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Abstract: To investigate the interconnected effects of manufacturing processes on microstructure
evolution during hot-rolling, a through process model is required. A novel numerical implementation
of the mean-field approach was introduced to efficiently describe the grain growth of larger systems
and extended durations. In this approach, each grain is embedded within an average medium and
interacts with the average medium, thus avoiding the complexities of individual grain interactions.
The proposed upsampling approach dynamically adjusts the simulation grain ensemble, ensuring
efficiency and accuracy regardless of the initial number of grains present. This adaptation prevents
undersampling artifacts during grain growth. The accuracy of the model is verified against ana-
lytical solutions and experimental data, demonstrating high agreement. Moreover, the effects of
different initial conditions are successfully investigated, demonstrating the model’s versatility. Due
to its simplicity and efficiency, the model can be seamlessly integrated into other microstructure
evolution models.

Keywords: modeling; grain growth; mean-field modeling; micro-alloyed steels; grain-size
distribution; upsampling algorithm

1. Introduction

The production of modern line pipe steels involves various thermomechanical process-
ing steps that impact microstructure evolution during the hot-rolling process. There is great
demand within the steel industry to develop physics-based through-process models for
microstructure evolution during thermomechanical processing, including the interactions
between processes [1–6]. The simplicity of the model is crucial, as it enables computa-
tionally efficient numerical schemes. For instance, the crystal growth model introduced
by Elder et al. [7] achieved simulations that were many orders of magnitude faster than
other atomistic methods. These models have the potential to accelerate the development of
new products as well as improve existing products and processes, provided that a large
number of simulations can be carried out efficiently to explore the effects of chemistry and
process parameter changes. Understanding detailed microstructure evolution aspects such
as grain size, dislocation density, precipitate radius, volume fraction, and solute content
is necessary to determine flow stress during rolling [8–10]. Moreover, this information
can be used to predict room temperature properties, including yield stress, ductile–brittle
transition temperature (DBTT), and grain-size distribution [9,11]. One of the key processes
to capture during the hot-rolling of steels is austenite grain-size evolution during reheating
and hot-rolling.

During grain growth, a polycrystalline microstructure can undergo changes with
respect to grain size, grain shape, orientation, and size distribution. A quantitative de-
scription of this process is essential for optimizing a wide range of processes in which
the material spends time at high temperatures. The driving force for grain growth arises
from the grain boundary curvature of adjacent grains of dissimilar sizes. In this situation,
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larger grains will grow at the expense of small ones—a process known as grain growth.
Grain growth can occur in different regimes, referred to as “normal” and “abnormal”
growth. Normal grain growth is typically characterized by parabolic growth kinetics and
a self-similar grain-size distribution [12]. On the other hand, in abnormal grain growth
(often referred to as secondary recrystallization), a small number of larger grains emerge,
gradually consuming a matrix of smaller grains. A bimodal grain-size distribution is
observed during abnormal grain growth [13–15].

Various analytical models exist for normal grain growth. In the early 1950s, Burke and
Turnbull [16] proposed a treatment that predicted parabolic grain-growth kinetics. Their
treatment modeled boundary migration as a process involving atomic jumps across the
boundary, driven by pressure differences which arise from surface curvature. Soon after, C.S.
Smith [17] highlighted the role of surface tension equilibria and topological requirements
during grain growth. He proposed that a tendency exists towards a consistent grain-size
distribution (GSD), which was shown experimentally to be a log-normal distribution.
Hillert adapted the treatments of particle coalescence [5–8] to grain growth and was able to
arrive at a self-similar grain-size distribution for normal grain growth.

