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Received: 2 April 2024

Revised: 13 May 2024

Accepted: 18 May 2024

Published: 22 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Effect of Salt Solution Erosion on Mechanical Properties and
Micropore Structure of Recycled Fine Aggregate ECC
Yuanhang Xiang 1, Fengxia Han 1,2,* and Qing Liu 1,2

1 School of Architectural Engineering, Xinjiang University, Urumqi 830046, China;
107552104184@stu.xju.edu.cn (Y.X.); liuqing2666@xju.edu.cn (Q.L.)

2 Key Laboratory of Building Structure and Seismic Resistance of Xinjiang, Urumqi 830017, China
* Correspondence: fxhan@xju.edu.cn

Abstract: This study examined the impact of sulfate and sulfate–chloride dry–wet cyclic erosion
on the mechanical properties and microscopic pore structure of engineered cementitious composite
(ECC) with recycled fine aggregate (RA). Uniaxial tensile tests and four-point bending tests were
conducted to evaluate the mechanical properties of RAECC, while the resonance frequency ratio
was used to assess the integrity of the specimens. Finally, X-ray computed tomography (X-CT)
reconstruction was employed to analyze the erosion effects on the microscopic pore structure. The
results showed that the uniaxial tensile strength and flexural strength of the RAECC specimens in
corrosive solution first increased and then decreased, and the 5% Na2SO4 solution caused the most
serious erosion of the specimens. The resonance frequency ratio of the specimens reached the peak
value when they were subjected to dry–wet cycles 15 times in the 5% Na2SO4 solution. During the
erosion process, the pore space of the specimen first decreased and then increased, and the number of
pores increased. The erosion process is the result of the erosion products continuously filling and
eventually destroying the pores, and the erosion damage produces a large number of new pores and
poor sphericity, leading to a decline in mechanical properties.

Keywords: engineered cementitious composite; recycled fine aggregate; salt solution erosion;
mechanical properties; pore microstructure

1. Introduction

Concrete is widely used in construction, but concrete is a brittle material, prone to
produce cracks via tensile cracking, which provide a pathway for water and salt ions to
erode the infrastructure, leading to the permanent deterioration of structural elements and
affecting their service life [1–3]. Since the ability to control the crack width of concrete is an
important indicator of the durability of a structure, enhancing the crack control ability of
concrete is essential to improving the durability of the structure. Engineered cementitious
composite (ECC), which is made by incorporating fiber into the cement matrix, exhibits high
strain-hardening properties and good ductility under load, with restricted crack widths
during damage [4–7]. It can limit the penetration of aggressive ions, thus significantly
improving the corrosion resistance of concrete.

In recent years, the overconsumption of natural sand resources and the disposal
of large quantities of construction and demolition (C&D) waste have become a major
concern. To address this issue, recycling C&D waste and converting it into recycled
fine aggregate has become an important method to reduce concrete costs, alleviate the
scarcity of natural resources, and improve environmental sustainability [8–11]. Previous
research has shown that incorporating up to 40% recycled fine aggregate into concrete can
yield good mechanical and durability properties [12–14]. This suggests the potential to
create recycled fine aggregate (RA) from recycled construction and demolition materials
and use it in ECC to produce RAECC. However, recycled aggregates usually have high
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porosity and water absorption [15,16], which leads to an increase in the permeable porosity
and water absorption of RA-containing ECCs [17,18], properties that can seriously affect
the mechanical and durability properties of concrete [19–21]. Therefore, it is crucial to
investigate the impact of erosion on the microscopic pore structure changes of RAECC and
its effect on mechanical properties.

