Enhanced Hydrogen Generation through Low-Temperature Plasma Treatment of Waste Aluminum for Hydrolysis Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ball Milling
2.2. Low Temperature Plasma Treatment
2.3. Characterization
2.4. Hydrogen Generation
2.5. Fuel Cell Electricity Generation
3. Results and Discussion
3.1. Hydrogen Production
3.2. Surface Chemical Analysis by XPS Technique
3.3. SEM Surface Morphology Analysis
3.4. Application to PEM Fuel Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ravi, S.S.; Aziz, M. Clean hydrogen for mobility—Quo vadis? Int. J. Hydrogen Energy 2022, 47, 20632–20661. [Google Scholar] [CrossRef]
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- Sikiru, S.; Oladosu, T.L.; Amosa, T.I.; Olutoki, J.O.; Ansari, M.N.M.; Abioye, K.J.; Rehman, Z.U.; Soleimani, H. Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. Int. J. Hydrogen Energy 2024, 56, 1152–1182. [Google Scholar] [CrossRef]
- Ghorbani, B.; Zendehboudi, S.; Zhang, Y.; Zarrin, H.; Chatzis, I. Thermochemical water-splitting structures for hydrogen production: Thermodynamic, economic, and environmental impacts. Energy Convers. Manag. 2023, 297, 117599. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Song, Q.; Yang, Z.; Wang, H.; Duan, Y. A critical review on integrated system design of solar thermochemical water-splitting cycle for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 33619–33642. [Google Scholar] [CrossRef]
- Rubinsin, N.J.; Karim, N.A.; Timmiati, S.N.; Lim, K.L.; Isahak, W.N.R.W.; Pudukudy, M. An overview of the enhanced biomass gasification for hydrogen production. Int. J. Hydrogen Energy 2024, 49, 1139–1164. [Google Scholar] [CrossRef]
- Hassan, N.S.; Jalil, A.A.; Rajendran, S.; Khusnun, N.F.; Bahari, M.B.; Johari, A.; Kamaruddin, M.J.; Ismail, M. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. Int. J. Hydrogen Energy 2024, 52, 420–441. [Google Scholar] [CrossRef]
- Liu, M.; Yao, Z.; Gu, J.; Li, C.; Huang, X.; Zhang, L.; Huang, Z.; Fan, M. Issues and opportunities facing hydrolytic hydrogen production materials. Chem. Eng. J. 2023, 461, 141918. [Google Scholar] [CrossRef]
- Liang, G.; Liu, Y.; Chen, P.; Zhou, C.; Wan, T. Hydrogen production via hydrolysis of Al-eutectic GaInSn composites. Trans. Nonferrous Met. Soc. China 2023, 33, 2751–2760. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Z.; Zheng, J.; Shi, Y.; Xie, L.; Yang, F.; Wang, Y.; Zhang, Z. Novel solid-state hydrolysis kinetics of NaBH4 for stable and high-capacity on-line hydrogen production. Chem. Eng. J. 2024, 486, 150062. [Google Scholar] [CrossRef]
- Gaudin, E.; AlAsmar, E.; Bobet, J.-L. Hydrogen production by hydrolysis from Mg rich compounds and composites NdNiMg15-Mg: How to combine fundamental and applied science? J. Alloys Compd. 2023, 947, 169592. [Google Scholar] [CrossRef]
- Al Bacha, S.; Thienpont, A.; Zakhour, M.; Nakhl, M.; Bobet, J.L. Clean hydrogen production by the hydrolysis of magnesium-based material: Effect of the hydrolysis solution. J. Clean. Prod. 2021, 282, 124498. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, H. Regulation of the hydrolysis reaction performance of aluminum composites by PTFE and investigation of the hydrolysis mechanism. Int. J. Hydrogen Energy 2022, 47, 35329–35339. [Google Scholar] [CrossRef]
