Computationally Efficient Algorithm for Modeling Grain Growth Using Hillert’s Mean-Field Approach
Abstract
:1. Introduction
2. Modeling Framework
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sellars, C.M. Modelling microstructural development during hot rolling. Mater. Sci. Technol. 1990, 6, 1072–1081. [Google Scholar] [CrossRef]
- Hodgson, P.D. A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ Int. 1992, 32, 1329–1338. [Google Scholar] [CrossRef]
- Hodgson, P.D. Models of the recrystallization behaviour of C-Mn and Nb microalloyed steels during hot working processes. Met. Forum 1993, 17, 403–408. [Google Scholar]
- Dunlop, J.W.C.; Bréchet, Y.J.M.; Legras, L.; Zurob, H.S. Modelling isothermal and non-isothermal recrystallisation kinetics: Application to Zircaloy-4. J. Nucl. Mater. 2007, 366, 178–186. [Google Scholar] [CrossRef]
- Rehman, K.; Zurob, H.S. Novel approach to model static recrystallization of austenite during hot-rolling of Nb-Microalloyed steel: Effect of precipitates. Mater. Sci. Forum 2013, 753, 417–422. [Google Scholar] [CrossRef]
- Pietrzyk, M. Through-process modelling of microstructure evolution in hot forming of steels. J. Mater. Process. Technol. 2002, 125–126, 53–62. [Google Scholar] [CrossRef]
- Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling Elasticity in Crystal Growth. Phys. Rev. Lett. 2002, 88, 245701. [Google Scholar] [CrossRef] [PubMed]
- Militzer, M.; Hawbolt, E.; Meadowcroft, T. Microstructural model for hot strip rolling of high-strength low-alloy steels. Metall. Mater. Trans. A 2000, 31, 1247–1259. [Google Scholar] [CrossRef]
- Zurob, H.S.; Hutchinson, C.R.; Brechet, Y.; Purdy, G. Modeling recrystallization of microalloyed austenite: Effect of coupling recovery, precipitation and recrystallization. Acta Mater. 2002, 50, 3077–3094. [Google Scholar] [CrossRef]
- Zurob, H.S.; Brechet, Y.; Purdy, G. A model for the competition of precipitation and recrystallization in deformed austenite. Acta Mater. 2001, 49, 4183–4190. [Google Scholar] [CrossRef]
- Hoffman, A.K.; Umretiya, R.V.; Crawford, C.; Spinelli, I.; Huang, S.; Buresh, S.; Perlee, C.; Mandal, T.; Abouelella, H.; Rebak, R.B. The relationship between grain size distribution and ductile to brittle transition temperature in FeCrAl alloys. Mater. Lett. 2023, 331, 133427. [Google Scholar] [CrossRef]
- Atkinson, H.V. Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metall. 1988, 36, 469–491. [Google Scholar] [CrossRef]
- Shirdel, M.; Mirzadeh, H.; Habibi Parsa, M. Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metall. Mater. Trans. A 2014, 45, 5185–5193. [Google Scholar] [CrossRef]
- Benson, W.; Wert, J. The effect of initial grain size distribution on abnormal grain growth in single-phase materials. Acta Mater. 1998, 46, 5323–5333. [Google Scholar] [CrossRef]
- Krill III, C.E.; Holm, E.A.; Dake, J.M.; Cohn, R.; Holíková, K.; Andorfer, F. Extreme Abnormal Grain Growth: Connecting Mechanisms to Microstructural Outcomes. Annu. Rev. Mater. Res. 2023, 53, 319–345. [Google Scholar] [CrossRef]
- Burke, J.E.; Turnbull, D. Recrystallization and grain growth. Prog. Met. Phys. 1952, 3, 220–292. [Google Scholar] [CrossRef]
- Smith, C. Grain Shapes and Other Metallurgical Applications of Topology Metal Interfaces; American Society for Metals: Cleveland, OH, USA, 1952. [Google Scholar]
- Feltham, P. Grain growth in metals. Acta Metall. 1957, 5, 97–105. [Google Scholar] [CrossRef]
- Louat, N.P. On the theory of normal grain growth. Acta Metall. 1974, 22, 721–724. [Google Scholar] [CrossRef]
