Enhancing Tribological Performance of Self-Lubricating Composite via Hybrid 3D Printing and In Situ Spraying
Abstract
:1. Introduction
2. Experimental Details
2.1. Fused Deposition Modeling
2.2. Mechanical Testing
2.3. Tribological Experimentation
3. Results and Discussion
3.1. Surface Features
3.2. Mechanical Properties
3.3. Tribological Performance
3.3.1. ABS-Al2O3 Composites
3.3.2. ABS-hBN Composites
3.3.3. ABS-Al2O3-hNB Composites
3.3.4. Comparative Assessment
4. Conclusions
- The addition of Al2O3 and hBN resulted in a large formation of micropores along the ABS structure. This finding was attributed to the interactions of the reinforcement and alcohol during the cooling process, which likely altered the cooling rates of the surrounding filament.
- In tensile-loading conditions, the presence of Al2O3 and hBN reinforcements degraded the mechanical properties of the ABS substrate. Between Al2O3 and hBN, the addition of hBN had the most negative impact on tensile strength. This finding can be likely attributed to the lack of cohesive bonding between the ABS layers due to the interactions of the reinforcement and alcohol during the cooling process. Also, the presence of micropores contributed to this decrease.
- In sliding conditions, the individual addition of Al2O3 and hBN improved the frictional resistance at 100 N loading conditions. When added together, the frictional resistance was improved at 50 N and 100 N loading conditions. The decrease in friction was attributed to the ability of the Al2O3 to support the tribo-load, whereas hBN acted as a solid lubricant due to its lamellar structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Storch, J.C. 3-D Printing Your Way Down the Garden Path: 3-D Printers, the Copyrightization of Patents, and a Method for Manufacturers to Avoid the Entertainment Industry’s Fate. NYU J. Intellect. Prop. Entertain. Law 2013, 3, 249–309. [Google Scholar]
- McMills, A.E. 3D Printing Basics for Entertainment Design; Taylor & Francis: Abingdon, UK, 2017. [Google Scholar]
- Thierer, A.; Marcus, A. Guns, Limbs, and Toys: What Future for 3D Printing? Symposium. Minn. JL Sci. Tech. 2016, 17, 805–854. [Google Scholar]
- Martinez, D.W.; Espino, M.T.; Cascolan, H.M.; Crisostomo, J.L.; Dizon, J.R.C. A Comprehensive Review on the Application of 3D Printing in the Aerospace Industry. Key Eng. Mater. 2022, 913, 27–34. [Google Scholar] [CrossRef]
- Kalender, M.; Kilic, S.E.; Ersoy, S.; Bozkurt, Y.; Salman, S. Additive Manufacturing and 3D Printer Technology in Aerospace Industry. In Proceedings of the 2019 9th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 11–14 June 2019; pp. 689–694. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Lee, T.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Prabhu, L.; Krishnamoorthi, S.; Joseph, J.; George, J.K. Development of advanced 3D printing technology in automotive industry. AIP Conf. Proc. 2023, 2523, 020101. [Google Scholar] [CrossRef]
- Hurst, E.J. 3D Printing in Healthcare: Emerging Applications. J. Hosp. Librariansh. 2016, 16, 255–267. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. 3D printing applications for healthcare research and development. Glob. Health J. 2022, 6, 217–226. [Google Scholar] [CrossRef]
- Sathies, T.; Senthil, P.; Anoop, M. A review on advancements in applications of fused deposition modelling process. Rapid Prototyp. J. 2020, 26, 669–687. [Google Scholar] [CrossRef]
- Ralls, A.M.; Kumar, P.; Menezes, P.L. Tribological Properties of Additive Manufactured Materials for Energy Applications: A Review. Processes 2020, 9, 31. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchol, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D printing filament as a second life of waste plastics-a review. Environ. Sci. Pollut. Res. 2021, 28, 12321–12333. [Google Scholar] [CrossRef] [PubMed]
- Pakkanen, J.; Manfredi, D.; Minetola, P.; Iuliano, L. About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing. In Sustainable Design and Manufacturing 2017; Campana, G., Howlett, R.J., Setchi, R., Cimatti, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 776–785. [Google Scholar] [CrossRef]
