
Citation: Chen, X.; Wang, H.; Liu, C.;

Wang, W.; Chen, B. Influence of

Additives on the Macroscopic Color

and Corrosion Resistance of 6061

Aluminum Alloy Micro-Arc

Oxidation Coatings. Materials 2024, 17,

2621. https://doi.org/10.3390/

ma17112621

Academic Editor: Frank Czerwinski

Received: 26 April 2024

Revised: 25 May 2024

Accepted: 26 May 2024

Published: 29 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Influence of Additives on the Macroscopic Color and Corrosion
Resistance of 6061 Aluminum Alloy Micro-Arc
Oxidation Coatings
Xuanyu Chen , Hao Wang, Cancan Liu *, Wenqiang Wang and Bo Chen

College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China;
202161203207@njtech.edu.cn (X.C.); 202261203312@njtech.edu.cn (H.W.); 202161203202@njtech.edu.cn (W.W.);
202161203196@njtech.edu.cn (B.C.)
* Correspondence: ccliu@njtech.edu.cn; Tel.: +86-18851604703

Abstract: In this study, we successfully employed the plasma electrolytic oxidation (PEO) technique
to create a uniform white ceramic layer on the surface of the 6061 aluminum alloy using K2ZrF6 and
Na2WO4 as colorants. A scanning electron microscope (SEM) equipped with an energy-dispersive
X-ray spectrometer (EDS) and X-ray diffraction (XRD) were used to characterize the coatings, and
we used an electrochemical workstation to test their corrosion protection properties. The corrosion
resistance of the coatings was analyzed using potentiodynamic polarization curves. The results
showed that K2ZrF6 addition whitened the coating with ZrO2 as the main phase composition,
inhibiting Al substrate depletion and enhancing coating corrosion resistance. A small amount of
Na2WO4 decreased the coating’s L* value, successfully constructing ceramic coatings with L* (coating
brightness) values ranging from 70 to 86, offering broad application prospects for decorative coatings.

Keywords: aluminum alloy; white micro-arc oxidation coating; decorative; corrosion resistance

1. Introduction

In recent years, aluminum and its alloys have been extensively utilized in various
fields, such as aerospace and 3C electronics due to their high specific strength, excellent
corrosion resistance, and good thermal conductivity [1–4]. However, certain products,
particularly electronic devices, necessitate surface coloring treatment to meet decorative
requirements. Common coloring techniques for aluminum alloys, including dye coloring
and anodic oxidation coloring, are limited by factors such as low hardness, poor bonding,
and complex processes [5–7].

PEO technology, a novel surface treatment approach evolved from traditional anodic
oxidation technology, has significantly enhanced processing efficiency by increasing the
anode voltage from tens to hundreds of volts. In this process, valve metals (e.g., Mg, Al,
and Ti) and their alloys are placed in an alkaline electrolyte as the anode, while stainless
steel and other inert electrode plates serve as the cathode. When the voltage surpasses
the metal anode’s capacitance threshold, plasma discharge occurs, and a ceramic layer
grows on the metal substrate surface. This coating exhibits properties such as high bonding
strength and good corrosion resistance [8,9]. Moreover, the alkaline electrolyte is easier
to dispose of, reducing environmental pollution. By introducing different additives to
the electrolyte, coatings of various colors can be prepared on the metal surface. Indeed,
black, white, green, blue, and other colored coatings have been successfully produced
on aluminum alloys [10,11]. The commonly used colorants include Na2WO4, K2ZrF6,
NH4VO3, K2TiF6, etc. [12–14]. Wang et al. [15] prepared white, brown, grey, and black
coatings on the surface of the AZ91D magnesium alloy using copper acetate, sodium
tungstate, and sodium orthovanadate. It was not difficult to find that the presentation of
different colors was caused by the formation of oxides on the coating surface by different
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metal cations. When the AZ31 magnesium alloy is micro-arc-oxidized in a cerium nitrate
electrolyte, the coating shows a yellow color due to the combined effect of cerium dioxide
and cerium oxide, and prolonging the time of micro-arc oxidation can make the yellow color
deepen [16]. Jiang [17] varied the amount of sodium hexametaphosphate to investigate
its effect on the color of the coating. However, these coating colors were only qualitative,
lacking quantitative data expression, such as color interval ranges. Although numerous
studies have investigated colored coatings, few have focused on different shades of the
same coating color. This study aimed to adjust the coating color using different colorants,
establish a library of white color gradients for the coating, and investigate the coating’s
corrosion resistance, thereby extending the application field of PEO technology.