The existing methods for the study of ECC pore structure mainly rely on the mercury
intrusion porosimetry (MIP) technique to detect the distribution of the number of ECC pore
sizes and volumes [22,23]. However, there are defects in the MIP detection technique, which
cannot analyze the distribution of pores in three-dimensional space, and when mercury
is pressed into it, it can damage the pore structure and cause high porosity, which leads
to inaccurate data results [24]. X-ray computed tomography (X-CT) as an advanced non-
destructive testing method solves this problem well. Soliman et al. utilized X-CT technology
to investigate the impact of freeze–thaw cycles on the pore structure of asphalt concrete
mixtures. They observed that with an increase in the number of freeze–thaw cycles, there
was a corresponding increase in the total area of pores [25]. Liu et al. noted that erosion
products initially filled the internal pores of concrete, leading to the formation of new
cracks in later stages. This accelerated sulfate erosion, increased porosity, and introduced
a method for the local deterioration assessment of concrete structures using X-CT and
ultrasonic velocities [26]. Wang et al. employed X-CT technology to discover that during
ECC sulfate dry–wet cycle erosion, small pores transitioned into larger pores with the
accumulation of corrosion products, which was identified as the primary cause of concrete
deterioration [27]. X-CT technology is capable of reconstructing intricate information such
as the shape and distribution of pores in three-dimensional space, aiding in the examination
of internal structural changes in RAECC following erosion [28–33]. By integrating these
findings with the alterations in mechanical properties, a comprehensive understanding of
the degradation of RAECC during salt solution erosion mechanisms can be achieved.

This study focuses on utilizing construction solid waste to create recycled fine ag-
gregate replacing a portion of natural sand, for the production of RAECC. The research
investigates the effects of salt solution erosion (sulfate and sulfate–chloride) on the me-
chanical properties and micropore structure of RAECC under dry–wet cycle conditions.
The methodology includes testing the mechanical properties of eroded RAECC, utilizing
resonance frequency tests to assess specimen integrity, and employing X-CT microscopic
inspection (voxel resolution of 4.9µm) to analyze pore structure evolution post-erosion. The
integration of microscopic and macroscopic analyses elucidates the degradation mechanism
of RAECC when exposed to dry–wet cycle erosion by salt solutions.

2. Materials and Methods
2.1. Material Properties and Mix Proportion Design

The experiment used P•O 42.5R ordinary Portland cement from Xinjiang Tianshan
Cement Company (Urumqi, China). Class F fly ash (grade II) from China Construction
Western Construction Xinjiang Co. (Urumqi, China)was employed. Natural sand, aeolian
sand sourced from Kumutag in Xinjiang, and laboratory-created recycled fine aggregate
(RA) were chosen as fine aggregates. The production process of RA is illustrated in Figure 1,
with a water absorption rate of 9.4%. Additionally, the particle size gradation of the three
fine aggregates can be seen in Figure 2. A polycarboxylic-acid-based high-performance
water-reducing agent demonstrating a 25% water reduction rate and 36% solid content
was used. A thickener and defoamer supplied by Qingjun Chemical (Jinzhou, China) were
incorporated. For the production of ECC, polyethylene (PE) fiber of model 1600D developed
by Telif Fiber Manufacturing Factory (Laiwu, China) was chosen, with specific performance
indexes detailed in Table 1. Analytically pure anhydrous sodium sulfate from Zhiyuan
Chemical Factory (Tianjin, China) and analytically pure sodium chloride from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China) were used. A modified mix proportion,
determined through orthogonal testing on the original mixing ratio [34], indicated that 40%
and 20% of recycled fine aggregate and wind-logged sand were replacements for natural
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sand. The volume mixing amount of PE fiber was set at 1.5% vol. Specific mix proportions
can be seen in Table 2.
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Table 1. PE fiber performance parameters.

Density/(g/cm3)
Tensile

Strength/MPa
Elastic

Modulus/GPa
Ultimate

Elongation/% Length/mm Diameter/µm

0.97 3000 120 5 12 24

Table 2. PE-ECC mix ratio. unit: kg/m3.

Cement Fly Ash Natural
Sand

Aeolian
Sand RA Water Fiber Superplasticizer Thickener Defoamer

1050 263 193 97 193 332 14.5 7.88 0.55 2.10

2.2. Specimen Design

RAECC bone-type specimens (Figure 3) with dimensions of 230 mm× 60 mm× 15 mm were
fabricated for uniaxial tensile testing, and RAECC prismatic specimens with dimensions of
400 mm × 100 mm × 100 mm were fabricated for resonance frequency determination.
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Figure 3. Bone-type specimen schematic diagram.