- Enomoto, M.; Hayashi, K. Estimation of austenite grain boundary mobility in low-carbon steel by grain growth. J. Mater. Sci. 2023, 58, 4603–4620. [Google Scholar] [CrossRef]
- Abbruzzese, G.; Lücke, K. A theory of texture controlled grain growth—I. Derivation and general discussion of the model. Acta Metall. 1986, 34, 905–914. [Google Scholar] [CrossRef]
- Eichelkraut, H.; Abbruzzese, G.; Lücke, K. A theory of texture controlled grain growth—II. Numerical and analytical treatment of grain growth in the presence of two texture components. Acta Metall. 1988, 36, 55–68. [Google Scholar] [CrossRef]
- Wu, K.; Jeppsson, J.; Mason, P. Mean Field Modeling of Grain Growth and Zener Pinning. J. Phase Equilibria Diffus. 2022, 43, 866–875. [Google Scholar] [CrossRef]
- Maire, L.; Scholtes, B.; Moussa, C.; Bozzolo, N.; Pino Muñoz, D.; Bernacki, M. Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations. J. Mater. Sci. 2016, 51, 10970–10981. [Google Scholar] [CrossRef]
- Roth, M.; Flipon, B.; Bozzolo, N.; Bernacki, M. Comparison of Grain-Growth Mean-Field Models Regarding Predicted Grain Size Distributions. Materials 2023, 16, 6761. [Google Scholar] [CrossRef]
- Hillert, M. On the theory of normal and abnormal grain growth. Acta Metall. 1965, 13, 227–238. [Google Scholar] [CrossRef]
- Abbruzzese, G.; Heckelmann, I.; Lücke, K. Statistical theory of two-dimensional grain growth—I. The topological foundation. Acta Metall. Mater. 1992, 40, 519–532. [Google Scholar] [CrossRef]
- Maire, L.; Fausty, J.; Bernacki, M.; Bozzolo, N.; De Micheli, P.; Moussa, C. A new topological approach for the mean field modeling of dynamic recrystallization. Mater. Des. 2018, 146, 194–207. [Google Scholar] [CrossRef]
- Andersson, J.-O.; Helander, T.; Höglund, L.; Shi, P.; Sundman, B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad 2002, 26, 273–312. [Google Scholar]
- Upmanyu, M.; Hassold, G.N.; Kazaryan, A.; Holm, E.A.; Wang, Y.; Patton, B.; Srolovitz, D.J. Boundary mobility and energy anisotropy effects on microstructural evolution during grain growth. Interface Sci. 2002, 10, 201–216. [Google Scholar] [CrossRef]
- Bulatov, V.V.; Reed, B.W.; Kumar, M. Grain boundary energy function for fcc metals. Acta Mater. 2014, 65, 161–175. [Google Scholar] [CrossRef]
- Darvishi Kamachali, R.; Steinbach, I. 3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations. Acta Mater. 2012, 60, 2719–2728. [Google Scholar] [CrossRef]
- Rios, P.R. Comparison between a grain size distribution obtained by a Monte Carlo Potts model and by an analytical mean field model. Scr. Mater. 1999, 41, 1283–1287. [Google Scholar] [CrossRef]
- Blikstein, P.; Tschiptschin, A.P. Monte Carlo simulation of grain growth. Mater. Res. 1999, 2, 133–137. [Google Scholar] [CrossRef]
- Xiaoyan, S.; Guoquan, L.; Nanju, G. Re-analysis on grain size distribution during normal grain growth based on Monte Carlo simulation. Scr. Mater. 2000, 43, 355–359. [Google Scholar] [CrossRef]
- Zöllner, D.; Streitenberger, P. Three-dimensional normal grain growth: Monte Carlo Potts model simulation and analytical mean field theory. Scr. Mater. 2006, 54, 1697–1702. [Google Scholar] [CrossRef]
- Ivasishin, O.M.; Shevchenko, S.V.; Vasiliev, N.L.; Semiatin, S.L. 3D Monte-Carlo simulation of texture-controlled grain growth. Acta Mater. 2003, 51, 1019–1034. [Google Scholar] [CrossRef]
- Brakke, K.A. The surface evolver. Exp. Math. 1992, 1, 141–165. [Google Scholar] [CrossRef]
- Marthinsen, K.; Hunderi, O.; Ryum, N. The influence of spatial grain size correlation and topology on normal grain growth in two dimensions. Acta Mater. 1996, 44, 1681–1689. [Google Scholar] [CrossRef]
