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Abstract: Pomegranate peel extract is known for its potent antibacterial, antiviral, antioxidant, anti-
inflammatory, wound healing, and probiotic properties, leading to its use in treating oral infections.
In the first stage of this work, for the first time, using the Design of Experiment (DoE) approach,
pomegranate peel extract (70% methanol, temperature 70 ◦C, and three cycles per 90 min) was
optimized and obtained, which showed optimal antioxidant and anti-inflammatory properties. The
optimized extract showed antibacterial activity against oral pathogenic bacteria. The second part
of this study focused on optimizing an electrospinning process for a combination of polycaprolac-
tone (PCL) and polyvinylpyrrolidone (PVP) nanofibers loaded with the optimized pomegranate
peel extract. The characterization of the nanofibers was confirmed by using SEM pictures, XRPD
diffractograms, and IR-ATR spectra. The composition of the nanofibers can control the release; in the
case of PVP–based nanofibers, immediate release was achieved within 30 min, while in the case of
PCL/PVP, controlled release was completed within 24 h. Analysis of the effect of different scaffold
compositions of the obtained electrofibers showed that those based on PCL/PVP had better wound
healing potential. The proposed strategy to produce electrospun nanofibers with pomegranate peel
extract is the first and innovative approach to better use the synergy of biological action of active
compounds present in extracts in a patient-friendly pharmaceutical form, beneficial for treating
oral infections.

Keywords: pomegranate peel; antibacterial; anti-inflammatory; wound healing; oral infections;
nanofibers

1. Introduction

The WHO Global Oral Health Status Report (2022) estimated that severe oral and peri-
odontal disorders affect close to 3.5 billion people worldwide [1], causing tooth problems
such as tooth loss, but also systemic diseases such as cardiovascular disease or diabetes [2].

Because local drug delivery methods control drug release, they offer better efficacy
and fewer side effects when used to treat periodontitis. An effective treatment plan for
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periodontitis is based on selecting a suitable bioactive agent, material base, and delivery
route [3].

Plant materials have been successfully and extensively employed in the treatment of
numerous illnesses, including periodontitis. Plant-based remedies for periodontitis have
antimicrobial, anti-inflammatory, and antioxidant properties that also impact the structure
of the periodontium [4]. Numerous studies demonstrate the advantages of phytotherapy
in the treatment of periodontal diseases and indicate the usefulness of Baikal skullcap
roots [5,6], tea leaves [7], or resveratrol-rich plants [8]. There is still little information about
the use of pomegranate peel.

Although pomegranate peel (Punica granatum L.) makes up half of all fruits, it was
previously considered waste [9]. According to recent research, plant material is a valu-
able waste with potentially beneficial pharmacological effects since it is a rich source
of phenols (such as ellagitannins, flavonoids, and anthocyanins), polysaccharides, and
its biotransformed metabolites, such as urolithin [10]. Due to its unique phytochemi-
cal components, the raw material exhibits numerous health benefits such as antioxidant,
anti-inflammatory [11], and antimicrobial activities, as well as those responsible for oral
infections and caries [12].

Many innovative techniques are being used to produce new forms in the oral
cavity [13,14], one of which is electrospinning [15], a green manufacturing method with no
negative impact on the environment and health [16]. The development of nanofibers has
made it easier to create and use biomaterials as three-dimensional artificial scaffolds. Since
many natural and synthetic biomaterials can easily imitate natural human tissue at the
nanoscale, they can be employed as resources for restorative dentistry [17]. A high surface-
area-to-volume ratio and nanofibers’ microporous architectures provide an advantage in
restoring complex anatomical dental features. When it comes to cell adhesion, proliferation,
and differentiation, nanofibers have a lot to offer. They can be employed in dental implants
and drug delivery systems within the oral cavity [18,19].

To produce an effective system, it is crucial to use appropriate materials as the basis of
the product. One biodegradable synthetic polymer, polycaprolactone (PCL), has gained
attention as a class of biomaterials with potential applications in surgery, including sutures,
medication administration, devices for internal stabilization of bone fractures, and scaffolds
for tissue or organ regeneration [20]. Despite PCL’s good biocompatibility and efficacy
in vitro and in vivo, its slow breakdown kinetics and extremely hydrophobic nature may
make it unsuitable for use in several biomedical applications where higher absorption
rates are required [21]. One approach to overcome this limitation is to add water-soluble,
biocompatible polymers to the electrospinning process [22]. This method has also been
effectively used to improve the topological, structural, and chemical characteristics of
various polymeric meshes to boost their hydrophilicity and biocompatibility. One of the
water-soluble polymers is poly(N-vinyl-2-pyrrolidone) (PVP). PVP has excellent biocom-
patibility, extraordinary water solubility, and the ability to interact with various hydrophilic
and hydrophobic materials [23].