- Aida, H.J.; Nadlene, R.; Mastura, M.; Yusriah, L.; Sivakumar, D.; Ilyas, R.A. Natural fibre filament for Fused Deposition Modelling (FDM): A review. Int. J. Sustain. Eng. 2021, 14, 1988–2008. [Google Scholar] [CrossRef]
- Ralls, A.M.; Flores, C.; Kotowski, T.; Lee, C.; Kumar, P.; Menezes, P.L. 7-Development of surface roughness from additive manufacturing processing parameters and postprocessing surface modification techniques. In Tribology of Additively Manufactured Materials; Kumar, P., Misra, M., Menezes, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 193–222. [Google Scholar] [CrossRef]
- Dhinakaran, V.; Kumar, K.M.; Ram, P.B.; Ravichandran, M.; Vinayagamoorthy, M. A review on recent advancements in fused deposition modeling. Mater. Today Proc. 2020, 27, 752–756. [Google Scholar] [CrossRef]
- Boparai, K.S.; Singh, R.; Singh, H. Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyp. J. 2016, 22, 281–299. [Google Scholar] [CrossRef]
- Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W.S.W.; Rahman, M. Fused deposition modeling: Process, materials, parameters, properties, and applications. Int. J. Adv. Manuf. Technol. 2022, 120, 1531–1570. [Google Scholar] [CrossRef]
- Medellin-Castillo, H.I.; Zaragoza-Siqueiros, J. Design and Manufacturing Strategies for Fused Deposition Modelling in Additive Manufacturing: A Review. Chin. J. Mech. Eng. 2019, 32, 53. [Google Scholar] [CrossRef]
- Siemiński, P. Chapter 7-Introduction to fused deposition modeling. In Additive Manufacturing; Pou, J., Riveiro, A., Davim, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 217–275. [Google Scholar] [CrossRef]
- Zhou, Y.; Nyberg, T.; Xiong, G.; Liu, D. Temperature Analysis in the Fused Deposition Modeling Process. In Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 8–10 July 2016; pp. 678–682. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef]
- McCullough, E.J.; Yadavalli, V.K. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. J. Am. Acad. Dermatol. 2013, 213, 947–954. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Xie, G.; Li, Z.; Chen, H.; Gong, H.; Xu, W.; Guo, D.; Luo, J. A review on tribology of polymer composite coatings. Friction 2021, 9, 429–470. [Google Scholar] [CrossRef]
- Xu, J.; Kohira, H.; Saegusa, S. Contact ABS Design Concepts. In Proceedings of the American Society of Mechanical Engineers Digital Collection, International Joint Tribology Conference, Cancun, Mexico, 27–30 October 2002; pp. 33–40. [Google Scholar] [CrossRef]
- Amiruddin, H.; Bin Abdollah, M.F.; Norashid, N.A. Comparative study of the tribological behaviour of 3D-printed and moulded ABS under lubricated condition. Mater. Res. Express 2019, 6, 085328. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L.; Somers, A.E. Investigation on the tribological behavior and wear mechanism of parts processed by fused deposition additive manufacturing process. J. Manuf. Process. 2017, 29, 149–159. [Google Scholar] [CrossRef]
- Harshitha, V.; Rao, S.S. Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials. Mater. Today Proc. 2019, 19, 583–588. [Google Scholar] [CrossRef]
- Chadha, A.; Haq, M.I.U.; Raina, A.; Singh, R.R.; Penumarti, N.B.; Bishnoi, M.S. Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World J. Eng. 2019, 16, 550–559. [Google Scholar] [CrossRef]
- Srinivasan, R.; Rathish, R.; Sivaraman, P.; Pramod, A.; Shivaganesh, G. Influential analysis of fused deposition modeling process parameters on the wear behaviour of ABS parts. Mater. Today Proc. 2020, 27, 1869–1876. [Google Scholar] [CrossRef]
- Kaur, G.; Singari, R.M.; Kumar, H. A review of fused filament fabrication (FFF): Process parameters and their impact on the tribological behavior of polymers (ABS). Mater. Today Proc. 2021, 51, 854–860. [Google Scholar] [CrossRef]
- Amirruddin, M.S.; Ismail, K.I.; Yap, T.C. Effect of layer thickness and raster angle on the tribological behavior of 3D printed materials. Mater. Today Proc. 2021, 48, 1821–1825. [Google Scholar] [CrossRef]
- Onwubolu, G.C.; Rayegani, F. Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process. Int. J. Manuf. Eng. 2014, 2014, e598531. [Google Scholar] [CrossRef]
- Gurrala, P.K.; Regalla, S.P. Friction and wear rate characteristics of parts manufactured by fused deposition modelling process. Int. J. Rapid Manuf. 2017, 6, 245–261. [Google Scholar] [CrossRef]