The grain-growth treatment by Hillert [1] as well as those developed by Feltham [18]
and Louat [19] can be described as mean-field models (MFM). The mean-field approach
addresses the evolution of the size of an individual grain situated within an environ-
ment/medium whose properties are obtained by averaging the properties of the entire
array of grains. Observing microstructure evolution in materials through experimental
studies on grain growth can be time-intensive and costly. Therefore, a quantitative under-
standing of microstructure evolution during this stage is essential. Numerical simulation
provides a practical alternative to address this challenge. In recent years, numerical im-
plementations of the mean-field treatment of grain growth have been introduced. The
advantage of the numerical approach is that it can handle grain-size evolution over a
wide range of conditions, including situations when the grain-size distribution is not the
steady-state distribution. Some of the recent work in this area includes that of Enomoto
et al. [20], who employed an MFM based on the Abbruzzese and Lucke model [21,22]. The
simulated grain-size distribution was compared to the measured distributions for relatively
short times of up to 100 s. Wu et al. developed MFM for normal grain-growth simulations,
successfully validated against parabolic growth theory, and obtained a steady-state Hillert
distribution. However, the outputs did not align well with the experimental data [23].
Maire et al. [24] evaluated the MFMs of grain growth against 3D full-field simulations.
Their study demonstrated the adaptability of the Hillert model, particularly due to its
incorporation of the initial grain-size distribution (GSD) and a discrete representation
of the microstructure. A recent review by Roth et al. [25] compared experimental grain-
growth data to the predictions of numerical MFM simulations based on the approaches
of Hillert [26], Abbruzzese et al. [27], and Maire et al. [28]. It was found that the Hillert
model generated more accurate predictions of the GSD, with a simpler average medium
description. Another study [29] demonstrated the potential to couple MFM grain-growth
simulations and Thermo-Calc in order to capture particle-pinning effects.

In contrast to mean-field models, full-field models aim to provide a comprehensive
description of the microstructure by capturing the complete topology at the polycrystal
scale. Atomistic simulations demonstrate anisotropies in boundary energy and mobility.
However, simulations of microstructural evolution suggest that anisotropy in boundary
mobility has a minimal impact on a microstructure’s stochastic evolution, possibly affecting
only the rate of evolution. Conversely, anisotropy in grain boundary energy significantly
alters the topology of the polycrystalline microstructure [30,31]. A topological investigation
of 3D growth by tracking the number of faces of grains discovered deviations in grain-
size distribution exhibiting relatively longer tails of large grains [32]. Several full-field
methodologies have been effectively employed to simulate the process of grain growth,
such as the Monte Carlo Potts model [33–37], the Surface Evolver [38–40], the Vertex
Models [41–44], the Front-Tracking Models [45–47], and the Phase-Field Models [32,48–51].
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When the main goal of the simulation is to track the grain-growth kinetics and grain-size
distribution for equiaxed grains, the MFM can provide an adequate description of the
microstructure with competitive computation times compared to full-field models [52–55].

In this study, we have opted to employ a mean-field model to study 3D grain growth
assuming isotropic grain boundary energy and mobility, a constant temperature, and
the absence of precipitation. Unlike other numerical approaches, the MFM allows for
a simplified representation of the complex interactions occurring between individual
grains, allowing for the simulation of larger systems over extended time periods [52]. The
benefit of the mean field’s description lies in its simplicity; however, it cannot capture
spatially heterogeneous microstructural effects like segregation and the topology of the
polycrystalline microstructure [56,57]. In order to accurately simulate grain growth, it is
essential to maintain a substantial number of grains during the simulation [51]. If one
considers a constant simulation volume, the number of grains within this volume will
decrease as grain growth progresses, and, eventually, the number of grains present will not
be sufficient to allow the accurate calculation of the grain-growth kinetics and grain-size
distribution. Conversely, the opposite situation can occur in the context of recrystallization.
Repeated cycles of recrystallization could lead to the introduction of an enormous number
of new grains within the simulation volume, leading to a system which is too large to
efficiently simulate, which will be investigated in our next paper. In this work, we introduce
a numerical algorithm that dynamically adapts the size of the simulation volume in order
to maintain both the accuracy and efficiency of the grain-growth simulation.