Preparing an extract from the plant material with the best properties is necessary to
produce an effective pharmaceutical form. Only two works show the process of optimizing
the pomegranate peel extraction but do not consider the biological effect [24,25]. Therefore,
the first part of the study aimed to optimize the extraction process using ultrasonic-assisted
extraction (UAE). The optimized extract can be used to prepare the finished product, and
the existing literature data indicate the possibility of using electrospinning to produce
packaging based on pomegranate peel [26,27] but do not indicate the possibility of prepar-
ing an innovative form of delivery for dental use. Thus, the second part of this work
aims to evaluate the likelihood of simultaneous electrospinning of PCL with water-soluble
PVP, which will provide important information on effectively tuning the biodegradation
rate of electrospun PCL scaffolds but is not limited to the extension of other high-value
biocompatible polymers for future biomedical applications, in particular dental, ranging
from controlled drug delivery to tissue regeneration.
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2. Materials and Methods
2.1. Plant Material

The plant material used is pomegranate peel (Punica granatum), the country of origin
is India, and it was purchased from the NANGA Przemysław Figura (Blękwit, Poland), Lot
No. 33192.

2.2. Chemicals

Kaempferol (Phyproof® Reference Substance) as well as rutin (≥95%) were obtained
from Sigma-Aldrich (Poznan, Poland). Polyvinylpyrrolidone K30 (PVP) was obtained from
BASF (Warsaw, Poland), while polycaprolactone (PCL) average Mn 80,000 from Sigma
Aldrich (Poznan, Poland). Folin-Ciocalteu reagent, 2,2-Diphenyl-1-picrylhydrazyl (DPPH),
gallic acid, neocuprine, 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), ferric chloride (III), bovine
serum, hyaluronic acid, hyaluronidase, polycaprolactone (PCL), hexadecyltrimethylam-
monium bromide (CTAB), and bovine gastric mucin were obtained from Sigma-Aldrich
(Poznan, Poland). Methanol p. a., cupric chloride (II), ethanol 96%, ammonium acetate
p. a., sodium hydroxide and sodium chloride were obtained from Avantor Performance
Materials Poland (Gliwice, Poland). Sodium carbonate p. a. was obtained from POCH
Gliwice (Gliwice, Poland). Analytical balance hydrochloric acid 0.1 mol/L (0.1 N) was
obtained from Chempur (Piekary Śląskie, Poland). High-quality pure water was prepared
using a Direct-Q 3 UV Merck Millipore purification system (Burlington, MA, USA).

2.3. Pomegranate Peel Extraction Using Design of Experiments

A factor experiment plan was created for three independent variables with three levels
of values assigned using the Design of Experiments (DoE) approach (32 complete factorial
design) (Statistica 13.3 software, TIBCO Software Inc., Palo Alto, CA, USA). The methanol
concentration in extraction mixture, temperature, and time were chosen as independent
variables (Table 1).

Table 1. Factorial Characterization of Obtained Extracts.

Number of Extract % Methanol Concentration (V/V) Extraction Temperature (◦C) Extraction Time (min)

E1 30 30 30
E2 30 50 90
E3 30 70 60
E4 50 30 90
E5 50 50 60
E6 50 70 30
E7 70 30 60
E8 70 50 30
E9 70 70 90

To prepare each extract, 5.0 g of dried and pulverized pomegranate peel was extracted
with a mixture of 50.0 mL of methanol and distilled water in Erlenmeyer flasks. Extraction
was assisted by ultrasound (UAE) using an ultrasound bath due to their positive influence
on this type of process. The obtained extracts were separated from the plant material
by under-pressure filtration as the next step. The extraction process was repeated three
times, each time using a fresh portion of the extraction mixture. The three obtained extracts
were combined and condensed to achieve a final extract volume of 25.0 mL. The resulting
products were stored within a temperature range of 2–8 ◦C. The final concentration of the
extract is 200.0 mg of plant material per milliliter.
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2.4. Determination of Selected Active Component Content and Total Phenolic Content (TPC)
Total Phenolic Content

The contents of active polyphenolic compounds (flavan-3-ols: rutin and kaempferol)
were determined using the HPLC method described previously [28].

To assess the Total Polyphenolic Content (TPC) of prepared extracts, the method
described by Kikowska et al. with further modifications was employed [29].

2.5. Studying the Biological Activity of Pomegranate Peel Extract
2.5.1. Antioxidant Activity

A variety of radical cation-based assays, including 2,2-Diphenyl-1-picrylhydrazyl
(DPPH) assay, as well as cupric ion reducing antioxidant capacity (CUPRAC) assay, and
ferric ion reducing antioxidant parameter (FRAP) assay, were used to measure antioxidant
activity with methods previously published [29].

2.5.2. Anti-Inflammatory Activity

The procedure of hyaluronidase inhibition was determined by the turbidimetric
method described previously [29].

2.6. Prediction of the DoE Model and Preparation of an Optimized Extract

Based on the experimental studies described above, the DoE model was predicted,
and an optimized extract was prepared using the method described above (70% methanol,
70 ◦C, and 90 min). The extract was subjected to a lyophilization process (a condensation
temperature set at −48 ◦C under reduced pressure (1.030 mbar) for 48 h; CHRIST 1-4 LSC,
Osterode am Harz, Germany) to obtain a dry extract, which was used for further research.

2.6.1. The Antioxidative and Anti-Inflammatory Assays

The antioxidative and anti-inflammatory assays were conducted following the proce-
dure outlined in Section 2.5.