- Meng, A.; Sun, Y.; Cheng, W.; Zhai, Z.; Jiang, L.; Chong, Z.; Chen, Y.; Wu, A. Mechanism of hydrogen generation from low melting point elements (Ga, In, Sn) on aluminum alloy hydrolysis. Int. J. Hydrogen Energy 2022, 47, 39364–39375. [Google Scholar] [CrossRef]
- Xiao, F.; Wu, T.; Yang, Y. Research progress in hydrogen production by hydrolysis of magnesium-based materials. Int. J. Hydrogen Energy 2023, 49, 696–718. [Google Scholar] [CrossRef]
- Mutlu, R.N.; Kandasamy, J.; Kıymaz, T.B.; Güleryüz, D.; Böncü, E.; Eroğlu, E.; Gökalp, İ. Optimization of aluminum hydrolysis reactions and reactor design for continuous hydrogen production using aluminum wire feeding. Int. J. Hydrogen Energy 2024, 52, 1390–1403. [Google Scholar] [CrossRef]
- Huang, Q.; Gong, B.; Habibullah; Wang, Z.; Wang, Y.; Yan, Y.; Chen, Y.; Wu, C. Hydrogen generation behaviors from hydrolysis of cold-welding free magnesium-calcium hydride-expanded graphite composites. J. Power Sources 2024, 595, 234004. [Google Scholar] [CrossRef]
- Huang, H.; Xu, T.; Chen, J.; Zhao, Y.; Lv, Y.; Liu, B.; Zhang, B.; Yuan, J.; Wu, Y. Efficient nanocatalysis of Ni/Sc2O3@FLG for magnesium hydrolysis of hydrogen generation. J. Mater. Sci. Technol. 2024, 175, 235–243. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, H.; Zhu, X.; Jin, Q. Preparation of adsorbent from secondary aluminum dross by deep hydrolysis of active aluminum components. J. Environ. Chem. Eng. 2024, 12, 112501. [Google Scholar] [CrossRef]
- Reyes-Bozo, L.; Fúnez-Guerra, C.; Luis Salazar, J.; Vyhmeister, E.; Valdés-González, H.; Jaén Caparrós, M.; Clemente-Jul, C.; Carro-de Lorenzo, F.; de Simón-Martín, M. Green hydrogen integration in aluminum recycling: Techno-economic analysis towards sustainability transition in the expanding aluminum market. Energy Convers. Manag. X 2024, 22, 100548. [Google Scholar] [CrossRef]
- Raabe, D.; Ponge, D.; Uggowitzer, P.J.; Roscher, M.; Paolantonio, M.; Liu, C.; Antrekowitsch, H.; Kozeschnik, E.; Seidmann, D.; Gault, B.; et al. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Prog. Mater. Sci. 2022, 128, 100947. [Google Scholar]
- Dong, R.-K.; Mei, Z.; Xu, S.-Y.; Zhao, F.-Q.; Ju, X.-H.; Ye, C.-C. Molecular dynamics simulation on reaction and kinetics isotope effect of nano-aluminum and water. Int. J. Hydrogen Energy 2019, 44, 19474–19483. [Google Scholar] [CrossRef]
- Saceleanu, F.; Vuong, T.V.; Master, E.R.; Wen, J.Z. Tunable kinetics of nanoaluminum and microaluminum powders reacting with water to produce hydrogen. Int. J. Energy Res. 2019, 43, 7384–7396. [Google Scholar] [CrossRef]
- Guan, X.; Zhou, Z.; Luo, P.; Wu, F.; Dong, S. Effects of preparation method on the hydrolytic hydrogen production performance of Al-rich alloys. J. Alloys Compd. 2019, 796, 210–220. [Google Scholar] [CrossRef]
- Liu, D.; Gao, Q.; An, Q.; Wang, H.; Wei, J.; Wei, C. Experimental Study on Zn-Doped Al-Rich Alloys for Fast on-Board Hydrogen Production. Crystals 2020, 10, 167. [Google Scholar] [CrossRef]
- Slocum, J.T.; Eagar, T.W.; Taylor, R.; Hart, D.P. Activation of bulk aluminum and its application in a hydrogen generator. Appl. Energy 2020, 279, 115712. [Google Scholar] [CrossRef]
- Huang, H.; Shu, D. Hydrogen production using AlGaInSn alloy with semi-solid structures. Int. J. Hydrogen Energy 2021, 46, 32595–32601. [Google Scholar] [CrossRef]
- Yang, B.C.; Chai, Y.J.; Yang, F.L.; Zhang, Q.; Liu, H.; Wang, N. Hydrogen generation by aluminum-water reaction in acidic and alkaline media and its reaction dynamics. Int. J. Energy Res. 2018, 42, 1594–1602. [Google Scholar] [CrossRef]
