Enhancement of the Corrosion Properties of Al–10%Si–2%Cu Alloys with La Addition
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
Corrosion of Al Alloy with La Addition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baser, T.A.; Umay, E.; Akinci, V. New trends in aluminum die casting alloys for automotive applications. Eurasia Proc. Sci. Technol. Eng. Math. 2022, 21, 79–87. [Google Scholar] [CrossRef]
- Ou, J.; Wei, C.; Maijer, D.; Cockcroft, S.; Zhang, Y.; Chen, Z.; Zhu, Z. Modelling of an industrial die casting process for the production of aluminum automotive parts. IOP Conf. Ser. Mater. Sci. Eng. 2020, 861, 012030. [Google Scholar] [CrossRef]
- Vargel, C. Corrosion of Aluminium, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2020; pp. 150–170. [Google Scholar]
- Matejka, M.; Bolibruchová, D.; Kajánek, D. Evaluation of the Corrosion Resistance of the Al-Si-Cu-Mg Alloy with the Addition of Zirconium. J. Adv. Manuf. Technol. 2023, 23, 861–869. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, R.; Wang, D.; Nagaumi, H.; Zhang, M.; Li, X.; Wu, Z.; Zhang, X.; Hua, F.; Zhang, B. Mechanical properties and corrosion behavior of trace Cr-containing Al–9Si–1.2Cu–0.5Mg casting alloy. J. Mater. Res. Technol. 2023, 27, 5059–5069. [Google Scholar] [CrossRef]
- Nie, Z.-R.; Jin, T.-N.; Zou, J.-X.; Fu, J.-B.; Yang, J.-J.; Zuo, T.-Y. Development on research of advanced rare-earth aluminum alloy. Trans. Nonferrous Met. Soc. China 2003, 13, 509–514. [Google Scholar]
- Nie, Z.-R.; Jin, T.-N.; Fu, J.-B.; Xu, G.F.; Yang, J.-J.; Zhou, J.X.; Zuo, T.Y. Research on rare earth in aluminum. Mater. Sci. Forum 2002, 396–402, 1731–1736. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, F.; Ai, F.; Yan, H. Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J. Alloys Compd. 2012, 538, 21–27. [Google Scholar] [CrossRef]
- Xiong, J.; Yan, H.; Zhong, S.; Bi, M. Effects of Yb addition on the microstructure and mechanical properties of as-cast ADC12 alloy. Metals 2019, 9, 108. [Google Scholar] [CrossRef]
- Zou, Y.; Yan, H.; Yu, B.; Hu, Z. Effect of rare earth Yb on microstructure and corrosion resistance of ADC12 aluminum alloy. Intermetallics 2019, 110, 106–487. [Google Scholar] [CrossRef]
- Chang, J.; Moon, I.; Choi, C. Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals. J. Mater. Sci. 1998, 33, 5015–5023. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Z.; Cui, H.; Meng, C.; Bai, P.; Du, Z.; Zhao, X.; Li, J. Study on mechanism of refining and modifying in Al–Si–Mg casting alloys with adding rare earth cerium. Mater. Res. Express 2023, 10, 086511. [Google Scholar] [CrossRef]
- Ding, W.; Zhao, X.; Chen, T.; Zhang, H.; Liu, X.; Cheng, Y.; Lei, D. Effect of rare earth Y and Al–Ti–B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy. J. Alloys Compd. 2020, 830, 154–685. [Google Scholar] [CrossRef]
- Nabawy, A.M.; Samuel, A.M.; Alkahtani, S.A.; Abuhasel, K.A.; Samuel, F.H. Role of cerium, lanthanum, and strontium additions in an Al–Si–Mg (A356) alloy. Int. J. Mater. Res. 2016, 107, 446–458. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Jin, H.; Sui, Y.; Jiang, Y.; Wang, Q. Effect of lanthanum content on microstructure and mechanical properties of Al–5Mg–2Si-0.6 Mn alloy in squeeze casting. J. Mater. Res. Technol. 2021, 15, 6025–6033. [Google Scholar] [CrossRef]