2.6.2. Microbiological Activity

The minimal inhibitory concentrations (MIC) of the pomegranate extract were deter-
mined using the microdilution method with 96-well plates (Nest Scientific Biotechnology,
Wuxi, China). The experimental procedures followed the methodology presented in our
previous publications [30,31]. The activity of the pomegranate extract against clinical
strains of the yeast Candida albicans, clinical strains of the bacteria responsible for wound
infections Staphylococcus aureus and Pseudomonas aeruginosa, the cariogenic bacterium Strep-
tococcus mutans ATCC 25175, and the periopathogens Schaalia odontolytica (Actinomyces
odontolyticus) ATCC 17929, Fusobacterium nucleatum ATCC 25586, Porphyromonas gingivalis
ATCC 33277, and Prevotella intermedia ATCC 25611 was investigated. Yeasts were cul-
tured on Sabouraud broth, bacteria S. aureus, S. mutans, and P. aeruginosa on tryptone
soy broth (TSB), and periopathogens on Schaedler broth (Graso Biotech, Owidz, Poland).
Serial dilutions of the extract were performed in the appropriate medium to achieve final
concentrations of 50, 25, 12.5, 6.25, and 3.1 mg/mL in the wells. The inoculums were
adjusted to obtain a final concentration of 105 CFU/mL for bacteria and 104 CFU/mL
for fungi. The plates were then incubated at 37 ◦C for 24–48 h, and MIC values were
determined through visual analysis. To improve reading, color reactions were used: for
aerobic pathogens, 2,3,5-triphenyltetrazolium chloride (TTC) (Sigma, Poznań, Poland) and
for anaerobic periopathogens, resazurin (Merck, Warsaw, Poland).
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2.7. Preparation of the Electrospun Nanofibers with Optimized Pomegranate Peel Extract

To produce nanofibers, 6 solutions of polymers/compositions of polymers and extract
were prepared (Table 2). Ingredients were dissolved using a mixture of methanol and
dichloromethane in a ratio of 1:3 (v:v).

Table 2. Composition of Prepared Nanofibers.

N1 N2 N3 N4 N5 N6

PCL 1.0 g 1.0 g 0.5 g 0.5 g - -
PVP 1.0 g 1.0 g 1.5 g 1.5 g 2.0 g 2.0 g

Extract 0.5 g - 0.5 g - 0.5 g -

The electrospinning process was conducted using the NS + Nano Spinner Plus Electro-
spinning Equipment (Inovenso Ltd., Istanbul, Turkey). The prepared mixtures were loaded
into syringes fitted with a metal needle. The distance between the needle and the collector
was maintained at 12.0 cm. The flow rate was set to 2.0 mL/min, and the rotation speed of
the collector was set to 200 rpm. The efficiency of nanofiber production was determined by
comparing the weight of the produced nanofibers with the weight of the substrates. The
experiments were conducted at room temperature (about 25 ◦C), and the humidity did not
exceed 40%.

2.8. Identification of Obtained Electrospun Nanofibers
2.8.1. Scanning Electron Microscopy (SEM)

SEM images were performed using a scanning electron microscope (Quanta 250 FEG,
FEI, Waltham, MA, USA) to assess the morphology of prepared nanofibers. Before analysis,
the nanofibers were sputter-coated with gold palladium. The diameters of nanofibers were
measured using SEM pictures using the ImageJ program (https://imagej.net/nih-image/,
accessed on 25 May 2024).

2.8.2. X-ray Powder Diffraction (XRPD)

The obtained nanofibers were evaluated in a crystallographic assay using X-ray diffrac-
tion (XRD) equipment (Panalytical Empyrean, Almelo, The Netherlands) with a copper
anode (CuKα—1.54 Å). The measurements were conducted in Bragg–Brentano reflection
mode configuration with parameters set to 45 kV and 40 mA. The measurement range was
defined from 3◦ to 60◦, with a step size of 0.05◦ and a measurement time of 45 s per step.

2.8.3. Infrared Spectroscopy with Attenuated Total Reflectance (IR-ATR)

The IR-ATR analysis was conducted in the range of 400 to 4000 cm−1 in absorbance
mode, with a resolution of 1 cm−1. The spectrogram was obtained using an IRTracer-
100 spectrophotometer manufactured by Shimadzu (Kyoto, Japan), and operated with
LabSolutions IR software (version 1.86 SP2). The spectrophotometer was equipped with a
QATR-10 single bounce diamond extended range accessory.

2.9. Analysis of Electrospun Nanofibers’ Functionality
2.9.1. Dissolution Studies

Using an Agilent 708-DS dissolution device, electrospun nanofibers were studied for
their dissolution behaviors. A typical basket method was applied, stirring at 50 rpm and
37 ± 0.5 ◦C. Nanofibers were added to 300 mL of artificial saliva solution and adjusted to
pH to 6.8 with 1 M HCl. At certain intervals, liquid samples were taken, and an equivalent
volume of medium that had been adjusted for temperature was added. A nylon membrane
filter with a diameter of 0.45 µm was used to filter the samples. The quantities of rutin in
the acceptor solutions were ascertained using the HPLC technique previously mentioned.
The studies maintained sink conditions. There were six iterations of the study.

https://imagej.net/nih-image/
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To investigate the release kinetics, the resulting active compound release patterns were
fitted to the zero-order, first-order, Higuchi, and Korsmeyer–Peppas models [32].