2.3. Experimental Procedures
2.3.1. Dry–Wet Cycle Test Plan

Referring to the specification GB/T 50082-2009 [35], the chemical erosion of specimens
under dry–wet cycles was conducted on RAECC. A total of 40 dry–wet cycles were com-
pleted, with mechanical properties being tested once every 10 cycles. The dry–wet cycle
erosion test procedure is illustrated in Figure 4. Specimens that had been through 28 days
of regular upkeep were soaked in a solution for 16 h, then taken out and put in a lab oven
adjusted to (80 ± 5 ◦C) for dehydration for 6 h, succeeded by 2 h of cooling, resulting in a
dry–wet cycle every 24 h. The dry–wet cycle solutions included aqueous solution (W), 5%
Na2SO4 solution (S), and 5% Na2SO4—3% NaCl solution (F).
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2.3.2. Loading Scheme for Uniaxial Tensile Test Plan

After the bone-type specimens were cured to the set age, the uniaxial tensile test
of RAECC was carried out by a 5 kN LCD electronic tensile machine of model LDS-5
(Figure 5). The displacement control was adopted, and the loading speed was 0.5 mm/min.
The changes in the length of the monitoring zone were recorded by installing two sets of
Linear variable displacement transducers (LVDT) on both sides of the specimen, and the
final value of the length change was taken as the average value of the two test results, with
a measuring scale distance of 80 mm. Before the tensile test, pre-stretching was carried out,
the tensile force data on the instrument of the tensile testing machine were observed, and
when the data were displayed as 100 N, the recording of the test data was started to ensure
that the specimen did not slide in the tensile process.
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2.3.3. Four-Point Bending Test Plan

After the prismatic specimens were cured to the set age, the four-point bending test
of RAECC (Figure 6) was carried out by the microcomputer-controlled electro-hydraulic
servo universal testing machine (WAW-600, range 600 kN) produced by Shanghai Hualong
Testing Instrument Co. The prismatic specimens were placed on the lower two rollers
at 50 mm from each edge of the specimen on both sides, and the loading method was
stress-controlled with a loading speed of 0.06 MPa/s until the specimen was damaged
by bending.
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2.3.4. Resonance Frequency Detection Test Plan

Referring to the specification GB/T 50082-2009 [35], as shown in Figure 7, the fixed
side of the RAECC prismatic specimens was selected for the resonance frequency test, three
specimens were tested in each group, and the test was carried out once every 5 dry–wet
cycles. Since the initial resonance frequency of each group of specimens was not the same,
to facilitate the comparison of the resonance frequency change between different groups of
specimens, the change in resonance frequency ratio was used for the comparison, which is
calculated as shown in Equation (1):

R f = F/Fv (1)

where R f represents the resonance frequency ratio, F represents the average value of
resonance frequency of specimens after erosion, and Fv is the average value of resonance
frequency of specimens of the same age without erosion.
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Figure 7. Resonance frequency detection.

2.3.5. X-CT Detection Scheme

The X-CT scan was conducted at room temperature using a DS600/225F100 imaging
system. The scanning voltage was set to 130 kV, with a current of 160 µa, an exposure time of
500 ms, and a voxel resolution of 4.9 µm. A total of 940 projections were captured in the CT
scans, with a spacing of 4.9 µm between each projection. Sampling and scanning of a bone-type
specimen in 5% Na2SO4 solution, which was subjected to severe erosion by the salt solution,
was carried out by removing a cube of approximately 4.6 mm × 4.6 mm × 4.6 mm from the
middle of the bone-type specimen, and due to the small size of the specimen sampled for
examination, grinding was used to achieve a fixed size.