- Gong, M.; Liu, K.; Yang, F.; Liu, Y.; Xing, S.; Chen, Z.; Ma, Y. Effect of lanthanum on secondary phase modification and the mechanical properties of 6082 aluminum alloy. J. Mater. Eng. Perform. 2023, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Meng, G.; Song, M. Effect of Cu addition on properties of an Al-La alloy. Coatings 2023, 13, 1505. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Zhou, Z.; Xu, J. Effects of cerium and lanthanum on the corrosion behavior of Al-3.0 wt.% Mg alloy. J. Mater. Eng. Perform. 2016, 25, 1122–1128. [Google Scholar] [CrossRef]
- Kori, S.A.; Murty, B.S.; Chakraborty, M. Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium. Mater. Sci. Eng. A 2000, 283, 94–104. [Google Scholar] [CrossRef]
- Yao, D.; Qiu, F.; Jiang, Q.; Li, Y.; Arnberg, L. Effect of lanthanum on grain refinement of casting aluminum-copper alloy. Int. J. Met. 2013, 7, 49–54. [Google Scholar] [CrossRef]
- Quested, T.E.; Greer, A.L. Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification. Acta Mater. 2005, 53, 4643–4653. [Google Scholar] [CrossRef]
- StJohn, D.H.; Prasad, A.; Easton, M.A.; Qian, M. The contribution of constitutional supercooling to nucleation and grain formation. Metall. Mater. Trans. A 2015, 46, 4868–4885. [Google Scholar] [CrossRef]
- Zhou, S.H.; Napolitano, R.E. Phase equilibria and thermodynamic limits for partitionless crystallization in the Al–La binary system. Acta Mater. 2006, 54, 831–840. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, L.; Jiang, H.; Zhao, J.; He, J. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys. J. Mater. Sci. Technol. 2020, 47, 142–151. [Google Scholar] [CrossRef]
- Mitrašinović, A.M.; Robles Hernández, F.C. Determination of the growth restriction factor and grain size for aluminum alloys by a quasi-binary equivalent method. Mater. Sci. Eng. A 2012, 540, 63–69. [Google Scholar] [CrossRef]
- Gschneidner, K.A.; Calderwood, F.W. The Al−La (Aluminum-Lanthanum) system. Bull. Alloy Phase Diag. 1988, 9, 686–689. [Google Scholar] [CrossRef]
- Zhao, B.; Xing, S.; Sun, H.; Yan, G.; Gao, W.; Ou, L. Effect of rare-earth La on microstructure and mechanical properties of Al7Si4CuMg alloys prepared by squeeze casting. J. Mater. Sci. 2022, 57, 12064–12083. [Google Scholar] [CrossRef]
- Jiang, H.; Li, S.; Zheng, Q.; Zhang, L.; He, J.; Song, Y.; Deng, C.; Zhao, J. Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al-Fe alloys. Mater. Des. 2020, 195, 108991. [Google Scholar] [CrossRef]
- Takeuchi, A.; Akihisa, I. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Hosseinifar, M.; Malakhov, D.V. The sequence of intermetallics formation during the solidification of an Al-Mg-Si alloy containing La. Metall. Mater. Trans. A 2011, 42, 825–833. [Google Scholar] [CrossRef]
- Stern, M. Electrochemical polarization: II. Ferrous-ferric electrode kinetics on stainless steel. J. Electrochem. Soc. 1957, 104, 559. [Google Scholar] [CrossRef]
- Khan, A.A.; Kaiser, M.S. Electrochemical corrosion performance of eutectic Al-Si automotive alloy in 0.1 M and 0.2 M NaCl solution. IOP Confer. Ser. Mater. Sci. Eng. 2022, 1248, 012031. [Google Scholar] [CrossRef]
- ASTM G102-89(2015)e1; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International: Philadelphia, PA, USA, 2015.