In this study, Na2WO4 and K2ZrF6 were selected as colorants to prepare white coatings
on aluminum alloy surfaces using PEO. By varying the colorant content, the coatings’
chromaticity value, L* [18] (brightness), was made to fall within the range of 70–86, making
them adaptable for decorative purposes in different fields. The corrosion resistance and
coloring mechanism of the coatings were also analyzed and discussed.

2. Experimental Procedures
2.1. Coating Deposition Conditions

The substrate used was a 6061 aluminum alloy with dimensions of Φ35 × 4 mm (wt%:
Cu 0.28, Mg 0.88, Fe 0.34, Si 0.5, Mn 0.14, Zn 0.09, Cr 0.12, Ti 0.4, and Al). Each sample’s
surface was polished with 2000 mesh silicon carbide paper and ultrasonically cleaned in
ethanol. All chemicals used in the coating preparation process were analytically pure (AR),
with specific details listed in Table 1.

Table 1. List of the chemical reagents used in the experiment.

Drug Name Chemical Formula Manufacturer

Trisodium phosphate Na3PO4 Sinopharm Chemical Reagent Co. (Shanghai, China)
Sodium silicate Na2SiO3 Sinopharm Chemical Reagent Co. (Shanghai, China)

Sodium Hexametaphosphate (NaPO3)6 Anhui Zhongxu Biotechnology Co. (Anhui, China)
Sodium tungstate Na2WO4 Xilong Science Co. (Guangzhou, China)

Potassium Hexafluorozirconate K2ZrF6 Shanghai Aladdin Biochemical Technology Co. (Shanghai, China)

Table 2 presents the electrolyte compositions and denotes the samples as P-Zr0, P-
Zr2, P-Zr4, P-Zr15, P6-W0, P6-W0.4, and P6-W0.8. PEO was performed using a pulsed
unipolar power supply (10 W) in the constant current mode, with the solution temperature
maintained below 20 ◦C through cooling and stirring. The micro-arc oxidation process
parameters were set to a current density of 2 A/dm2, a duty cycle of 20%, a frequency of
500 HZ, and a treatment time of 15 min.

Table 2. Composition of the seven electrolytes.

Specimen Electrolyte pH Conductivity (mS/cm)

P-Zr0 18 g/L Na3PO4 + 3 g/L Na2SiO3 + Corrosion inhibitor A 5.34 10.41
P-Zr2 18 g/L Na3PO4 + 3 g/L Na2SiO3 + 2 g/L K2ZrF6 + Corrosion inhibitor A 5.40 11.15
P-Zr4 18 g/L Na3PO4 + 3 g/L Na2SiO3 + 4 g/L K2ZrF6 + Corrosion inhibitor A 5.28 11.80

P-Zr15 18 g/L Na3PO4 + 3 g/L Na2SiO3 + 15 g/L K2ZrF6 + Corrosion inhibitor A 5.35 15.75
P6-W0 35 g/L (NaPO3)6 + 5 g/L Na2SiO3 6.77 11.88

P6-W0.4 35 g/L (NaPO3)6 + 5 g/L Na2SiO3 + 0.4 g/L Na2WO4 6.42 12.46
P6-W0.8 35 g/L (NaPO3)6 + 5 g/L Na2SiO3 + 0.8 g/L Na2WO4 6.25 12.88

2.2. Microscopic Characterization

The PEO coatings’ morphology and surface elemental composition were observed
using scanning electron microscopy (SEM, JEOL, JSM-7900F, Tokyo, Japan) and energy
dispersive X-ray spectroscopy (EDS, JEOL, JSM-IT500A, Japan). In the SEM technique,
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the accelerating voltage was 15 KV, with the backscattering mode used for the coating
cross-section scans, and the secondary electron mode was used for the coating surface scans.
X-ray diffraction (XRD, D/Max-2400, Akishima, Japan) was employed to determine the
coatings’ phase composition using a Cu target (Kα1 = 0.15406 nm) as the anode target in the
parallel light mode with a grazing angle of 2◦. The samples were scanned in the 2θ range
from 20 to 90◦ with a step size of 0.02◦ and a scanning speed of 10◦/min. An electrochemical
workstation (Metrohm Autolab PGSTAT302 N, Herissau, Switzerland) was used to test the
coatings’ corrosion protection properties in a 3.5 wt.% NaCl solution at room temperature,
employing a conventional three-electrode battery system with a Ag/AgCl electrode as the
reference electrode and a platinum electrode as the counter electrode. Potentiodynamic
polarization curves were tested at a scan rate of 10 mV/s after 1 h of immersion. The
coating thickness was measured using an eddy current thickness gauge (FMP20, Fisher,
Schwerte, Germany), while optical emission spectroscopy (OES, Ideaoptics PG2000-Pro,
Shanghai, China) was used to study the discharge sparks’ emission spectra during the PEO
process. The surface roughness was measured using a surface roughness tester (Ra200,
Jingmere Technology Co., Ltd., Beijing, China). The coatings’ chromaticity was analyzed
using the LS171 colorimeter to obtain the chromaticity values L* (luminance), a* (red to
green range), and b* (yellow to blue range).