2. Modeling Framework

The polycrystal material is represented by a population of grains evolving within
the average medium, with properties representative of the aggregate referred to as the
mean field [58]. This approach closely resembles the self-consistent models frequently
employed in the field of continuum mechanics for inhomogeneous materials. In this model,
a set of spherical grains is used to represent the material, and each individual grain is
described using a set of variables at any given moment. In our case, the variable of interest
is size (Di), as shown in Figure 1. Each grain is surrounded by a uniform matrix, with
properties obtained by averaging those of all the grains (D). In the present implementation,
computational efficiency is maintained by binning grains with a similar size. A grain class
or bin is a set of grains with identical characteristics. These bins or classes have a size and a
frequency associated with them. Each class enables the definition of a representative grain,
possessing the characteristics associated with its corresponding grain class.
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Figure 1. Illustration of a grain embedded in an average medium.

The MFM does not keep track of the neighbours of an individual grain. Instead, each
grain is compared to the average medium. Thus, the average growth rate for a specific
class is determined by the difference in the radii of curvature between the current class and
the average medium, as follows [26]:

dRi
dt

= αMσ(
1

RCr
− 1

R
) (1)
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where M is the grain boundary mobility, σ is the grain boundary energy, RCr is the critical
radius (Rcr = R in 2D, and Rcr = 9/8 R for a 3D system where R is the mean radius), and α is
a geometrical constant (α = 0.5 for a 2D, and α = 1 for a 3D system) [26]. The grain structure
can be represented by a dynamic grain number, Ni, describing the number of grains with
radius Ri at time t. In order to ensure volume conservation during normal grain growth
( dV

dt = 0), the following is required:

4π∑
NiR2

i dRi

dt
= 0 (2)

By substituting the dRi
dt into dV

dt , the critical radius is expressed as follows [59,60]:

Rcr =
∑i NiR2

i
∑i NiRi

(3)

The critical radius is substituted into Equation (1) to calculate the growth rate of each
grain. Each individual grain bin is updated at each time step by integrating the growth rate
equation using Euler’s method:

R(i,t+dt) = R(i,t) +
dR(i,t)

dt
∆t (4)

As grain growth progresses, the total number of bins in the system will decrease. If the
number of bins drops critically low, the above algorithm will lead to numerical artefacts and
reliable estimates of the average grain size, and the grain-size distribution would not be ob-
tained. To avoid this issue, an “Upsampling Algorithm” has been introduced. The concept
of the upsampling algorithm has been widely employed in image processing for multiple
purposes, notably for resolution enhancement and performing interpolation [61–65]. In our
study, the basic idea of the developed algorithm is to consider that our volume sample size
is the limitation that introduces these sampling artefacts. Therefore, we can speculate that
other grain-size classes (bins) would exist in the gaps of ensemble if our volume sample
window were to be different. By adding new bins within these gaps while conserving the
simulation volume, we can mitigate the undersampling issue. The algorithm begins by
ordering the grain bins by size and identifying the largest gap between adjacent bins. A new
grain bin is then introduced inside the gap. This algorithm acts as a smoothing statistical
function to ensure that a sufficient number of grain bins exist throughout the simulation, to
ensure that Equations (1)–(4) can accurately predict the grain-growth kinetics.

In order to introduce new bins, a sampling kernel function is implemented.
This function essentially acts as a window function, analyzing neighboring bins to

determine the characteristics of the new bin. This function can take on a wide variety of
forms, such as a Box function or a Gaussian function. However, it must adhere to the
constraint of conserving volume throughout the process. For simplicity, we opt for a kernel
that utilizes data from the nearest two neighbors. The volume of the newly introduced bin
is determined by the sum of 1/3 of the volume of the bin immediately smaller than it and
1/3 of the volume of the bin immediately larger than it. This choice of values ensures a
linear transition within the gap. The corresponding volume is removed from the adjacent
bins, as illustrated in Figure 2. This process is repeated until the minimum target ensemble
size is achieved. This algorithm acts as a smoothing statistical function to ensure that a
sufficient number of grain bins exist throughout the simulation and a smooth distribution is
maintained. Furthermore, the upsampling algorithm should protect complex distribution
features, such as multimodality, by conserving volume during the upsampling process.
When bins are inserted between the peaks in multimodal grain-size distributions, they
will possess minimal volume fractions, reflective of the small volume fractions of the bins
on the outskirts of the peaks. Additionally, a restriction can be imposed on the kernel
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sampling window to exclude gaps in the distribution beyond a certain size threshold from
consideration.
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In the next step, the essential material parameters need to be identified for developing
the MFM for a specific system. In order to evaluate the grain-growth kinetics against
experimental data, we need to define the mobility for a specific system of interest. For a
Niobium micro-alloyed steel [66,67], it has been demonstrated that the grain boundary
mobility can be described using Cahn’s solute drag model [68]:

M′ =

(
1

Mp
+ αmCNb

)−1
, (5)

with αm =
δNv(kbT)2

EbDx

(
sinh

(
Eb

kbT

)
− Eb

kbT

)
(6)

M′ represents the grain boundary mobility when Nb is present, CNb is the atomic
fraction of the Niobium in solution, Nv represents the number of atoms per unit volume, Eb
denotes the binding energy of Nb to the grain boundary, Dx refers to the cross-boundary
diffusion coefficient of Nb, and kb represents Boltzmann’s constant. In this equation, Mp
is the intrinsic mobility, which refers to the mobility of the grain boundary in the pure
material. Furumai et al. and Zhou et al. [66,67] identified this with the mobility of the
Nb-free C-Mn steel as follows:

Mp (T) =
A
T

.exp
(
− Q

RT

)
(7)

where A = 0.2605
[
m4K/s/J

]
, Q = 173160 [J/mol], and R is the gas constant [J/K/mol].

The values of Mp range from 4.87 × 10−11[m4/s/J
]

at 1100 ◦C to 6.06 × 10−10 [
m4/s/J

]
at

1400 ◦C.

3. Results and Discussion

To start, it is necessary to validate the accuracy of the present algorithm by confirm-
ing that it can reproduce the key predictions of grain-growth theory. Once this has been
demonstrated, the computational efficiency of the model will be demonstrated. The sim-
ulations are carried out in comparison with the F-C-Mn-Nb system, as described in the
previous section.

Figure 3 shows the probability density of the grains (frequency of data points in each
bin) versus normalized grain size (R/Rcr) during grain growth to illustrate the evolution of
GSD. It is important to note that all the grain-size distribution profiles represent instanta-
neous distributions at the specified times. For comparison, we also included the theoretical
Hillert distribution function:

F(u) = (2e)β βu

(2 − u)2+β
exp

(
−2β

2 − u

)
(8)
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where u is R/Rcr, β = 2 for a 2D system, and β = 3 for a 3D system [26]. When the initial GSD
is a Hillert distribution, the numerical implementation of MFM maintains the initial Hillert
distribution at all times, even as the number of grains decreases, as shown in Figure 3a–c.
The effect of the initial GSD on the evolution of 3D grain-size distributions during normal
grain growth is shown in Figure 3d. The log-normal and Hillert GSDs have been utilized
as the initial conditions. Figure 3d shows a gradual change in the initial log-normal GSD
profile towards a steady-state Hillert distribution. Once the Hillert distribution has been
achieved, it remains unchanged for the rest of the simulation. Cruz-Fabiano et al. [69]
demonstrated, using 2D grain-growth full-field simulations based on a finite-element
formulation, that the classical Hillert model can accurately capture grain-growth kinetics
for various initial GSDs. Kim et al. [70] demonstrated the evolution of GSD during the early
stages of 3D grain growth, starting from different non-steady-state GSDs. They showed
how the GSD profile at the initial stage shifts towards a steady state that almost perfectly
matches the Hillert 3D distribution. Their simulation was limited to relatively short times
because, at longer times, an insufficient number of grains remained in the system. It has
been shown that, for long-time simulations, the accuracy of the simulation strongly relies
on the number of grains used [51]. Therefore, the upsampling algorithm introduced in the
present study resolves this issue by maintaining the number of necessary grains through
the expansion of the equivalent simulation volume, allowing for a continuous simulation
of grain growth almost indefinitely.
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Figure 3. Grain-size distribution evolution of normal grain growth during 3D ideal grain growth at
1100 ◦C compared with theoretical Hillert GSD (black solid line) in the following conditions: (a) initial
GSD as Hillert at t = 0 s, (b) t = 5000 s, and (c) t = 10,000 s; (d) initial GSD as log-normal distribution
at different time steps, which, after 2000 GSD, remains unchanged, corresponding to the Hillert
distribution, indicating a steady state.
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Figure 4a shows the effect of the initial GSD on grain-growth kinetics, using log-normal,
Hillert, and bimodal distributions. In the case of an initial Hillert GSD, the growth kinetics
were parabolic during the whole process. Parabolic kinetics are also observed for the
simulation with a log-normal initial GSD. In this case, however, there is an initial transient
region in which the kinetics are not parabolic. This was reported by other researchers
and is associated with the evolution of the grain-size distribution from a non-steady-state
distribution to the steady-state Hillert GSD [40]. The bimodal distribution resembled
a Hillert distribution, but 5% of the total volume was assigned to grains with a mean
radius size three times larger than the rest. The model was also capable of capturing
abnormal grain growth when a small fraction of large grains (R/Ravg > 3) were included
within the initial GSD, as shown in Figure 4a. The rapid increase in the average size in
this case was attributed to the consumption of the small grains by the large grains. This
continued until the impingement of the large grains, which was followed by a process
similar to normal grain growth which is referred to as post-abnormal grain growth [71,72].
Normally, numerical simulations would not be able to capture post-abnormal grain growth
because a very small number of grains would remain within the simulation volume. The
use of the upscaling algorithm, however, makes it possible to continue the simulation by
ensuring that the required minimum number of grains is always included in the simulation.
Figure 4b demonstrates the time evolution of the squared mean grain size. It was found by
fitting to the curve the notion that the outputs obeyed the parabolic law in grain growth,
R2 − R2