- Attoye, S.; Malekipour, E.; El-Mounayri, H. Correlation Between Process Parameters and Mechanical Properties in Parts Printed by the Fused Deposition Modeling Process. In Mechanics of Additive and Advanced Manufacturing; Kramer, S., Jordan, J.L., Jin, H., Carroll, J., Beese, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 8, pp. 35–41. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Bahrami, M.H.; Ehteshamfar, M.V.; Adibi, H. The Effect, Prediction, and Optimization of Fe Particles on Wear Behavior of Fe–ABS Composites Fabricated by Fused Deposition Modeling. Arab. J. Sci. Eng. 2023, 49, 2001–2016. [Google Scholar] [CrossRef]
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 2017, 12, 47–59. [Google Scholar] [CrossRef]
- Penumakala, P.K.; Santo, J.; Thomas, A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. Part B Eng. 2020, 201, 108336. [Google Scholar] [CrossRef]
- Krajangsawasdi, N.; Blok, L.G.; Hamerton, I.; Longana, M.L.; Woods, B.K.S.; Ivanov, D.S. Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review. J. Compos. Sci. 2021, 5, 29. [Google Scholar] [CrossRef]
- Mishra, V.; Negi, S.; Kar, S.; Sharma, A.K.; Rajbahadur, Y.N.K.; Kumar, A. Recent advances in fused deposition modeling based additive manufacturing of thermoplastic composite structures: A review. J. Thermoplast. Compos. Mater. 2022, 36, 3094–3132. [Google Scholar] [CrossRef]
- Wei, Q.; Yang, R.; Zhao, X.; Zhou, J.; An, Y.; Yang, S. Fused deposition modeling of carbon-reinforced polymer matrix composites: A comprehensive review. Polym. Compos. 2023, 44, 5313–5345. [Google Scholar] [CrossRef]
- Ralls, A.M.; John, M.; Noud, J.; Lopez, J.; LeSourd, K.; Napier, I.; Hallas, N.; Menezes, P.L. Tribological, Corrosion, and Mechanical Properties of Selective Laser Melted Steel. Metals 2022, 12, 1732. [Google Scholar] [CrossRef]
- Ralls, A.M.; Daroonparvar, M.; Menezes, P.L. Spark Plasma Sintering of Mg-based Alloys: Microstructure, Mechanical Properties, Corrosion Behavior, and Tribological Performance. J. Magnes. Alloys 2024, 12, 405–442. [Google Scholar] [CrossRef]
- Kaushal, S.; Saloni; Zeeshan; Ansari, I.; Sharma, D. Progress in tribological research of Al2O3 ceramics: A review. Mater. Today Proc. 2023, 82, 163–167. [Google Scholar] [CrossRef]
- Singh, R.; Singh, I.; Kumar, R. Mechanical and morphological investigations of 3D printed recycled ABS reinforced with bakelite–SiC–Al2O3. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 5933–5944. [Google Scholar] [CrossRef]
- Ouyang, J.-H.; Li, Y.-F.; Zhang, Y.-Z.; Wang, Y.-M.; Wang, Y.-J. High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review. Lubricants 2022, 10, 177. [Google Scholar] [CrossRef]
- Keshavamurthy, R.; Tambrallimath, V.; Rajhi, A.A.; R. M, S.A.; Patil, A.Y.; Yunus Khan, T.M.; Makannavar, R. Influence of Solid Lubricant Addition on Friction and Wear Response of 3D Printed Polymer Composites. Polymers 2021, 13, 2905. [Google Scholar] [CrossRef]
- Khalaj, M.; Golkhatmi, S.Z.; Alem, S.A.A.; Baghchesaraee, K.; Azar, M.H.; Angizi, S. Recent Progress in the Study of Thermal Properties and Tribological Behaviors of Hexagonal Boron Nitride-Reinforced Composites. J. Compos. Sci. 2020, 4, 116. [Google Scholar] [CrossRef]
- Marian, M.; Berman, D.; Rota, A.; Jackson, R.L.; Rosenkranz, A. Layered 2D Nanomaterials to Tailor Friction and Wear in Machine Elements—A Review. Adv. Mater. Interfaces 2021, 9, 2101622. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, X.; Zhang, Q.; Zhai, W.; Li, X.; Yao, J.; Chen, L.; Zhu, Q.; Xiaov, Y. Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites. Tribol. Lett. 2014, 55, 393–404. [Google Scholar] [CrossRef]
- Borgaonkar, A.V.; Potdar, S.B.; Kale, S. Mechanical and Tribological Characteristics of Two-Dimensional (2D) Nanomaterials. In New Advances in Materials Technologies; Apple Academic Press: Palm Bay, FL, USA, 2024. [Google Scholar]
- Uzoma, P.C.; Hu, H.; Khadem, M.; Penkov, O.V. Tribology of 2D Nanomaterials: A Review. Coatings 2020, 10, 897. [Google Scholar] [CrossRef]
- Dadvand, M.; Savadogo, O. Effect of hBN on Corrosion and Wear Performances of DC Electrodeposited NiW and NiW–SiC on Brass Substrates. Coatings 2022, 12, 1011. [Google Scholar] [CrossRef]