3. Results and Discussion
3.1. Voltage–Time Response

The time–voltage curve for the micro-arc oxidation process after adding K2ZrF6 is
shown in Figure 1a. The three stages of micro-arc oxidation are delineated by dashed lines.
When the content of K2ZrF6 is between 0 g/L and 2 g/L, the electrolyte remains stable.
However, when the content of K2ZrF6 is increased to 4 g/L and 15 g/L, a significant voltage
drop occurs during the first stage of micro-arc oxidation, known as the anodic oxidation
stage. This is due to the generation of a large number of bubbles and the formation of the
oxide layer. As the working voltage reaches the breakdown voltage, the process enters the
second stage of micro-arc oxidation. At this point, the acidic solution partially dissolves
the newly formed oxide layer, creating pores and resulting in a decrease in the coating
resistance, leading to a voltage drop. As the reaction progresses and the coating growth
rate surpasses the dissolution rate, the working voltage gradually rises and stabilizes.
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Figure 1. Time–voltage response curve of the aluminum alloy micro-arc oxidation process: (a) after
adding K2ZrF6; (b) after adding Na2WO4.

Figure 1b illustrates the time–voltage curve after adding a small amount of Na2WO4
solution. Due to the low Na2WO4 content, the solution stabilizes, and the time–voltage
curves of the three electrolytes are consistent. When the voltage reaches the breakdown
voltage, entering the second stage of micro-arc oxidation, the rate of voltage rise is lower
than in the first stage, which is also attributed to the acidic nature of the solution.
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3.2. Effect of Different Additives on the Surface Structure and Micro-Structure of the Coatings

Based on the micro-arc oxidation time–voltage curve, a point was selected at the third
stage of micro-arc oxidation (300th s of the large spark stage). The discharged sparks
generated during the process were captured, and the discharged ions were analyzed using
optical emission spectroscopy (OES) between 200 and 1000 nm. Figure 2a shows the OES
spectra of the four solutions after adding K2ZrF6. The discharge intensity of the electrolyte
solution first increases, then decreases, and finally increases with the addition of different
K2ZrF6 content, consistent with the trend of its operating voltage. Comparing the solutions
with and without K2ZrF6 reveals that during discharging, not only the strong discharge
of Na 589.46 nm is present, but also K 767.11 nm is involved in the discharge reaction.
This indicates that the electrolyte is primarily consumed during the discharge process.
The absence of an Al peak in the spectra further suggests that the substrate is seldom
consumed in the energy supply discharge. Additionally, Hα 656.41 nm in the electrolyte
also participates in the reaction, which is related to the acidic nature of the solution after
the hydrolysis of K2ZrF6. Figure 2b shows the OES spectra after adding a small amount of
Na2WO4. The spectra stabilize due to the low Na2WO4 content and the lack of obvious
voltage changes during the discharge process. The presence of strong Na peaks further
indicates that the discharge process mainly consumes the electrolyte.
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Figure 3 illustrates the macroscopic color of the micro-arc oxidation coating after adding
additives to the two electrolyte systems. The coating color becomes darker with the addition
of a small amount of Na2WO4, while the addition of K2ZrF6 results in a whiter coating
due to the presence of the corresponding tungsten and zirconium compounds. Tungstate is
commonly used in the preparation of black coatings for micro-arc oxidation, so even a small
amount of Na2WO4 can significantly decrease the whiteness. ZrO2, being a white compound,
further demonstrates that the formation of micro-arc oxide coatings involves the deposition of
compounds from the electrolyte, as evidenced by the change in coating color.
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To express the difference in the coating color visually and accurately, a color difference
analyzer was employed to demonstrate the coating color change through CIE L* a* b*. As
shown in Table 3, with an increasing K2ZrF6 concentration, the coating color gradually
becomes lighter and tends to be pure. Tu et al. found that K2ZrF6 does not continuously
enhance the whiteness of the coating, and when the concentration reaches a certain level,
the whiteness rises slowly [18]. Simultaneously, the addition of a small amount of Na2WO4
darkened the coating color, with the L* value dropping as low as 70. Table 4 presents the
surface element contents of the aluminum alloy micro-arc oxidation coatings with different
additives. Before adding the additives, the main elements of the coating were Al and O,
and the coating color was influenced by the substrate composition. After adding K2ZrF6,
the coating elements primarily consisted of Al, O, and Zr. The Zr in the coating originated
from the electrolyte and increased with the rise in K2ZrF6 content, indicating that the
electrolyte composition plays a major role in the coating growth process. The decrease in
the Al content also suggests that the addition of K2ZrF6 suppresses the influence of the
Al substrate on the coating color, ultimately leading to an increase in the coating L* value.
Similarly, W was also present in the dark coating, but the small amount of Na2WO4 content
resulted in a low W content in the coating. However, even a small amount of W led to a
deeper coating color, as Na2WO4 is commonly used in the preparation of black coatings.