- Naseem, K.; Zhong, H.; Wang, H.; Ouyang, L.; Zhu, M. Promoting Al hydrolysis via MgH2 and NaOH addition. J. Alloys Compd. 2020, 831, 154793. [Google Scholar] [CrossRef]
- Macanás, J.; Soler, L.; María, A.; Muñoz, M.; Casado, J. Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process. Energy 2011, 36, 2493–2501. [Google Scholar] [CrossRef]
- Gai, W.-Z.; Zhang, X.; Yang, Y.; Deng, Z.-Y. Effect of crystalline phases of aluminum hydroxide catalysts on Al-water reaction. Int. J. Energy Res. 2020, 44, 4969–4976. [Google Scholar] [CrossRef]
- Gai, W.-Z.; Zhang, X.; Sun, K.; Yang, Y.; Deng, Z.-Y. Hydrogen generation from Al-water reaction catalyzed by Fe/AlOOH composite. Energy Sci. Eng. 2020, 8, 2402–2411. [Google Scholar] [CrossRef]
- Prabu, S.; Hsu, S.-C.; Lin, J.-S.; Wang, H.-W. Rapid Hydrogen Generation from the Reaction of Aluminum Powders and Water Using Synthesized Aluminum Hydroxide Catalysts. Top. Catal. 2018, 61, 1633–1640. [Google Scholar] [CrossRef]
- Prabu, S.; Wang, H.-W. Enhanced hydrogen generation from graphite-mixed aluminum hydroxides catalyzed Al/water reaction. Int. J. Hydrogen Energy 2020, 45, 33419–33429. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, R.; Li, J. Aluminum composites with bismuth nanoparticles and graphene oxide and their application to hydrogen generation in water. Int. J. Hydrogen Energy 2020, 45, 6082–6089. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, R.; Gao, W.; Hu, J.; Li, J. Effect of carbon materials and bismuth particle size on hydrogen generation using aluminum-based composites. J. Alloys Compd. 2020, 817, 152800. [Google Scholar] [CrossRef]
- Malek, A.; Prasad, E.; Aryasomayajula, S.; Thomas, T. Chimie douce hydrogen production from Hg contaminated water, with desirable throughput, and simultaneous Hg-removal. Int. J. Hydrogen Energy 2017, 42, 15724–15730. [Google Scholar] [CrossRef]
- Chen, C.; Guan, X.; Wang, H.; Dong, S.; Luo, P. Hydrogen generation from splitting water with Al–Bi(OH)3 composite promoted by NaCl. Int. J. Hydrogen Energy 2020, 45, 13139–13148. [Google Scholar] [CrossRef]
- Gai, W.-Z.; Tian, S.; Liu, M.-H.; Zhang, X.; Deng, Z.-Y. Synergistic effect and mechanisms of ultrasound and AlOOH suspension on Al hydrolysis for hydrogen production. Ultrason. Sonochem. 2022, 90, 106189. [Google Scholar] [CrossRef]
- Amberchan, G.; Lopez, I.; Ehlke, B.; Barnett, J.; Bao, N.Y.; Allen, A.; Singaram, B.; Oliver, S.R.J. Aluminum Nanoparticles from a Ga–Al Composite for Water Splitting and Hydrogen Generation. ACS Appl. Nano Mater. 2022, 5, 2636–2643. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Wang, J.; Lu, J.; Luo, P.; Chang, Y.; Ma, X.; Dong, S. Effects of low melting point metals (Ga, In, Sn) on hydrolysis properties of aluminum alloys. Trans. Nonferrous Met. Soc. China 2016, 26, 152–159. [Google Scholar] [CrossRef]
- Manilevich, F.D.; Pirskyy, Y.K.; Kutsyi, A.V.; Berezovets, V.V.; Yartys, V.A. Studies of Mechanochemically Activated Aluminum Powders for Generating Hydrogen from Water. Powder Metall. Met. Ceram. 2021, 60, 268–277. [Google Scholar] [CrossRef]
- Wang, N.; Xu, T.T.; Du, Y.H.; Li, L.; Chai, Y.J. Hydrogen generation from the reaction of Al pretreated in acidic or alkaline solution and water. Int. J. Hydrogen Energy 2020, 45, 28044–28050. [Google Scholar] [CrossRef]