3. Results and Discussion
3.1. Effect of Erosion on the Mechanical Properties of RAECC
3.1.1. Tensile Stress–Strain Curve

Figure 8 shows the tensile stress–strain curves of the RAECC bone-type specimens
in different salt solutions after 10, 20, 30, and 40 cycles of dry–wet erosion (numbering is
denoted by x-y, with x being the solution and y being the number of dry–wet cycles). It can
be seen that the tensile curves of the RAECC specimens in different solutions show obvious
hardening characteristics with the increase in erosion cycles. However, the specimens in
5% Na2SO4 solution and 5% Na2SO4—3% NaCl solution were brittle due to the erosion-
induced matrix, and the erosion made the ductility lower than that of the specimens in
aqueous solution.
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3.1.2. RAECC Tensile Performance

The uniaxial tensile test results of the RAECC bone-type specimens after dry–wet
cyclic erosion in different solutions are shown in Figure 9a–c. It can be seen that the ultimate
tensile strength of the specimens eroded in the three solutions showed an increasing and
then decreasing trend with the increase in cycles, generally higher than before erosion. The
peak strength of the specimens in aqueous solution and 5% Na2SO4 solution appeared after
20 dry–wet cycles, and the peak strength of the 5% Na2SO4—3% NaCl solution appeared
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after 30 dry–wet cycles. After 40 dry–wet cycles, the ultimate tensile strength of the
specimens in aqueous solution, 5% Na2SO4 solution, and 5% Na2SO4—3% NaCl solution
decreased by 2.0%, increased by 5.7%, and increased by 8.6%, respectively, compared with
the non-eroded specimens.
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The order of erosion severity of the RAECC specimens by the different salt solutions
was 5% Na2SO4 solution > 5% Na2SO4—3% NaCl solution > aqueous solution, of which
the 5% Na2SO4 solution specimens exhibited the most obvious trend of decline during the
erosion cycle in terms of ultimate tensile strength, with a difference of 1.15 MPa between
the maximum value and the minimum value. This is due to the existence of SO4

2− in the
5%Na2SO4 solution, resulting in a large number of erosion products (such as AFt) being
generated. Erosion products can fill the matrix at the beginning of the erosion, but as
the erosion continues, excessive erosion products will destroy the original pore structure,
resulting in the formation of new matrix defects, causing a reduction in strength. In the
5%Na2SO4—3%NaCl solution specimens, due to the reaction of Cl− and SO4

2−, which
robs the solution of SO4

2− via the generation of Friedel’s salt [36], reduces the amount of
AFt generated, and retards the erosion of the RAECC matrix by SO4

2−, the effect of 5%
Na2SO4—3% NaCl solution erosion on strength was stronger than that of the aqueous
solution but weaker than that of the 5% Na2SO4 solution [37].

The first cracking tensile strength and ultimate tensile strength had the same trend,
increasing with the increase in ultimate tensile strength. Contrary to the trend of ultimate
tensile strength, the ultimate tensile strain showed a trend of decreasing and then increasing;
however, the strain of the specimens in the 5% Na2SO4 and 5% Na2SO4—3% NaCl solutions
under the same tensile strength was lower than that of the aqueous solution specimens,
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which indicates that the erosion of salt particles caused the matrix to become brittle, thus
causing the strain to decrease.

3.1.3. RAECC Flexural Strength

The four-point bending test results of the RAECC prismatic specimens after dry–wet
cycle erosion in different solutions are shown in Figure 9d. It can be seen that the flexural
strength of the specimens in the aqueous solution increased with the increase in cycles,
and the flexural strength of the specimens in the 5% Na2SO4 solution and 5% Na2SO4—
3% NaCl solution increased and then decreased. The erosion of the specimens in the 5%
Na2SO4 solution was severe, and the strength decreased by 4.6% compared with that of the
uneroded specimen after 40 dry–wet cycles. The order of erosion severity of the RAECC
specimens by the different salt solutions was 5% Na2SO4 solution > 5% Na2SO4—3% NaCl
solution > aqueous solution, and the results of the flexural strength of specimens in the
erosive solutions were consistent with the ultimate tensile strength.