Table 3. L* a* b* CIE results of the aluminum alloy micro-arc oxidation coatings with different additives.

Specimen L* a* b*

P-Zr0 70.23 1.44 5.57
P-Zr2 77.15 1.01 1.74
P-Zr4 82.17 0.75 0.51
P-Zr15 85.33 0.80 0.37
P6-W0 75.18 0.76 2.92

P6-W0.4 72.13 1.03 3.11
P6-W0.8 69.67 1.42 5.86

Table 4. Surface element content of the aluminum alloy micro-arc oxidation coatings with different
additives.

Specimen
Content of Elements (wt.%)

O Al Zr W

P-Zr0 53.20 46.80 -- --
P-Zr2 47.92 42.45 9.63 --
P-Zr4 37.58 37.43 24.99 --
P-Zr15 27.36 17.39 55.25 --
P6-W0 55.37 44.63 -- --

P6-W0.4 49.80 46.79 -- 3.41
P6-W0.8 48.66 44.73 -- 6.61

Figure 4 illustrates the relationship between the thickness and roughness of the alu-
minum alloy micro-arc oxidation coatings with different additives. It was observed that
with an increasing K2ZrF6 concentration, the thickness of the micro-arc oxidation coating
under the same electric parameters increased, indicating that zirconium ions participated
in the reaction and were incorporated into the coating. K2ZrF6 fully dissolved, further
suggesting that K2ZrF6 promotes coating growth. The increase in thickness also led to an
increase in coating roughness, and the changing trend of roughness was consistent with
the changing trend of thickness, as evident in the figure. This demonstrates that within
the same electrolyte, the coating thickness is a direct factor affecting the surface roughness
of the coating. Simultaneously, due to the low Na2WO4 content and the same working
voltage, no obvious changes in coating thickness or roughness were observed.
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Figure 5 shows the results of the physical phase analysis of the micro-arc oxidation
coatings prepared with different additives. From Figure 5a, it can be seen that the main
phase compositions of the coatings without the addition of K2ZrF6 are α-Al2O3 and γ-
Al2O3, with a small amount of the Al substrate diffraction peaks also present. This is
because the micro-arc oxidation coating has a loose, porous structure, and the X-rays
pass through the pores on the coating surface, revealing the diffraction peaks of the Al
substrate. With the addition of K2ZrF6, a gradual decrease in α-Al2O3 and γ-Al2O3 is
clearly observed, indicating that the addition of K2ZrF6 reduces the consumption of the
Al substrate. When the K2ZrF6 content reached 15 g/L, α-Al2O3 and γ-Al2O3 completely
disappeared, as the increase in the K2ZrF6 content completely suppressed the depletion
of the Al substrate. All the Zr in the coatings came from the electrolyte, and tetragonal
zirconia (t-ZrO2) appeared, which was the reason for the increase in the L* values of
the coatings. This further demonstrates that the presence of additives in the micro-arc
oxidation process inhibits substrate depletion, and the coating growth is mainly derived
from the deposition of electrolyte compounds, with the coating growth mode dominated
by deposition. Moreover, the thickening of the coating has a shielding effect, which reduces
the Al diffraction peaks. Figure 5b shows the change in the coating phase composition after
adding Na2WO4. Due to the small content of the additive, Na2WO4 could not affect the
coating phase composition, and the coating maintained α-Al2O3 and γ-Al2O3 as the main
crystalline phases.
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Figures 6 and 7 illustrate the surface morphology of the coatings with the two addi-
tives. The images reveal that the coating surfaces generated after the micro-arc oxidation
treatment exhibited more discharge channels and cracks, which were caused by excessive
cooling contraction, leading to brittle fractures within the internal texture. Figure 6d shows
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the surface morphology of the coatings without the addition of K2ZrF6, characterized
by numerous small holes and the absence of the “pancake” structure typically observed
after strong B-type discharge in the base electrolyte [19]. This phenomenon is attributed
to the acidic nature of the electrolyte, where the coating growth rate is lower than the
dissolution rate, and both rates remain consistent, thereby explaining the lack of a decrease
in the operating voltage. However, with the addition of K2ZrF6, as depicted in Figure 6a, a
granular structure emerged in the coating due to the involvement of K2ZrF6 in the reaction,