0 = kt, where t is time, k is the growth constant, and R0 is the average initial grain
size [16]. At 1100 ◦C, the growth constant was calculated as k = 4.8 µm2s−1.

The average grain-size evolution of a micro-alloyed steel (∼ 0.01 wt.% Nb, 0.1 wt.%
C, 0.97 wt.% Mn, 0.3 wt.% Si) as a function of holding time is shown in Figure 4c. The
simulation results are plotted against the experimental data at temperatures in the range
of 1100 ◦C to 1400 ◦C. The experimental data of the mean grain size reported by [66] were
obtained using the linear intercept method after etching the samples to reveal the prior
austenite grain boundaries. The three-dimensional grain diameter was estimated to be
1.61 times the diameter obtained by the linear intercept. The grain boundary mobility was
determined by Equation (5), utilizing parameters from Nb micro-alloyed steel [66]. As it
can be seen, the mean grain size and growth rate increased by increasing the temperature.
The simulation outcomes align well with the experimental results derived from the grain-
growth experiments.

One of the crucial aspects of modeling microstructure evolution is to maintain the
efficiency of the model as well as the accuracy. It was discussed in the previous section that
the number of grains in the system can dramatically change over time. In the case of grain
growth, small grains will disappear from the ensemble, and, in the case of recrystallization,
new grains will be added to the ensemble. This naturally leads to two undesired scenarios
in which there are, respectively, too few or too many grains in the ensemble. In order to
address this problem, a rescaling procedure was implemented as described above.

A critical parameter of the simulation is the number of grain bins. This number should
be sufficiently large to accurately capture the evolution of the grain size. In the case of grain
growth, the number of grain bins decreases over time owing to the disappearance of the
smaller grains. Figure 5a shows that numerical artefacts emerge at longer times because an
insufficient number of grains remain in the system modeled in this study. In contrast, when
the upsampling algorithm is implemented, the sample volume is continuously adjusted
to ensure that a sufficient number of grains are present within this volume. As a result,
accurate predictions of the average radius and size distribution are obtained even at very
long simulation times.
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Figure 4. Computed temporal evolution of the number average mean grain size, using the initial
grain-size distributions (GSDs) represented by the following: (a) log-normal (solid line), Hillert
(dashed line), and bimodal (dotted) distribution. (b) Squared mean grain size changes linearly
over time with the initial GSD like Hillert, showing the parabolic kinetics of grain growth. (c) The
experimental austenite grain size (symbols) with a standard deviation of 11–23% of the measured
mean grain-size values and the simulation results (solid lines) as a function of holding time at different
temperatures of 1100 ◦C, 1200 ◦C, 1300 ◦C, and 1400 ◦C [66].