2.9.2. Mucoadhesive Properties

Mucoadhesive properties were evaluated by measuring the bonding strength between
the utilized polymers (PVP, PCL) within nanofibers and mucin. The study followed the
procedure outlined by Hassan and Gallo with some modifications [33], employing the
viscosimetric technique.

2.10. Biological Activity of Electrospun Nanofibers
2.10.1. Antioxidant and Anti-Inflammatory Activities

The antioxidative and anti-inflammatory assays were conducted following the proce-
dure outlined in Section 2.5.

2.10.2. Cytotoxicity Assay

Human normal skin fibroblasts (Hs27 cells), purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA), were incubated with extracts 1, 2, and 19
for 24 h. The MTT method was used to measure the vitality of the cells using the previously
detailed methods [6].

2.10.3. Wound Healing

The ability of extracts 1, 2, and 19 to repair wounds was examined on Hs27 cells using
the scratch test, utilizing the previously detailed methods [6].

2.11. Statistical Analysis

The statistical analysis was performed using Statistica 13.3. The Shapiro–Wilk test was
used to determine whether the results were normal. The ANOVA test was used to compare
the mean values, and post hoc Tukey’s range test was used for multiple comparisons. At
p < 0.05, differences across groups were deemed significant. Principal component analysis
(PCA) was utilized to assess correlations using PQStat Software version 1.8.4.142 (2022).

3. Results and Discussion
3.1. Optimization of the Orange Peel Extraction Process and Characterization of Biological Activity

To obtain the most valuable extract of pomegranate peel, the Design of Experiments
method was employed. Previous studies have investigated the effects of using various
solvents for extraction [34–36]. This study chose methanol as a suitable, safe, and relatively
low-cost solvent. A factorial plan was designed based on three input factors: the concentra-
tion of methanol (v/v), the temperature of the process, and extraction time. The selection of
these factors was deemed appropriate due to the diversity of phytochemicals present in
the plant material, the extraction of which may depend on both temperature and alcohol
concentration [37].

Four quality aspects were assessed to determine the most optimal parameters: the
rutin and kaempferol content, total polyphenol content, antioxidant properties, and anti-
inflammatory properties (Table 3).

All nine extracts’ rutin and kaempferol contents could be found using the linearity
equation of reference substances (Table 3); however, only the rutin content was used for the
DoE model. The amount of methanol in the extraction mixture and the extraction tempera-
ture are two statistically significant variables influencing the rutin content, according to
the Pareto diagram (Figure S1, Supplementary Materials). Additionally, both impacts are
favorable because the rutin concentration rises as the temperature rises and the proportion
of methanol in the extraction mixture increases. Each extract’s total polyphenol content
(TPC) was ascertained in addition to its rutin content (Table 3). However, a statistical analy-
sis of the Pareto diagram (Figure S2, Supplementary Materials) reveals that the methanol
percentage is the only statistically significant factor influencing the total phenolic content.
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This effect also exhibits a positive sign. In the study by Elfalleh et al., the extraction effect of
powdered raw material with 30% methanol at 30 ◦C was like the results for extracts E1–E3
obtained under similar conditions (TPC = 85.60 ± 4.87 mg GAE/g) [38]. However, the
extraction time was exceeded multiple times, confirming the lack of a significant impact of
prolonging the extraction process [36].

Table 3. Content of active components, antioxidant, and anti-inflammatory activities of extracts
E1–E9.

Number of
Extract

Content of Active Components Antioxidant Properties Anti-Inflammatory
Properties

Rutin
(µg/1 g Plant

Material)

Kaemferol
(µg/1 g Plant

Material)

TPC
(mg GAE/1 g

Plant Material)
DPPH

IC50 (µg/mL)
FRAP

IC0.5 (µg/mL)
CUPRAC

IC0.5 (µg/mL)

Inhibition of
Hyaluronidase

Activity
IC50 (mg/mL)

E1 108.21 ± 0.53 0.84 ± 0.19 81.08 ± 1.40 39.64 ± 4.84 20.73 ± 1.86 22.29 ± 0.62 8.72 ± 0.28
E2 132.72 ± 1.59 0.86 ± 0.01 85.54 ± 0.18 35.02 ± 0.09 20.34 ± 1.65 22.73 ± 0.56 4.78 ± 0.11
E3 140.98 ± 0.49 1.19 ± 0.05 89.35 ± 3.76 36.09 ± 2.21 21.63 ± 1.29 21.37 ± 0.43 4.71 ± 0.05
E4 171.87 ± 5.45 5.29 ± 0.37 113.56 ± 7.39 34.47 ± 1.55 13.96 ± 0.62 16.25 ± 0.36 4.7 ± 0.10
E5 184.58 ± 3.21 5.97 ± 0.27 113.62 ± 2.82 29.33 ± 1.42 13.73 ± 0.53 14.84 ± 0.88 4.67 ± 0.20
E6 202.17 ± 17.23 4.03 ± 0.09 113.50 ± 5.71 27.97 ± 3.00 12.48 ± 0.02 14.99 ± 1.03 4.56 ± 0.26
E7 223.75 ± 3.53 10.12 ± 0.62 138.44 ± 4.68 24.40 ± 0.66 10.84 ± 1.51 12.45 ± 0.39 3.74 ± 0.98
E8 242.16 ± 15.17 9.80 ± 0.13 146.63 ± 12.07 20.74 ± 0.92 9.96 ± 0.76 10.56 ± 0.17 3.53 ± 1.02
E9 273.22 ± 4.19 7.52 ± 0.56 145.78 ± 8.22 22.98 ± 1.17 10.39 ± 0.45 11.21 ± 0.46 3.66 ± 0.90