- Wolszczak, P.K.; Lygas, K.; Paszko, M.; Wach, R.A. Heat distribution in material during fused deposition modelling. Rapid Prototyp. J. 2018, 24, 615–622. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef]
- Tiganis, B.; Burn, L.; Davis, P.; Hill, A. Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polym. Degrad. Stab. 2002, 76, 425–434. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, K.; Li, H.; Zhang, Q.; Tu, D. Rapid residual stress prediction and feedback control during fused deposition modeling of PLA. Int. J. Adv. Manuf. Technol. 2021, 118, 3229–3240. [Google Scholar] [CrossRef]
- Baechle-Clayton, M.; Loos, E.; Taheri, M.; Taheri, H. Failures and Flaws in Fused Deposition Modeling (FDM) Additively Manufactured Polymers and Composites. J. Compos. Sci. 2022, 6, 202. [Google Scholar] [CrossRef]
- Solomon, I.J.; Sevvel, P.; Gunasekaran, J. A review on the various processing parameters in FDM. Mater. Today Proc. 2021, 37, 509–514. [Google Scholar] [CrossRef]
- Patnaik, P. Handbook of Inorganic Chemicals; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Zhou, K.; Wang, Z.; He, F.; Liu, S.; Li, J.; Kai, J.-J.; Wang, J. A precipitation-strengthened high-entropy alloy for additive manufacturing. Addit. Manuf. 2020, 35, 101410. [Google Scholar] [CrossRef]
- Abedini, A.; Asiyabi, T.; Campbell, H.R.; Hassanzadeh, R.; Azdast, T. On fabrication and characteristics of injection molded ABS/Al2O3 nanocomposites. Int. J. Adv. Manuf. Technol. 2019, 102, 1747–1758. [Google Scholar] [CrossRef]
- Quill, T.J.; Smith, M.K.; Zhou, T.; Baioumy, M.G.S.; Berenguer, J.P.; Cola, B.A.; Kalaitzidou, K.; Bougher, T.L. Thermal and mechanical properties of 3D printed boron nitride–ABS composites. Appl. Compos. Mater. 2017, 25, 1205–1217. [Google Scholar] [CrossRef]
- Rodríguez, J.F.; Thomas, J.P.; Renaud, J.E. Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation. Rapid Prototyp. J. 2001, 7, 148–158. [Google Scholar] [CrossRef]
- Myshkin, N.K.; Tkachuk, D.V. Polymer Tribology Fundamentals. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.-W., Eds.; Springer: Boston, MA, USA, 2013; pp. 2614–2619. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Guo, B.; Zhou, H.; Pu, Y.; Chen, J. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating. Mater. Sci. Eng. A 2008, 491, 47–54. [Google Scholar] [CrossRef]
- Cai, H.; Yan, F.; Xue, Q.; Liu, W. Investigation of tribological properties of Al2O3-polyimide nanocomposites. Polym. Test. 2003, 22, 875–882. [Google Scholar] [CrossRef]
3D Printing Parameters | |
---|---|
Layer height | 0.25 mm |
Filament diameter | 1.75 ± 0.02 mm |
Nozzle temperature | 255 °C |
Nozzle diameter | 0.4 mm |
Print bed temperature | 100 °C |
Infill | 100% |
Top/bottom infill pattern | Rectilinear |
Internal infill pattern | Grid |
Specimen Name | Reinforcement | Reinforcement Quantity |
---|---|---|
ABS | None | No material added |
ABS + Al2O3 | Al2O3 | 2 g Alumina per 130 mL isopropyl alcohol |
ABS + hBN | hBN | 2 g hBN per 130 mL isopropyl alcohol |
ABS + Al2O3 + hBN | Al2O3 and hBN | 1 g Alumina, 1 g hBN per 130 mL isopropyl alcohol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ralls, A.M.; Monette, Z.; Kasar, A.K.; Menezes, P.L. Enhancing Tribological Performance of Self-Lubricating Composite via Hybrid 3D Printing and In Situ Spraying. Materials 2024, 17, 2601. https://doi.org/10.3390/ma17112601
Ralls AM, Monette Z, Kasar AK, Menezes PL. Enhancing Tribological Performance of Self-Lubricating Composite via Hybrid 3D Printing and In Situ Spraying. Materials. 2024; 17(11):2601. https://doi.org/10.3390/ma17112601
Chicago/Turabian StyleRalls, Alessandro M., Zachary Monette, Ashish K. Kasar, and Pradeep L. Menezes. 2024. "Enhancing Tribological Performance of Self-Lubricating Composite via Hybrid 3D Printing and In Situ Spraying" Materials 17, no. 11: 2601. https://doi.org/10.3390/ma17112601
APA StyleRalls, A. M., Monette, Z., Kasar, A. K., & Menezes, P. L. (2024). Enhancing Tribological Performance of Self-Lubricating Composite via Hybrid 3D Printing and In Situ Spraying. Materials, 17(11), 2601. https://doi.org/10.3390/ma17112601