Table 1 demonstrates that the simulation utilizing the upsampling algorithm exhibits
the highest overall r-squared value and the lowest root mean square error (RMSE) when
compared with the theoretical parabolic growth law. In contrast, when upsampling is not
used, the r-squared and RMSE values deteriorate over time due to not having sufficient
bins for an accurate simulation. To quantify this discussion, a moving standard deviation is
computed over the entire simulation period to identify the time at which deviations from
the theoretical values exceed the acceptable accuracy limit (i.e., moving standard devia-
tion >5 µm). When the initial number of grains in the simulation is only 100, significant
deviations from the theoretical predictions are observed after 1700 s. Increasing the initial
number of grains to 1000 ensures a good fit for up to 6000 s. Beyond that time, the drop in
the number of grains will again lead to large errors. When the upsampling algorithm is
implemented, the accuracy of the simulation is maintained almost indefinitely.
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Table 1. Effect of ensemble size on the accuracy of the model output: tmax shows the longest
simulation time during which accurate parabolic kinetics are observed. The root mean square error
(RMSE) for each simulation is also included. The r2 values show the extent to which the calculated
kinetics approach the parabolic growth law at 1100 ◦C and 0.01 wt.% Nb.

Final Ensemble Size tmax (s) r2 RMSE

Auto NA 0.98 14.84
1000 6000 0.96 15.24
500 4000 0.96 16.38
100 1700 0.90 23.32

Similarly, Figure 5b depicts the GSD under conditions where the algorithm is inactive,
leading to the GSD deviating from a steady state as a consequence of a decrease in the
grain count. This deviation is attributed to the small number of bins remaining. When the
upscaling algorithm is used, new bins are added to ensure that an appropriate number of
grains continue to be used in order to maintain the accuracy of the simulation. This ensures
that a Hillert distribution is maintained throughout the process, as depicted in Figure 5c. In
order to assess the impact of the upsampling algorithm on the computational efficiency of
grain-growth simulations, 5000 starting bins were used to examine the extended duration
of simulations compared to automatic simulations and identify when accuracy was com-
promised due to the inability to add bins during the growth experiments. Disabling the
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upsampling algorithms resulted in significantly increased simulation times and a lower
accuracy. When upsampling is disabled, the declining number of grains during the simula-
tion may lead to reduced running times, although the model accuracy is completely lost
after 6000 s of simulation.

4. Conclusions

This study introduces a novel mean-field modeling approach for simulating the grain-
growth process. The model was successfully tested against grain-growth theories that
demonstrated its ability to accurately capture key aspects, including the parabolic growth
pattern and the self-similarity in the grain-size distribution across different time points.
The primary novelty of the model lies in its efficiency and ability to maintain accuracy even
during prolonged simulations, achieved through the innovative algorithm for dynamically
adjusting the number of grains. It was demonstrated that simulations using the upsam-
pling algorithm achieved the lowest RMSE and highest r2 values for parabolic kinetics,
showing the highest agreement with analytical models and allowing the simulation to run
indefinitely. Ultimately, the validation of this model was conducted against experimental
findings from grain-growth experiments involving micro-alloyed steels, demonstrating
a very good agreement. This paper presents a robust algorithm capable of handling the
various microstructures, including steady-state as well as and non-steady-state ones, which
could emerge during thermomechanical processing conditions. The adaptive upsampling
algorithm introduced in this study can be integrated into other models, enhancing efficiency
as well as facilitating seamless incorporation with other components of microstructure evo-
lution models. Future endeavors will focus on integrating this grain-growth model with other
microstructural evolution phenomena such as dynamic and static recrystallization, with the
aim of developing a comprehensive model for the evolution of grain size. Consequently, a
through-process model of hot-rolling will be developed to incorporate microstructure evolu-
tion components. This model will track microstructure changes during thermomechanical
processing and assist in optimizing and predicting product properties, ultimately aiding in
the design of new products and the optimization of hot-rolling schedules.
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