Determining the biological activity of the extracted materials is essential. The an-
tioxidant potential (measured using three methods: DPPH, FRAP, and CUPRAC) and
anti-inflammatory properties (measured by inhibition of the hyaluronidase enzyme) were
assessed to assess this. Table 3 displays all the results. The percentage of methanol in the
extraction mixture is a statistically significant factor affecting antioxidant activity, measured
by the DPPH method (Figure S3, Supplementary Materials). At the same time, temper-
ature was critical for anti-inflammatory activity (Figure S4, Supplementary Materials).
Remarkably, both effects showed negative signs; antioxidant and anti-inflammatory activ-
ity declined (represented by an increase in IC50) as methanol concentration and temperature
increased. Chukwuma et al. described the effects of using three different substances (water,
ethanol, and acetone) to extract freshly dried and powdered raw material. The DPPH radi-
cal and FRAP assay analysis indicated that aqueous extracts exhibited better antioxidant
properties than ethanol extracts. The extraction time of 24 h does not seem to be a factor
affecting this aspect; however, using concentrated solvents may be crucial [35].

On the other hand, Benchagra et al. describe an analysis of an extract obtained by
extraction with 70% methanol with the addition of acetic acid, using the DPPH radical
to assess antioxidant activity. The obtained effect (IC50 = 12.49 ± 0.60 µg/mL) is slightly
lower than that obtained in the present study (IC50 = 10.56 ± 0.17), suggesting a lack of
positive effect from adding acetic acid to the extraction mixture. Other conditions do not
seem to cause the lower result (extraction time 48 h, use of an ultrasonic bath) [34].

The technical features of the extraction process that yielded the extract with the best
attributes and the highest activity could be determined based on test findings and statistical
analysis. It was not evident from the examined cases that the extraction time was a crucial
factor. Thus, it was possible to predict the model and identify the optimal parameters of
the pomegranate peel extraction process based on the utility contour profiles model, which
included all measured outputs (Figure S5, Supplementary Materials). These parameters
were 70% methanol in the extraction mixture, 70 ◦C as the temperature, and three cycles
every 30 min (a statistically insignificant parameter). The Design of Experiments (DOE)
approach effectively enabled the design of the experiment to be carried out in a manner
that allowed for the evaluation of the input parameters on the process efficiency in terms of
the expected biological activities. Departing from the model of changing one factor at a
time (One Factor At a Time—OFAT) in favor of a qualitative approach based on Quality by
Design (QbD) allowed for material savings, including reduced consumption of reagents,
electrical energy, decreased equipment wear, as well as more efficient use of time and
reduced labor costs [39].
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The final extract was prepared under ideal circumstances and underwent lyophiliza-
tion to produce a dry extract that was utilized in further studies. The lyophilized extract was
found to have antioxidant activity, as determined with DPPH radicals (IC50 = 9.08 ± 0.64
µg/mL), and anti-inflammatory action, as indicated by its ability to block the hyaluronidase
enzyme (IC50 = 2.31 ± 0.12 µg/mL). The optimized extract showed broad microbiological
activity against yeast Candida albicans; the bacteria responsible for wound infections, Staphy-
lococcus aureus and Pseudomonas aeruginosa; the cariogenic bacterium Streptococcus mutans;
and the periopathogens Porphyromonas gingivalis and Fusobacterium nucleatum (Table 4;
Figure S6, Supplementary Materials).

Table 4. Microbiological activity of optimized pomegranate peel extract.

MIC (mg/mL)

Candida albicans 6.25–12.5
Staphylococcus aureus 6.25–12.5

Pseudomonas aeruginosa 12.5
Streptococcus mutans ATCC 25175 6.25

Schaalia odontolytica (Actinomyces odontolyticus) ATCC 17929 3.125–6.25
Fusobacterium nucleatum ATCC 25586 25
Porphyromonas gingivalis ATCC 33277 12–25

Prevotella intermedia ATCC 25611 12–25

Therefore, as a whole, the extract shows a favorable biological activity profile, useful
from the point of view of use in oral infections and was therefore used for further research.

3.2. Preparation of the Electrospun Nanofibers and Analysis of Their Functionalities

The further part of the study involved obtaining nanofibers using the optimized extract
with mucoadhesive biomaterials as a fiber core, according to the compositions in Table 2.

Figure 1 shows SEM images of nanofibers N1–N6, which confirmed that the production
of nanofibers went well, and good-looking nanofibers were obtained.
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Based on the SEM images (Figure 1), the average diameter of the obtained nanofibers
was measured. Those values were compared with the production efficiency of the electro-
spinning process (Table 5).
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Table 5. Average diameter of nanofibers N1–N6, and efficiency of nanofiber production.