- Ralston, K.D.; Birbilis, N. Effect of grain size on corrosion: A review. Corrosion 2010, 66, 075005. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, G.; Gao, H.; Li, G.; Zhai, C. Influence of lanthanum on the microstructure, mechanical property and corrosion resistance of magnesium alloy. J. Mater. Sci. 2006, 41, 5409–5416. [Google Scholar] [CrossRef]
- Ralston, K.D.; Birbilis, N.; Davies, C.H.J. Revealing the relationship between grain size and corrosion rate of metals. Scr. Mater. 2010, 63, 1201–1204. [Google Scholar] [CrossRef]
- Orłowska, M.; Ura-Bińczyk, E.; Olejnik, L.; Lewandowska, M. The effect of grain size and grain boundary misorientation on the corrosion resistance of commercially pure aluminium. Corros. Sci. 2019, 148, 57–70. [Google Scholar] [CrossRef]
- Zehra, T.; Kaseem, M. Lanthanides: The Key to Durable and Sustainable Corrosion Protection. ACS Sustain. Chem. Eng. 2023, 11, 6776–6800. [Google Scholar] [CrossRef]
- Hou, L.; Cui, X.; Yang, Y.; Lin, L.; Xiao, Q.; Jin, G. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys. Phys. Procedia 2013, 50, 261–266. [Google Scholar] [CrossRef]
- Cardinale, A.M.; Macciò, D.; Luciano, G.; Canepa, E.; Traverso, P. Thermal and corrosion behavior of as cast Al-Si alloys with rare earth elements. J. Alloys Compd. 2017, 695, 2180–2189. [Google Scholar] [CrossRef]
- Zheng, Q.; Wu, J.; Jiang, H.; Zhang, L.; Zhao, J.; He, J. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys. Corros. Sci. 2021, 179, 109–113. [Google Scholar] [CrossRef]
- Kus, E.; Lee, Z.; Nutt, S.; Mansfeld, F. A comparison of the corrosion behavior of nanocrystalline and conventional Al 5083 samples. Corrosion 2006, 62, 152–161. [Google Scholar] [CrossRef]
- Ralston, K.D.; Fabijanic, D.; Birbilis, N. Effect of grain size on corrosion of high purity aluminium. Electrochim. Acta 2011, 56, 1729–1736. [Google Scholar] [CrossRef]
Compositions (wt% La) | Label | Si | Mg | Ti | Mn | Fe | Cu | Zn | Sr | La | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | xLa-0 | 9.91 | 0.02 | 0.17 | 0.70 | 1.89 | 1.02 | 0.02 | 0.24 | 0.00 | Bal. |
0.25 | xLa-0.25 | 9.97 | 0.02 | 0.19 | 0.70 | 1.86 | 0.85 | 0.02 | 0.22 | 0.15 | |
0.5 | xLa-0.5 | 9.79 | 0.02 | 0.18 | 0.70 | 1.76 | 0.83 | 0.02 | 0.21 | 0.36 | |
0.75 | xLa-0.75 | 9.68 | 0.02 | 0.19 | 0.70 | 1.81 | 0.80 | 0.02 | 0.21 | 0.61 | |
1.0 | xLa-1 | 9.56 | 0.02 | 0.18 | 0.70 | 1.78 | 0.80 | 0.02 | 0.20 | 0.87 |
Alloys | Min. | Mean. | Max. | Standard Deviation |
---|---|---|---|---|
xLa-0 | 75.21 | 76.58 | 77.85 | 1.01 |
xLa-0.25 | 72.68 | 73.93 | 74.56 | 0.48 |
xLa-0.5 | 71.35 | 72.58 | 73.50 | 0.60 |
xLa-0.75 | 74.85 | 75.47 | 75.98 | 0.20 |
xLa-1 | 77.48 | 78.44 | 79.59 | 0.56 |
Alloys | Max. | Mean. | Min. | Standard Deviation |
---|---|---|---|---|
xLa-0 | 20.5 | 20.3 | 20.2 | 0.1 |
xLa-0.5 | 17.4 | 17.2 | 17.0 | 0.2 |
xLa-1 | 21.2 | 21.0 | 20.9 | 0.2 |
Alloys | Icorr (μA/cm−2) | Ecorr (V) | βa (V/decade) | βc (V/decade) | Rp (Ω·cm2) | Corrosion Rate (mmy) |
---|---|---|---|---|---|---|
xLa-0 | 3.43 | −0.59 | 0.017 | −0.182 | 1.97 × 103 | 2.07 × 10−2 |
xLa-0.5 | 1.09 | −0.65 | 0.020 | −0.239 | 7.32 × 103 | 6.59 × 10−3 |
xLa-1 | 3.32 | −0.66 | 0.024 | −0.419 | 2.97 × 103 | 2.05 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Heo, U.; Yang, H.; Kang, N. Enhancement of the Corrosion Properties of Al–10%Si–2%Cu Alloys with La Addition. Materials 2024, 17, 2496. https://doi.org/10.3390/ma17112496
Kim K, Heo U, Yang H, Kang N. Enhancement of the Corrosion Properties of Al–10%Si–2%Cu Alloys with La Addition. Materials. 2024; 17(11):2496. https://doi.org/10.3390/ma17112496
Chicago/Turabian StyleKim, Kyeonghun, Uro Heo, Haewoong Yang, and Namhyun Kang. 2024. "Enhancement of the Corrosion Properties of Al–10%Si–2%Cu Alloys with La Addition" Materials 17, no. 11: 2496. https://doi.org/10.3390/ma17112496
APA StyleKim, K., Heo, U., Yang, H., & Kang, N. (2024). Enhancement of the Corrosion Properties of Al–10%Si–2%Cu Alloys with La Addition. Materials, 17(11), 2496. https://doi.org/10.3390/ma17112496