3.2. Effect of Salt Solution Erosion on the Microstructure of RAECC
3.2.1. Effect of Erosion on Resonant Frequency of Specimens

The resonance frequency of the RAECC prismatic specimens can indicate the level of inter-
nal structure integrity—the higher the integrity, the greater the resonance frequency [38,39]. After
every five dry–wet cycles, three sets of resonance frequency data were gathered for the pris-
matic specimens. These values were then averaged and substituted into Equation (1). The
results are shown in Figure 10. It was observed that the R f values of the RAECC prismatic
specimens in all three solutions increased and then decreased. In the aqueous solution, the
R f values of the specimens reached a peak after 10 cycles, while those of the specimens
in the 5% Na2SO4 solution and the 5% Na2SO4—3% NaCl solution reached peaks after 15
and 20 cycles, respectively.
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The filling effect of the erosion products inside the prismatic specimen caused the
interior to become complete, increasing the R f value. However, with an increase in the
number of cycles, the excessive erosion products started to damage the original internal
pore structure, creating new matrix defects, which led to a decrease in completeness and,
in turn, a decrease in the R f value. Based on the trend of the R f value, the order of erosion
severity of the RAECC prismatic specimens by dry–wet cycling in different salt solutions
was as follows: 5% Na2SO4 solution > 5% Na2SO4—3% NaCl solution > aqueous solution.
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3.2.2. Impact of Erosion on Matrix Pores

From the previous section, it is known that the 5% Na2SO4 salt solution eroded the
specimens most severely; therefore, X-CT scans of the RAECC specimens after undergoing
0, 20, and 40 dry–wet cycles of erosion by 5% Na2SO4 salt solution were performed and
analyzed (specimen numbers are denoted by C, S-20, and S-40, respectively.). The pore
distribution of 2D slices of the X-CT scans of the specimens is shown in Figure 11, where
blue color was chosen for rendering the pores, the characteristic slices in terms of increasing
height are shown from left to right, and six images were selected from each group of
specimens to be analyzed.
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From Figure 11, it can be seen that the pore distribution in the 2D slices of the specimens
is relatively uniform, and the number of pores and pore diameter of specimen S-20 is smaller
than that of specimens in groups C and S-40, which is because after 20 dry–wet cycles, the
erosion products filled the pores of the matrix, which reduced the pore diameter and the
number of pores. After 40 dry–wet cycles, the overfilling of the erosion products damaged
the matrix, which made the number of pores increase.

The light grey area of the cementitious material in Figure 11 is the freshly mixed
cement paste containing fly ash, and the dark grey area of the cementitious material is
the cement paste attached to the surface of the recycled fine aggregate. It can be seen that
the number of cracks at the bond between the recycled fine aggregate and other materials
in the specimen is higher than that of other fine aggregates, and the number of pores in
and around the dark grey area is high. The high water absorption of the recycled fine
aggregate and the internal pores and cracks generated during crushing led to an increase
in the porosity of the specimen, and these cracks and pores provided transport channels for
aggressive ions, thus affecting the durability of the specimen.

Since different depths under the surface of the specimen are subjected to different
degrees of erosion during sulfate erosion, and the closer the matrix is to the surface, the
more serious the degree of sulfate erosion, the ratio of the area of the cement mortar matrix
to the area of the overall cross-section of the CT-scanned 2D section (denoted as A) was
calculated to analyze the effect of erosion on the internal porosity, and the specific results
are shown in Figure 12. The straight line perpendicular to the x-axis in the figure is the
mean value of A on different slices (X), and the 0~4.6 mm of the vertical axis scale represents
the distance of the CT-scanned 2D slices from the surface of the specimen (H). Due to the
small size of the CT specimen, the S-40 specimen caused the specimen to have missing
corners when grinding, so the A-value curve decreased sharply at the position farther
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away from the surface of the specimen, which was ignored in the later analysis. From the
two-dimensional section in Figure 11, the specimen of group S-20 was sampled in a poor
location, and there was a diagonally cut crack on the inside, which had some influence on
the analysis.
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The A-value distribution curves of the RAECC specimens under different erosion
cycles had different trends, and the downward depression on the curves is the location of
large holes. The A-value curve of the uneroded Group C specimens has a larger magnitude
of change along the longitudinal axis, while the A-values of the other two groups of
specimens have a smaller magnitude of change, which is attributed to the fact that the
erosion products filled up some of the pores, making the pore distribution uniform in
the 2D slices. From the size of the x-value, with the increase in dry–wet cycle erosion,
the x-value decreased by 0.43% and 1.74% in turn; the change is small, but the existence
of internal penetrating cracks in the S-20 specimen led to the x-value of the S-20 group
being larger than the actual value, so the actual change trend of the x-value with the
cycle firstly decreased and then increased, which is in line with the change rule of the
resonance frequency.