- Zhang, J.; Du, Q.; Yang, Y.; Zhang, J.; Han, R.; Wang, J. Research Progress and Future Trends of Low Temperature Plasma Application in Food Industry: A Review. Molecules 2023, 28, 4714. [Google Scholar] [CrossRef]
- Reema; Khanikar, R.R.; Bailung, H.; Sankaranarayanan, K. Review of the cold atmospheric plasma technology application in food, disinfection, and textiles: A way forward for achieving circular economy. Front. Phys. 2022, 10, 942952. [Google Scholar] [CrossRef]
- Jiao, R.; Sun, F.; Zeng, S.; Li, J. Application of low-temperature plasma for the conservation of cultural heritage: A brief review. J. Cult. Herit. 2023, 63, 240–248. [Google Scholar] [CrossRef]
- Jelil, R.A. A review of low-temperature plasma treatment of textile materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Mohammed, Z.; Jeelani, S.; Rangari, V. Low temperature plasma treatment of rice husk derived hybrid silica/carbon biochar using different gas sources. Mater. Lett. 2021, 292, 129678. [Google Scholar] [CrossRef]
- Guo, C.; Li, M.; Li, X.; Ning, H.; Qiu, T.; Luo, D.; Luo, C.; Xu, W.; Yao, R.; Peng, J. Rapid and low-temperature preparation of tungsten oxide electrochromic thin films by oxygen plasma treatment. Opt. Mater. 2023, 145, 114421. [Google Scholar] [CrossRef]
- Li, D.; Zhang, W.; Niu, Z.; Zhang, Y. Improvement of photocatalytic activity of BiOBr and BiOBr/ZnO under visible-light irradiation by short-time low temperature plasma treatment. J. Alloys Compd. 2022, 924, 166608. [Google Scholar] [CrossRef]
- Niu, F.; Wang, X.; Yang, S.; Xu, S.; Zhang, Y.; Suga, T.; Wang, C. Low-temperature Cu/SiO2 hybrid bonding based on Ar/H2 plasma and citric acid cooperative activation for multi-functional chip integration. Appl. Surf. Sci. 2024, 648, 159074. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, L.; Wang, Y.; Xia, Y.; Ma, Y.; Wang, Y.; Han, X.; Chen, Y.; Lu, S.; Luo, G.; et al. Plasma-activated silicon–glass high-strength multistep bonding for low-temperature vacuum packaging. Chem. Eng. J. 2023, 471, 144719. [Google Scholar] [CrossRef]
- Li, D.; Xiong, M.; Wang, S.; Chen, X.; Wang, S.; Zeng, Q. Effects of low-temperature plasma treatment on wettability of glass surface: Molecular dynamic simulation and experimental study. Appl. Surf. Sci. 2020, 503, 144257. [Google Scholar] [CrossRef]
- Costa, M.B.; de Araújo, M.A.; Paiva, R.; Cruz, S.A.; Mascaro, L.H. Plasma treatment of electrodeposited Sb2Se3 thin films for improvement of solar-driven hydrogen evolution reaction. Chem. Eng. J. 2024, 485, 149526. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Liu, Y.-T.; Perng, T.-P.; Lu, M.-Y.; Chueh, Y.-L.; Chen, L.-J. Enhancing photocatalytic properties of continuous few-layer MoS2 thin films for hydrogen production by water splitting through defect engineering with Ar plasma treatment. Nano Energy 2023, 109, 108295. [Google Scholar] [CrossRef]
- Hu, F.; Jin, C.; Lim, K.H.; Li, C.; Song, G.; Bella; Wang, T.; Ye, R.; Lu, Z.-H.; Feng, G.; et al. Promoting hydrogen spillover of NiFe/CeO2 catalyst with plasma-treatment for CO2 methanation. Fuel Process. Technol. 2023, 250, 107873. [Google Scholar] [CrossRef]
- Urbonavicius, M.; Varnagiris, S.; Milcius, D. Generation of hydrogen through the reaction between plasma-modified aluminum and water. Energy Technol. 2017, 5, 2300–2308. [Google Scholar] [CrossRef]
- Stiklita, JSC. Available online: https://stiklita.lt/en/ (accessed on 17 April 2024).