with discharges occurring in the form of A and C-type discharges. Previous studies have
reported that A and C-type discharges tend to incorporate electrolyte substances into the
coating, while B-type discharges dope the coating through the melting of the substrate
components. The growth of the coating during micro-arc oxidation is attributed to the
oxidation of molten aluminum as it exits through the discharge channel created by the
breakdown of the oxide layer [20]. Consequently, the formed aluminum oxide is ejected
from the channel, encountering the rapidly cooled electrolyte on the coating surface, form-
ing a pancake structure and indicating that the main component of the film originates
from the substrate metal, highlighting the significance of B-type discharges. In contrast,
both A and C-type discharges occur in the upper layer of the coating without contacting
the substrate, involving only the interaction between the electrolyte and the oxide in the
coating. As the K2ZrF6 content increased, the alumina content in the coating decreased
until it disappeared, explaining the absence of the granular structure in Figure 6c. It was
replaced by fewer and larger pores, which provided the foundation for the thermal control
properties of the coating. Figure 7b displays a distinct “pancake” structure after B-type
discharge. The surface morphology in Figure 7a resembles that in Figure 6d, which is
attributed to the acidity of the solution. Although the additives induced A and C-type
discharges, the discharges still occurred in the form of B-type discharges due to the low
content of Na2WO4.
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Figure 7. Surface morphology of the aluminum alloy micro-arc oxidation coatings (15 min) with
different Na2WO4 contents: (a) P6—W 0.4, (b) P6—W 0.8, (c) P6—W 0.

The cross-sectional morphology of the six coatings is presented in Figures 8 and 9. It
is observed that the cross-sections of the micro-arc oxidation coatings after the addition
of K2ZrF6 exhibit similar characteristics, all featuring the presence of macropores. The
varying contents of K2ZrF6 resulted in different coating thicknesses, which is consistent
with the findings in Figure 4. This further confirms that the addition of K2ZrF6 promotes
coating growth, and the decrease in the working voltage does not impact the coating
thickness. Moreover, as the K2ZrF6 concentration increased, the zirconium-containing
oxides filled the coating pores more uniformly, attributable to the fact that the product of
K2ZrF6 after electrolysis facilitated the formation and buildup of the coating during the
micro-arc oxidation process. The coating with the addition of Na2WO4 did not exhibit
significant changes, except for the thickness due to its small amount.
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Table 4 reveals that in the absence of K2ZrF6, the coating is predominantly composed
of Al and O, indicating that alumina is the primary constituent. Figures 10 and 11 illustrate
the elemental distribution of the coatings with the addition of K2ZrF6 and Na2WO4, respec-
tively. It is observed that after the addition of K2ZrF6, the coating is primarily composed of
Al, O, and Zr, with a significant increase in the Zr content as the K2ZrF6 content increases.
The XRD pattern suggests that the coating is dominated by ZrO2 at this point, which
increases with the rise in K2ZrF6 content. Furthermore, the shallow distribution of Al
elements in the coating indicates that the addition of K2ZrF6 inhibits the consumption of
the Al substrate, aligning with the XRD results. The F element did not exhibit a significant
presence, potentially due to the short oxidation time. According to Tu’s study, F was
found to enter the coating at the late stage of micro-arc oxidation [21]. The coating without
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Na2WO4 and the coating without K2ZrF6 share the same main elemental composition
of alumina. After the addition of Na2WO4, W is uniformly distributed in the coating,
confirming that a small amount of Na2WO4 participates in the micro-arc oxidation process
and enters the coating, deepening its color. However, due to the small quantity of Na2WO4,
no crystalline phase is observed.
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3.3. Effect of Various Additives on the Corrosion Resistance of Aluminum Alloy Coatings