Number of Nanofibers Average Diameter of
Nanofibers (nm)

Nanofiber Production
Efficiency (%)

N1 476.19 ± 37.90 15.79
N2 2270.21 ± 198.49 13.52
N3 1135.11 ± 73.36 47.2
N4 1162.79 ± 87.36 42.82
N5 208.19 ± 10.93 98.17
N6 376.52 ± 21.04 86.52

PVP–based nanofibers (N5 and N6) are characterized by excellent uniformity of fiber
size and the smallest fiber diameters, which increase with an increase in PCL concentration.
However, these nanofibers have beads in their structure. Interesting behavior can be
observed for PCL–based nanofibers, where the polymer base has the smoothest structure
(N1). At the same time, adding the extract increases the size of the nanofibers by more than
four times, also causing disturbances in the smooth structure of the nanofibers (N2). A
significant impact of the material used to produce nanofibers on the efficiency of the process
was noticed; the highest efficiency was observed for PVP–based nanofibers (N5), and the
lowest for PCL–based nanofibers (N1). Each time the extract is added, the production
efficiency is reduced.

Wang et al. indicated that the poor spinnability of PVP results in a large fiber diameter,
and the addition of PCL increases the spinnability of the solution, leading to finer fibers [40].
In turn, Varsei et al. found that the PVP concentration is the dominant factor (compared
to the PCL concentration and other electrospinning parameters) in the morphology of
nanofibers; too low or too high of a PVP concentration causes a bead-like structure [41].
Therefore, it is not the PCL concentration itself that is important; it is the ratio of PCL and
PVP in the electrospun mixture. This would confirm that the smoothest structure was
obtained for nanofibers containing PCL/PVP in a 1:1 ratio (nanofibers N2 and N4), which
agrees with the report by Wang et al., who found that the average diameter of PCL/PVP
nanofibers in a mass ratio of 1:1 was smaller and more uniform than that of pure PCL or
PVP nanofibers [42].

Phase analysis by X–ray powder diffraction was performed to study the structural form
of starting materials, and nanofibers N1–N6 were produced (Figure 2). When analyzing the
diffractogram of lyophilized extract, its amorphous nature is visible. The two broad peaks
that the raw PVP displays at about 11◦ and 21◦ indicate the amorphous nature of PVP [43].
Semi-crystalline PCL in its raw form has strong intensity peaks at 21.25◦ and 23.7◦ [44].
These peaks are visible in the analyzed nanofibers (N1–N4) made from PCL as one of the
components of the prepared products. There is a prominent difference in the intensity of
peaks specific for PCL between N1 and N2. N1 is combined with plant extract, and the
peak is significantly lower than in N2 without plant additive. The differences between N3
and N4 are much slighter, but on the other hand, the amount of PCL is less than that in
the previous pair. No differences between N5 and N6 can be observed, indicating good
complexation between the nanofiber components.

The IR-ATR spectrum of the extract showed prominent absorption bands at 776, 815,
876, 1010, 1033, 1180, 1226, 1295, 1323, 1444, 1604, 1718, 2941, and 3334 cm−1. The IR-
ATR spectrum of PVP revealed pronounced regions of absorption at 1167 cm−1 (C–C=O),
1229 cm−1 (lactone structure), 1283 cm−1 (C–N stretching vibrations), 1371 cm−1 (–CH
deformation vibrations), 1420 cm−1 (CH2 wagging), 1458 cm−1 (CH2 bending vibrations),
1665 cm−1 (C=O), and 2951 cm−1 (C–H stretching vibrations), while those of PCL were at
733 cm−1 (C–H out of plane bending vibration), 1167 cm−1 (–C–O–C– symmetric stretching),
1238 cm−1 (C–O–C asymmetric stretching), 1294 cm−1 (C–O and C–C bands), 1364 cm−1