The X-CT scan 2D slice images were reconstructed in 3D as shown in Figure 13. It
can be seen that after 40 sulfate dry–wet cycles, the integrity of the specimen was good
and there was no obvious damage. The crack in Figure 13b was caused by sampling and
was not an erosion-generated crack, and due to the presence of fibers, the crack occurred
throughout the whole specimen, which was broken but did not shatter.
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The pore structure of the 2D slices of the CT scan was analyzed after 3D reconstruction.
The results, depicted in Figure 14, show red areas representing large, connected pores and
blue areas indicating small pores. The analysis revealed that a significant portion of the
total pores in the specimen were red connecting pores. This is attributed to the similarity in
the grey scale between fibers and pores in the 2D slice images post-CT scanning, leading to
the misidentification of PE fibers as pores during the 3D reconstruction. The PE fibers were
well distributed in the specimen, often penetrating through most of the pores, resulting in
a larger volume of maximum pores.
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Smaller pores, on the other hand, were more uniformly distributed within the speci-
men, typically existing between aggregates and the grid formed by the largest connected
pores. As the salt solution erosion progressed, the number of pores increased gradually.
Larger gaps were filled with erosion products, transforming them into smaller pores, ulti-
mately reducing the pore volume. The blue range in the 3D reconstruction map decreased
after 20 dry–wet cycles. After 40 cycles, the original pore structure was disrupted by the
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transitional filling of erosion products, creating new pores and expanding the range of both
red connecting pores and blue independent pores.

The specific pore space data of Figure 14 are presented in Table 3, indicating a con-
tinuous increase in the number of pores with erosion time. The increase was measured
at 19.03% and 50.79%, respectively. This phenomenon was attributed to erosion products
forming within the pores, causing larger pores to split into smaller ones, thereby increas-
ing the overall pore count. Additionally, erosion led to substrate damage, creating new
pores. The defect volume ratio in Table 3 characterizes the porosity inside the material,
which can reflect the strength of the specimen to a certain extent. The defect volume ratio
increased by 6.64% and 45.9%, respectively, with the increase in the number of wet and
dry cycles, but due to the existence of internal penetrating cracks in the S-20 specimen and
the small growth of the defect volume ratio from C to S-20, the actual defect volume ratio
decreased with the increase in wet and dry cycle, followed by an increase, and the trend
of the change was opposite to that of the mechanical properties. With the continuation of
erosion, the defect volume ratio of the S-40 group reached 9.35%, causing a decrease in the
mechanical properties.

Table 3. Structural composition of X-CT pores.

Statistical Project Unit
Results

C S-20 S-40

Number of pores Count 118,245 150,747 212,230
Material volume mm3 92.47 91.045 88.184
Defect volume mm3 5.91 6.231 9.093

Defect volume ratio % 6.01 6.41 9.35
Maximum pore volume mm3 3.286 5.302 6.765

Except for the defect volume
of maximum pore mm3 2.624 0.929 2.328

The percentage of maximum
pores to total defects % 55.60 85.09 74.40

The percentages of maximum porosity with respect to the total defects for the C, S-20,
and S-40 specimens were 55.60%, 85.09%, and 74.40%, respectively, which accounted for a
larger portion of the total defects in the specimens. To eliminate the influence of the largest
defect on the pore data, the total volume of pores other than the largest defect volume was
calculated as 2.624 mm3, 0.929 mm3, and 2.328 mm3, respectively. This volume decreased
and then increased with the number of dry–wet cycles, decreasing by 64.6% and then
increasing by 250.6%.