- Wakai, F.; Enomoto, N.; Ogawa, H. Three-dimensional microstructural evolution in ideal grain growth—General statistics. Acta Mater. 2000, 48, 1297–1311. [Google Scholar] [CrossRef]
- Weygand, D.; Bréchet, Y.; Lépinoux, J.; Gust, W. Three-dimensional grain growth: A vertex dynamics simulation. Philos. Mag. B 1999, 79, 703–716. [Google Scholar] [CrossRef]
- Fuchizaki, K.; Kusaba, T.; Kawasaki, K. Computer modelling of three-dimensional cellular pattern growth. Philos. Mag. B 1995, 71, 333–357. [Google Scholar] [CrossRef]
- Marsh, S.; Masumura, R.; Pande, C. A curvature-driven vertex model for two-dimensional grain growth. Philos. Mag. Lett. 1995, 72, 429–434. [Google Scholar] [CrossRef]
- Fullman, R. Boundary migration during grain growth. In Met. Interfaces; National Metal Congress: Detroit, MI, USA, 1952; pp. 179–207. [Google Scholar]
- Bronsard, L.; Wetton, B.T. A numerical method for tracking curve networks moving with curvature motion. J. Comput. Phys. 1995, 120, 66–87. [Google Scholar] [CrossRef]
- Frost, H.J.; Thompson, C.V. Computer simulation of grain growth. Curr. Opin. Solid. State Mater. Sci. 1996, 1, 361–368. [Google Scholar] [CrossRef]
- Fayad, W.; Thompson, C.; Frost, H. Steady-state grain-size distributions resulting from grain growth in two dimensions. Scr. Mater. 1999, 40, 1199–1204. [Google Scholar] [CrossRef]
- Krill Iii, C.E.; Chen, L.Q. Computer simulation of 3-D grain growth using a phase-field model. Acta Mater. 2002, 50, 3059–3075. [Google Scholar] [CrossRef]
- Yadav, V.; Vanherpe, L.; Moelans, N. Effect of volume fractions on microstructure evolution in isotropic volume-conserved two-phase alloys: A phase-field study. Comput. Mater. Sci. 2016, 125, 297–308. [Google Scholar] [CrossRef]
- Yadav, V.; Moelans, N. Investigation on the existence of a ‘Hillert regime’in normal grain growth. Scr. Mater. 2018, 142, 148–152. [Google Scholar] [CrossRef]
- Gao, J.; Wei, M.; Zhang, L.; Du, Y.; Liu, Z.; Huang, B. Effect of Different Initial Structures on the Simulation of Microstructure Evolution During Normal Grain Growth via Phase-Field Modeling. Metall. Mater. Trans. A 2018, 49, 6442–6456. [Google Scholar] [CrossRef]
- Szeliga, D.; Bzowski, K.; Rauch, Ł.; Kuziak, R.; Pietrzyk, M. Mean field and full field modelling of microstructure evolution and phase transformations during hot forming and cooling of low carbon steels. Comp. Methods Mater. Sci. 2020, 20, 121–132. [Google Scholar] [CrossRef]
- Després, A.; Greenwood, M.; Sinclair, C. A mean-field model of static recrystallization considering orientation spreads and their time-evolution. Acta Mater. 2020, 199, 116–128. [Google Scholar] [CrossRef]
- Cram, D.; Zurob, H.S.; Brechet, Y.; Hutchinson, C. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation. Acta Mater. 2009, 57, 5218–5228. [Google Scholar] [CrossRef]
- Piot, D.; Smagghe, G.; Jonas, J.J.; Desrayaud, C.; Montheillet, F.; Perrin, G.; Montouchet, A.; Kermouche, G. A semitopological mean-field model of discontinuous dynamic recrystallization: Toward a correct and rapid prediction of grain-size distribution. J. Mater. Sci. 2018, 53, 8554–8566. [Google Scholar] [CrossRef]
- Anderson, M.; Srolovitz, D.; Grest, G.; Sahni, P. Computer simulation of grain growth—I. Kinetics. Acta Metall. 1984, 32, 783–791. [Google Scholar] [CrossRef]
- Ponge, D.; Gottstein, G. Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior. Acta Mater. 1998, 46, 69–80. [Google Scholar] [CrossRef]
- Montheillet, F.; Lurdos, O.; Damamme, G. A grain scale approach for modeling steady-state discontinuous dynamic recrystallization. Acta Mater. 2009, 57, 1602–1612. [Google Scholar] [CrossRef]