(stretching of OH group), 1472 cm−1 (stretching of CH2 group), 1722 cm−1 (–C=O stretching
vibrations of the ester carbonyl group), 2866 cm−1 (symmetric stretching of CH2 group),
and 2945 cm−1 (asymmetric stretching of CH2 group) [31].
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The success of combined polymer spinning In combination with the extract has been
demonstrated for all nanofibers. The spectra of individual nanofibers N1–N6 showed
characteristic peaks for individual components: PCL for N1–N2, PCL/PVP for N3–N4, and
PVP for N5–N6 (Figure 3). Moreover, there were no new, noticeable peaks in the nanofibers
N1–N6. This means that the IR spectra of the nanofibers show physical interactions between
PCL and PVP and the extract rather than the formation of new chemical bonds.
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The release of the active component from the nanofibers is a critical factor significantly
affecting the product’s efficacy (Figure 4). The rutin release profiles from PCL–based,
PCL/PVP–based, and PVP–based nanofibers differ considerably. Within the first 30 min,
an instantaneous burst release of rutin was seen in the case of N5 nanofibers (PVP–based
nanofibers). This phenomenon can be explained by using a highly hydrophilic and quickly
water-soluble polymer, PVP, as well as the nanofiber structure itself, which provides a large
contact surface of the substance with the acceptor fluid [28,45]. Moreover, in comparison to
crystalline and semicrystalline systems, amorphous solid dispersions containing PVP show
a higher apparent drug solubility and a faster rate of dissolution in aqueous solution [46].
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Additionally, PVP polymer prevents recrystallization. The lack of hydrogen donor groups
also affects the charge distribution of the molecule and, consequently, the crystal packing,
which may explain the weak crystal structure and effective stability of the amorphous
forms [47]. Higuchi kinetics, which postulates that rutin is released via diffusion across
dispersed vesicles, is the most plausible release mechanism. The second likely explanation
is Korsmeyer–Peppas kinetics with n over 1.0, implying non-Fickian transport (Table S1,
Supplementary Material).
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A prolonged release profile of rutin was noted in the cases of nanofibers N3, which
were based on PCL/PVP mixture. By altering the ratio of PCL to PVP in the fibrous matrix,
the hydrophilicity of PCL/PVP nanofibers can be regulated to allow sustained substance
release, as PCL is a very hydrophobic polymer and PVP is a highly hydrophilic polymer [48].
Due to the rapid release of an amorphous substance on the surface of the nanofibers, the
rutin release curves from nanofibers N3 may be separated into two phases: the burst release
phase and the last slow-release phase. The second phase occurs according to diffusion and
has the kinetic characteristics of the Higuchi model (Table S1, Supplementary Material).

Finally, the release of rutin from N1 or PCL–based nanofibers was characterized by
a typical appearance for controlled release according to zero-order kinetics [49]. Thus
far, the literature has reported that a modification in the fiber structure causes the release
profile to slow down. Because the ester groups of the framework separate from the buffer
penetration, the fibrous structures are broken, and droplet-shaped particles form in their
place. Furthermore, the surface erosion of the PCL matrix causes the fibers’ surface to
become rough. According to this finding, the breakdown process begins at the PCL fibers’
surface and moves inside the particles [50,51]. This may indicate re-crystallization of the
guest polymer [52].

To ensure prolonged release of the active substance, it is necessary to provide a long
residence time for the form at the application site; therefore, such a form must have
mucoadhesive properties. Thus, in this case, the mucoadhesive properties of the obtained
N1–N6 nanofibers were assessed (Figure 5). The highest mucoadhesive properties were
observed for the PCL–based nanofibers (N1–N2) and decreased with a decrease in the
PCL content in the composition. It was also noticed that adding the extract reduced the
mucoadhesive property of the entire system. As was noticed before, PVP has a more
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hydrophilic structure than PCL, which can result in numerous hydrogen bonds with the
mucus layer. The data indicate that PCL could present hydrophobic interactions with
mucus, which explains the good ability to adhere to the mucosa with a pH of around
6.8 [53].
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Finally, the biological properties, i.e., the antioxidant and anti-inflammatory activities
of the nanofibers, were assessed (Table 6).

Table 6. Antioxidant and anti-inflammatory activities of nanofibers N1, N3, and N5.

Nanofibers
Antioxidant Activity Anti-Inflammatory Activity

IC50 (µg/mL) IC50 (µg/mL)

N1 267.57 ± 2.94 183.73 ± 9.27
N3 244.13 ± 2.04 165.18 ± 11.19
N5 147.59 ± 0.79 120.82 ± 10.42

Activities decreased compared to the initial extract. PVP–based (N5) nanofibers
showed the most excellent activity of the produced nanofibers, related to their best sol-
ubility in water, manifested in the fastest achievement of the maximum release of the
extract’s active compounds, mainly responsible for the biological action of the nanofibers.
Consistently, the lowest activity was determined for PCL–based (N1) nanofibers, which is
related to the limited solubility of the nanofiber base itself, and changes in the structure of
nanofibers, described above.

The cytotoxicity of the human normal skin fibroblasts (Hs27 cells) line was assessed
using the MTT test to determine the biocompatibility of the obtained materials (Figure 6).
The pure extract at a concentration of 100 µg/mL intensified the proliferation of fibroblasts,
but what is important is that none of the analyzed samples disturbed (in minus) cell growth.
Due to the lack of influence of the extract and nanofibers on the viability of fibroblast cells,
this proves the biocompatibility of the produced material.
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Figure 7. The wound-healing effect of the extract and nanofibers N1–N6 was observed on two-di-
mensional cultures of normal human skin fibroblasts (representative images). 

Figure 6. Viability of human normal skin fibroblasts (Hs27 cells) exposed to 100 µg/mL of the extract
and nanofibers N1–N6 for 24 h. ANOVA statistically analyzed the results of the MTT assay with a
post hoc Dunnett’s test. Statistical significance (vs control cells) was designated as *** when p < 0.001.

Fibroblasts are necessary for periodontal wound healing as well. These cell types are
essential for the periodontal ligament, gingiva, and tooth root to renew a robust fibrillar
connection [54]. Figure 7 shows the healing of the wound, and both the extract itself and
the nanofibers N1, N3, N5, and their respective bases N2, N4, and N6, accelerate the healing
of the scratch in a statistically significant way. The N3 system had the most potent healing
effect (98.2% scratch closure versus 65.5% control closure), then N1 (91.0% vs. 65.5%), then
N5 (87.1% vs. 65.5%). The extract caused the crack to heal by 80.2% (Figure 8).
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The obtained nanofibers exhibited excellent biocompatibility, promoting cell prolifera-
tion, anti-inflammatory effects, and wound healing.