The refinement of the pore structure had a positive effect on the mechanical and
durability properties of the specimens [40,41]. When the specimen underwent erosion
and erosion products were generated, there was enough space inside the specimen to
store these erosion products after 20 cycles of dry–wet cycling. The filling of the erosion
products divided the pores into small cavities, leading to an increase in the number of
pores but a decrease in the pore volume, resulting in specimen strength enhancement. After
40 dry–wet cycles, the erosion products continued to be produced, there was insufficient
space inside the specimen to store the erosion products, and the salt-induced expansion
stresses exceeded the tensile stress limit of the matrix. This resulted in the rupture of the
original pore structure, leading to the generation of new pores, and consequently, both the
number of pores and pore volume increased, resulting in the specimen strength decreasing.

The sphericity can reflect the geometry of the pores: with a sphericity close to 1, the
shape of the pores approximates to a sphere; with a sphericity close to 0, the shape of the
pores approximates to a crack. The distribution of the pore sphericity and the equivalent
diameter of the pores obtained in the X-CT reconstruction are shown in Figure 15. It can
be seen that the diameter of the pores in the uneroded control specimen was larger, the
sphericity was smaller, and the shape of the pores in the original state was more similar to
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a crack. After 20 dry–wet cycles with erosion by sulphate, due to the filling effect of the
erosion products, the number of pores increased, the diameter decreased, the sphericity
increased, and the stress concentration at the boundary of the pores with large sphericity
rarely occurred [42]. Moreover, the shape and size of the pores were more homogeneous
compared to the control, and the homogeneous pores caused an increase in the strength
of the matrix. After 40 of dry–wet cycles with erosion by sulphate, due to the transitional
filling of the matrix by the erosion products, matrix damage was caused, and the new
pores produced at the time of damage were larger in size and number, and had poorer
sphericity, which caused a high degree of stress concentration at the pore boundaries [43].
Moreover, the pores were affected by the filling of the erosion products, causing a reduction
in strength.
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4. Conclusions

This research used the uniaxial tensile test to investigate the alterations in mechanical
properties of RAECC under dry–wet cyclic erosion by salt solution. Resonance frequency
was employed to examine the internal integrity of the specimen, while CT scanning was
used to analyze the pore structure. This study also delved into the relationship between the
evolution of pores in the matrix and changes in mechanical properties during the dry–wet
cyclic erosion process of salt solutions. The key findings are summarized as follows:

(1) Regarding the ultimate tensile strength of the RAECC specimens following an erosion
cycle in three different solutions, the strength was generally higher than before the
erosion and showed a trend of increasing first and then decreasing. The 5%Na2SO4
solution specimens, in terms of ultimate tensile strength, exhibited the most drastic
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changes, with a difference of 1.15 MPa between the maximum value and the minimum
value. In terms of erosion severity, the order of the RAECC specimens in different
solutions was as follows: 5%Na2SO4 solution > 5%Na2SO4—3%NaCl solution >
aqueous solution. Moreover, the flexural strength and ultimate tensile strength of the
specimens in the erosive solution changed consistently.

(2) The resonance frequency ratio showed that the internal structure of the specimen was
the most complete after 15 dry–wet cycles, and the degree of completeness decreased
thereafter. The X-CT test results showed that the number of cracks at the interface
of the recycled fine aggregate and the substrate was high. After erosion by dry–wet
sulfate cycles, the number of RAECC pores continued to increase, and the pores first
decreased and then increased. Additionally, the defect volume ratio reached 9.35%
after 40 dry–wet sulfate cycles, and the magnitude of the change in the pores in the
two-dimensional slices after erosion was smaller than that before erosion.

(3) The process of erosion involves erosion products continuously filling and eventually
destroying the pores. As erosion proceeds, the filling of pores by erosion products
leads to a decrease in porosity, an increase in the number and sphericity of pores, and
a tendency towards uniform pore distribution, thus increasing the strength of the
matrix. With the overfilling of erosion products, the pore structure is destroyed, the
porosity increases, the destruction produces a large number of pores, the sphericity is
poor, and the pore destruction and the uniformity of the pore distribution decreases,
which together lead to the reduction in matrix strength.

However, for the specimens tested by X-CT scanning in this paper, different specimens
under the same batch were used, which may affect the pore results. Follow-up studies
should further investigate multiple X-CT scans of a single specimen under different erosion
cycles to eliminate the discrepancies caused by different specimens.
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