- Darvishi Kamachali, R.; Abbondandolo, A.; Siburg, K.F.; Steinbach, I. Geometrical grounds of mean field solutions for normal grain growth. Acta Mater. 2015, 90, 252–258. [Google Scholar] [CrossRef]
- Rios, P.R.; Dalpian, T.G.; Brandão, V.S.; Castro, J.A.; Oliveira, A.C.L. Comparison of analytical grain size distributions with three-dimensional computer simulations and experimental data. Scr. Mater. 2006, 54, 1633–1637. [Google Scholar] [CrossRef]
- Dumitrescu, D.; Boiangiu, C.-A. A Study of Image Upsampling and Downsampling Filters. Computers 2019, 8, 30. [Google Scholar] [CrossRef]
- Unser, M.; Aldroubi, A.; Eden, M. B-spline signal processing. II. Efficiency design and applications. IEEE Trans. Signal Process. 1993, 41, 834–848. [Google Scholar] [CrossRef]
- Fattal, R. Image upsampling via imposed edge statistics. In ACM SIGGRAPH 2007 Papers; ACM: New York, NY, USA, 2007; p. 95-es. [Google Scholar]
- Monno, Y.; Tanaka, M.; Okutomi, M. Multispectral demosaicking using adaptive kernel upsampling. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 3157–3160. [Google Scholar]
- Li, Y.; Liu, D.; Li, H.; Li, L.; Wu, F.; Zhang, H.; Yang, H. Convolutional neural network-based block up-sampling for intra frame coding. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 2316–2330. [Google Scholar] [CrossRef]
- Furumai, K.; Wang, X.; Zurob, H.; Phillion, A. Evaluating the Effect of the Competition between NbC Precipitation and Grain Size Evolution on the Hot Ductility of Nb Containing Steels. ISIJ Int. 2019, 59, 1064–1071. [Google Scholar] [CrossRef]
- Zhou, T.; O’malley, R.J.; Zurob, H.S. Study of grain-growth kinetics in delta-ferrite and austenite with application to thin-slab cast direct-rolling microalloyed steels. Metall. Mater. Trans. A 2010, 41, 2112–2120. [Google Scholar] [CrossRef]
- Cahn, J.W. The impurity-drag effect in grain boundary motion. Acta Metall. 1962, 10, 789–798. [Google Scholar] [CrossRef]
- Cruz-Fabiano, A.L.; Logé, R.; Bernacki, M. Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework. Comput. Mater. Sci. 2014, 92, 305–312. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, D.I.; Kim, W.T.; Park, Y.B. Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys. Rev. E 2006, 74, 061605. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Zhou, T.H.; Zurob, H.S. Abnormal and post-abnormal austenite grain growth kinetics in Nb–Ti microalloyed steels. Can. Metall. Q. 2011, 50, 389–395. [Google Scholar] [CrossRef]
Final Ensemble Size | tmax (s) | r2 | RMSE |
---|---|---|---|
Auto | NA | 0.98 | 14.84 |
1000 | 6000 | 0.96 | 15.24 |
500 | 4000 | 0.96 | 16.38 |
100 | 1700 | 0.90 | 23.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatroudi, S.F.; Cicoria, R.; Zurob, H.S. Computationally Efficient Algorithm for Modeling Grain Growth Using Hillert’s Mean-Field Approach. Materials 2024, 17, 2341. https://doi.org/10.3390/ma17102341
Chatroudi SF, Cicoria R, Zurob HS. Computationally Efficient Algorithm for Modeling Grain Growth Using Hillert’s Mean-Field Approach. Materials. 2024; 17(10):2341. https://doi.org/10.3390/ma17102341
Chicago/Turabian StyleChatroudi, Shabnam Fadaei, Robert Cicoria, and Hatem S. Zurob. 2024. "Computationally Efficient Algorithm for Modeling Grain Growth Using Hillert’s Mean-Field Approach" Materials 17, no. 10: 2341. https://doi.org/10.3390/ma17102341
APA StyleChatroudi, S. F., Cicoria, R., & Zurob, H. S. (2024). Computationally Efficient Algorithm for Modeling Grain Growth Using Hillert’s Mean-Field Approach. Materials, 17(10), 2341. https://doi.org/10.3390/ma17102341