Figure 9 shows the results of the PCA analysis for the nanofibers’ characteristics.
A statistically significant very strong correlation was indicated between the diameter of
the nanofibers and wound closure (Table S2, Supplementary Materials); the larger the
diameter of the nanofibers, the faster the wound healing, which indicates the importance
of the material used in closing the wound. A strong correlation was demonstrated be-
tween the percentage of substances released and the antioxidant and anti-inflammatory
activity, as described above, and the results from the dissolution rate of the nanofiber
base; rapid dissolution of PVP and prolonged PCL resulted from the nanofiber bases’
hydrophilic–hydrophobic properties of starting materials. A very strong correlation has
been demonstrated between mucoadhesive properties and biological activity; the more
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significant the bioadhesive component, the weaker the antioxidant and anti-inflammatory
activity resulting from nanofiber bases’ hydrophilic–hydrophobic properties. The higher
the mucoadhesive properties, the more hydrophobic properties, the lower the level of
substance release and, consequently, the weaker the biological activity.
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 Figure 9. Principal component analysis (PCA) showing the factor loading plot considering the
average diameter of nanofibers (=diameter), production efficiency, percentage of rutin release at
6 h (=dissolution), antioxidant activity (=DPPH), anti-inflammatory activity (=Hyal), mucoadhesive
properties, and wound closure after 24 h (=wound closure); N1—nanofibers N1, N3—nanofibers N3,
N5—nanofibers N5.
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4. Conclusions

This study describes the optimization of the pomegranate peel extraction process,
where it was shown that ultrasonic-assisted extraction using 70% methanol as an extractant,
a temperature of 70 degrees, and conducting the process in three cycles of 60 min turns out
to be the best. In the second stage, nanofibers based on PCL and/or PVP were successfully
produced using electrospinning techniques and evaluated as a potential dressing material
for use in the oral cavity. The developed nanofibers exhibited a pearl-free, continuous
morphology. PVP–based nanofibers showed an immediate release of extract compounds,
while those based on PCL showed a controlled and prolonged release over time. Finally,
the potential of nanofibers to reduce the expression of inflammation and the potential of
fibroblast cell proliferation were demonstrated, which indicates the possibility of acceler-
ating wound healing. With the appropriate proportion of ingredients, PCL/PVP–based
nanofibers (N3) showed the best potential. The groundbreaking strategy of fabricating
electrospun nanofibers infused with pomegranate peel extract heralds a new era in pharma-
ceutical innovation. This pioneering approach harnesses the inherent synergy of bioactive
compounds within the extract, offering unparalleled efficacy in combating oral infections.
Moreover, by encapsulating these potent agents within patient-friendly nanofiber matrices,
we not only optimize therapeutic delivery but also revolutionize the treatment experience,
ensuring enhanced patient compliance and outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17112558/s1, Figure S1. Statistical analysis for rutin content in
extracts E1–E9: (a) Pareto plot of standardized effects for rutin content in extracts E1–E9; (b) response
surface plots presenting the dependence of methanol content in the extraction mixture and extraction
temperature on the rutin content in extracts for constant time of 60 min. Figure S2. Statistical
analysis for total phenolic content in extracts E1–E9: (a) Pareto plot of standardized effects for
total phenolic content in extracts E1–E9; (b) response surface plots presenting the dependence of
methanol content in the extraction mixture and extraction temperature on the total phenolic content
in extracts for constant time of 60 min. Figure S3. Statistical analysis for antioxidant activity of
extracts E1–E9 measured by DPPH method: (a) Pareto plot of standardized effects for antioxidant
activity; (b) response surface plots presenting the dependence of methanol content in the extraction
mixture and extraction temperature on antioxidant activity of extracts for constant time of 60 min.
Figure S4. Statistical analysis for anti-inflammatory activity of extracts E1–E9: (a) Pareto plot of
standardized effects for anti-inflammatory activity of extracts E1–E9; (b) response surface plots
presenting the dependence of methanol content in the extraction mixture and extraction temperature
on anti-inflammatory activity of extracts for constant time of 60 min. Figure S5. Prediction of the
optimization model for obtaining extracts based on effects with positive signs like rutin content and
TPC (a) and those with negative signs like DPPH and hyaluronidase assays (b). Figure S6. Sample
photos of plates with MIC testing. A—effect of pomegranate peel extract on Streptococcus mutans
ATCC 25175, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. After using TTC:
yellow color means no growth, red color means growth of pathogens. B—effect of pomegranate peel
extract (marked as GR) on Porphyromonas gingivalis ATCC 33277, Prevotella intermedia ATCC 25611,
and Schaalia odontolytica (Actinomyces odontolyticus) ATCC 17929. After the use of resazurin: pink and
red color means growth of periopathogens, blue and violet-brown color means no growth. Table S1.
Parameters of mathematical models fitted to the chlorogenic acid release profiles of nanofibers N1,
N3, and N5. Table S2. Correlation matrix.
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