---|---|---|---|---|
NA66.10_ | ||||||||
0.5KNN | 0.4 | 0.19 | 18,500 | 2.17 × 105 | 5738 | 35,800 | 35,436 | 17,300 |
1KNN | 0.8 | 0.38 | 18,200 | 3.10 × 105 | 6050 | 35,400 | 34,748 | 17,200 |
3KNN | 2.9 | 1.45 | 18,100 | 3.26 × 105 | 6391 | 35,000 | 33,799 | 16,850 |
5KNN | 5.4 | 2.70 | 18,350 | 1.25 × 105 | 6235 | 34,600 | 32,831 | 16,250 |
10KNN | 10 | 4.73 | 18,600 | 7.29 × 104 | 6025 | 34,200 | 32,468 | 15,600 |
20KNN | 20 | 9.97 | 18,550 | 7.38 × 103 | 4508 | 33,500 | 31,167 | 14,950 |
NA66.17_ | ||||||||
0.5KNN | 0.4 | 0.19 | 19,250 | 1.50 × 105 | 5422 | 36,500 | 35,211 | 17,300 |
1KNN | 0.8 | 0.38 | 19,400 | 2.43 × 105 | 6105 | 36,000 | 34,843 | 16,600 |
3KNN | 2.9 | 1.68 | 19,400 | 1.10 × 105 | 6375 | 34,800 | 33,581 | 15,400 |
5KNN | 5.4 | 2.88 | 19,300 | 3.20 × 104 | 6154 | 33,700 | 32,282 | 14,400 |
10KNN | 10 | 4.83 | 19,350 | 1.38 × 104 | 6368 | - | 30,532 | - |
Sample | cm−1 | τexp ms | τr ms | η % | Ω2 × 10−20 cm2 | Ω4 × 10−20 cm2 | Ω6 × 10−20 cm2 | nD | |
---|---|---|---|---|---|---|---|---|---|
NA66.10_Eu | 4.4 | 425 | 2.34(1) | 2.92 | 75% | 7.3(2) | 2.3(3) | 1.4(1) | 1.503(1) |
3 KNN_Eu | 5.0 | 440 | 2.21(1) | 2.4 | 76% | 7.4(2) | 2.3(2) | 1.5(2) | 1.5242(6) |
5 KNN_Eu | 5.2 | 462 | 1.97(1) | 2.3 | 73% | 7.6(3) | 2.4(2) | 1.7(2) | 1.545(1) |
10 KNN_Eu | 6.3 | 506 | 1.74(2) | 2.15 | 73% | 8.5(3) | 2.5(1) | 1.1(1) | 1.5732(5) |
NA66.17_Eu | 14.7 | 687 | 1.70(3) | 2.6 | 63% | 8.8(2) | 2.8(7) | 2.2(3) | 1.494(2) |
3 KNN_Eu | 13.0 | 587 | 1.52(1) | 1.64 | 76% | 11.5(4) | 3.8(1) | 2.4(2) | 1.517(1) |
5 KNN_Eu | 12.1 | 538 | 1.31(1) | 1.55 | 69% | 11.4(3) | 4(2) | 3(2) | 1.542(2) |
10 KNN_Eu | 11.2 | 458 | 1.02(3) | 1.42 | 60% | 12(4) | 4.4(4) | 2.3(3) | 1.589(1) |
Label | T Crystallization (°C) | Holding Time (h) | Space Group | a, b, c (Å) | V (Å3) | Crystallite Size (nm) |
---|---|---|---|---|---|---|
GC66.10-10 | 900 | 2 | Pbcm (Pbma) | 5.56301/ 15.56069/ 5.51447 | 477.36 | 119 |
GC66.17-10 | 900 | 4 | Pbcm (Pbma) | 5.54292/ 15.60753/ 5.51829 | 477.39 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicconi, M.R.; Deng, H.; Otsuka, T.; Telakula Mahesh, A.; Khansur, N.H.; Hayakawa, T.; de Ligny, D. Photoluminescence Study of Undoped and Eu-Doped Alkali-Niobate Aluminosilicate Glasses and Glass-Ceramics. Materials 2024, 17, 2283. https://doi.org/10.3390/ma17102283
Cicconi MR, Deng H, Otsuka T, Telakula Mahesh A, Khansur NH, Hayakawa T, de Ligny D. Photoluminescence Study of Undoped and Eu-Doped Alkali-Niobate Aluminosilicate Glasses and Glass-Ceramics. Materials. 2024; 17(10):2283. https://doi.org/10.3390/ma17102283
Chicago/Turabian StyleCicconi, Maria Rita, Hongyi Deng, Takahito Otsuka, Aadhitya Telakula Mahesh, Neamul Hayet Khansur, Tomokatsu Hayakawa, and Dominique de Ligny. 2024. "Photoluminescence Study of Undoped and Eu-Doped Alkali-Niobate Aluminosilicate Glasses and Glass-Ceramics" Materials 17, no. 10: 2283. https://doi.org/10.3390/ma17102283
APA StyleCicconi, M. R., Deng, H., Otsuka, T., Telakula Mahesh, A., Khansur, N. H., Hayakawa, T., & de Ligny, D. (2024). Photoluminescence Study of Undoped and Eu-Doped Alkali-Niobate Aluminosilicate Glasses and Glass-Ceramics. Materials, 17(10), 2283. https://doi.org/10.3390/ma17102283