- Jia, Y.; Shen, J.; Meng, H.; Dong, Y.; Chai, Y.; Wang, N. Hydrogen generation using a ball-milled Al/Ni/NaCl mixture. J. Alloys Compd. 2014, 588, 259–264. [Google Scholar] [CrossRef]
- Huang, M.; Ouyang, L.; Ye, J.; Liu, J.; Yao, X.; Wang, H.; Shao, H.; Zhu, M. Hydrogen generation via hydrolysis of Magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts. J. Mater. Chem. A 2017, 5, 8566–8575. [Google Scholar] [CrossRef]
- Meng, H.X.; Wang, N.; Dong, Y.M.; Jia, Z.L.; Gao, L.J.; Chai, Y.J. Influence of M-B (M = Fe, Co, Ni) on aluminum-water reaction. J. Power Sources 2014, 268, 550–556. [Google Scholar] [CrossRef]
- Soler, L.; Candela, A.M.; Macanás, J.; Muñoz, M.; Casado, J. Hydrogen generation from water and aluminum promoted by sodium stannate. Int. J. Hydrogen Energy 2010, 35, 1038–1048. [Google Scholar] [CrossRef]
- Liu, S.; Fan, M.; Wang, C.; Huang, Y.; Chen, D.; Bai, L.; Shu, K. Hydrogen generation by hydrolysis of Al-Li-Bi-NaCl mixture with pure water. Int. J. Hydrogen Energy 2011, 37, 1014–1020. [Google Scholar] [CrossRef]
- Sánchez-Zambrano, K.S.; Hernández-Reséndiz, M.; Gómez-Rodríguez, C.; García-Quiñonez, L.V.; Aguilar-Martínez, J.A.; Rodríguez-Castellanos, E.A.; Verdeja, L.F.; Fernández-González, D.; Castillo-Rodríguez, G.A. XPS Study on Calcining Mixtures of Brucite with Titania. Materials 2022, 15, 3117. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Goncalves, R.V.; Barman, S.K.; Willard, E.J.; Byle, E.; Perry, R.; Wu, Z.; Huda, M.N.; Moulé, A.J.; Osterloh, F.E. Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO3 in natural sunlight. Energy Environ. Sci. 2019, 12, 1385–1395. [Google Scholar] [CrossRef]
- Chowdhury, T.A. XPS Depth Profile Study of Sprayed Ga2O3 Thin Films. Engineering 2023, 15, 459–466. [Google Scholar] [CrossRef]
- Rahman, S.; Nawaz, R.; Khan, J.A.; Ullah, H.; Irfan, M.; Glowacz, A.; Lyp-Wronska, K.; Wzorek, L.; Asif Khan, M.K.; Jalalah, M.; et al. Synthesis and Characterization of Carbon and Carbon-Nitrogen Doped Black TiO2 Nanomaterials and Their Application in Sonophotocatalytic Remediation of Treated Agro-Industrial Wastewater. Materials 2021, 14, 6175. [Google Scholar] [CrossRef]
- Gai, W.-Z.; Fang, C.-S.; Deng, Z.-Y. Hydrogen generation by the reaction of Al with water using oxides as catalysts. Int. J. Energy Res. 2014, 38, 918–925. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Ferreira, J.M.F.; Tanaka, Y.; Ye, J. Physicochemical mechanism for the continuous reaction of γ-Al2O3-modified aluminum powder with water. J. Am. Ceram. Soc. 2007, 90, 1521–1526. [Google Scholar] [CrossRef]
Sample | Elemental Concentration, at. % | |||
---|---|---|---|---|
C | O | Al | Mg | |
Ball milled//@1 | 41.9 | 33.8 | 21.1 | 3.2 |
Treated under magnetron plasma//@2 | 30.1 | 43.5 | 24.4 | 2.0 |
Al nanoparticles//@3 | 15.8 | 59.8 | 24.4 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbonavicius, M.; Varnagiris, S.; Knoks, A.; Mezulis, A.; Kleperis, J.; Richter, C.; Meirbekova, R.; Gunnarsson, G.; Milcius, D. Enhanced Hydrogen Generation through Low-Temperature Plasma Treatment of Waste Aluminum for Hydrolysis Reaction. Materials 2024, 17, 2637. https://doi.org/10.3390/ma17112637
Urbonavicius M, Varnagiris S, Knoks A, Mezulis A, Kleperis J, Richter C, Meirbekova R, Gunnarsson G, Milcius D. Enhanced Hydrogen Generation through Low-Temperature Plasma Treatment of Waste Aluminum for Hydrolysis Reaction. Materials. 2024; 17(11):2637. https://doi.org/10.3390/ma17112637
Chicago/Turabian StyleUrbonavicius, Marius, Sarunas Varnagiris, Ainars Knoks, Ansis Mezulis, Janis Kleperis, Christiaan Richter, Rauan Meirbekova, Gudmundur Gunnarsson, and Darius Milcius. 2024. "Enhanced Hydrogen Generation through Low-Temperature Plasma Treatment of Waste Aluminum for Hydrolysis Reaction" Materials 17, no. 11: 2637. https://doi.org/10.3390/ma17112637
APA StyleUrbonavicius, M., Varnagiris, S., Knoks, A., Mezulis, A., Kleperis, J., Richter, C., Meirbekova, R., Gunnarsson, G., & Milcius, D. (2024). Enhanced Hydrogen Generation through Low-Temperature Plasma Treatment of Waste Aluminum for Hydrolysis Reaction. Materials, 17(11), 2637. https://doi.org/10.3390/ma17112637