Figure 12 presents the kinetic potential polarization curves measured in a 3.5% NaCl
solution at room temperature for samples with and without additives after micro-arc oxida-
tion. Table 5 lists the fitting results of the corrosion potential (Ecorr) and corrosion current
density (icorr). In general, the corrosion potential reflects the coating’s stability; a more
positive corrosion potential indicates a more stable coating. The corrosion current density
reflects the coating’s corrosion rate; a lower corrosion current density corresponds to a more
corrosion-resistant coating. The Ecorr is typically related to the material’s thermodynamic
stability, and a lower Ecorr value suggests a higher susceptibility to localized corrosion [22].
The addition of Na2WO4 resulted in a 53 mV increase in the Ecorr compared to P6-W0,
which may be attributed to the increased crystallinity of the coating. Furthermore, the
icorr value decreased after the addition of Na2WO4, indicating the improved corrosion
resistance of the coatings. The addition of K2ZrF6 also led to a one-order-of-magnitude
decrease in the corrosion current density (icorr), which is due to the increased coating
thickness and the consequent slowing of the corrosion rate, resulting in better corrosion
protection performance. However, the corrosion potential (Ecorr) decreased by 268 mV,
and the cross-sectional morphology of the coatings revealed a loose and porous structure
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after the addition of K2ZrF6, making them more susceptible to corrosion. The increased
thickness contributed to the enhanced corrosion resistance of the coating in the same
environment [23].
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Table 5. Fitting results of the dynamic potential polarization curves.

Specimen Ecorr (mV vs. Ag/AgCl) icorr (A/cm2)

P6-W0 −854 5.032 × 10−9

P6-W0.8 −801 8.960 × 10−10

P-Zr0 −832 1.064 × 10−8

P-Zr15 −1100 1.732 × 10−9

3.4. Coloring Analysis

The presence of ZrO2 on the surface is the primary reason for the coating’s white color.
The additives in the electrolyte during the oxidation process led to the occurrence of A and
C-type discharges on the coating surface. These additives are doped into the porous layer
and inhibit the generation of Al2O3. The elemental distribution of the coating cross-section
further confirms the deposition of colorants within the layer. Although a small amount of
Na2WO4 may not produce the crystalline phase of WO2, the presence of the W element
contributes to the darkening of the coating color. This explains the observed change in the
coating color from darker to lighter colors.

3.5. Limitations and Future Research

Despite the classification of coating chromaticity under the same color system using
the additives, the color range is relatively limited. Therefore, this system can be expanded
and enriched. Moreover, the content of additives depends on the final rendering of the
coating, requiring more pre-experiments for verification.

Cost reduction can be achieved not only by adjusting the additives but also by modifying
the electrical parameters, such as the oxidation time and current density. To achieve coating
color diversification, substrates with trace color elements can be employed in experiments.

Furthermore, the addition of K2ZrF6 results in a coating that not only meets decorative
requirements but also exhibits a low absorption rate. The presence of zirconium oxide in
the coating improves its emissivity, making it suitable for aerospace applications.

4. Conclusions

Ceramic layers with L* values between 70 and 86 were successfully prepared using
PEO technology. The following conclusions can be drawn from the characterization and
corrosion resistance studies of the coatings prepared under different conditions:
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1. K2ZrF6 and Na2WO4 were fully dissolved and involved in the reaction, resulting
in micro-arc oxidation coatings with L* values between 70 and 86 after adding the
additives. A crystalline phase of ZrO2 appeared in the coating, which lightened the
coating color, while a small amount of Na2WO4 did not form a crystalline phase, but
the presence of elemental W in the coating darkened the coating color;

2. The addition of additives to the coating during the reaction decreased its thermal
stability due to the reduction of the crystalline phase compared to the coatings without
the additives. However, the corrosion current decreased by one order of magnitude,
indicating improved corrosion resistance. The addition of the additives not only
enhanced the corrosion resistance of the coating but also increased its wear resistance,
extending the service life of the aluminum alloy;

3. The addition of additives inhibited the depletion of the Al substrate, and the crystalline
phases α-Al2O3 and γ-Al2O3 in the coatings decreased with an increasing additive
concentration. Moreover, the addition of the additives altered the discharge type,
leading to changes in the coating surface morphology. The increased coating thickness
and the presence of macropores in the K2ZrF6 solution laid the foundation for the
thermal control performance of the coatings.
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