Recent Advances in Metal Oxide Electron Transport Layers for Enhancing the Performance of Perovskite Solar Cells
Abstract
:1. Introduction
2. The Advantages and Disadvantages of Perovskite Solar Cells
3. Metal-Doped TiO2 Electron Transport Layer for Perovskite Solar Cells
4. Surface Modification of SnO2 Electron Transport Layer for Perovskite Solar Cells
5. Dual Passivation of Perovskite and SnO2 ETL for Perovskite Solar Cells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 23 May 2024).
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, M. Current Status of Emerging PV Technologies: A comparative study of dye-sensitized, organic, and perovskite solar cells. Int. J. Photoenergy 2021, 2021, 6692858. [Google Scholar] [CrossRef]
- Shin, S.S.; Suk, J.H.; Kang, B.J.; Yin, W.; Lee, S.J.; Noh, J.H.; Ahn, T.K.; Rotermund, F.; Cho, I.S.; Seok, S.I. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy Environ. Sci. 2019, 12, 958–964. [Google Scholar] [CrossRef]
- Shao, S.; Loi, M.A. The role of the interfaces in perovskite solar cells. Adv. Mater. Interfaces 2020, 7, 1901469. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A.K.; Liu, B.; Nazeeruddin, M.K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [PubMed]
- Girolami, M.; Matteocci, F.; Pettinato, S.; Serpente, V.; Bolli, E.; Paci, B.; Generosi, A.; Salvatori, S.; Di Carlo, A.; Trucchi, D.M. Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-Ray detectors. Nano-Micro Lett. 2024, 16, 182. [Google Scholar] [CrossRef]
- Law, C.; Miseikis, L.; Dimitrov, S.; Shakya-Tuladhar, P.; Li, X.; Barnes, P.R.F.; Durrant, J.; O’Regan, B.C. Performance and Stability of lead perovskite/TiO2, polymer/PCBM, and dye sensitized solar cells at light intensities up to 70 suns. Adv. Mater. 2014, 26, 6268–6273. [Google Scholar] [CrossRef]
- Mei, Y.; Liu, H.; Li, X.; Wang, S. Hollow TiO2 spheres as mesoporous layer for better efficiency and stability of perovskite solar cells. J. Alloys Compd. 2021, 866, 158079. [Google Scholar] [CrossRef]
- Dao, Q.-D.; Fujii, A.; Tsuji, R.; Pham, N.H.; Van Bui, H.; Sai, C.D.; Nguyen, D.T.; Vu, T.H.; Ozaki, M. Mesoporous TiO2 electron transport layer engineering for efficient inorganic-organic hybrid perovskite solar cells using hydrochloric acid treatment. Thin Solid Film. 2021, 732, 138768. [Google Scholar] [CrossRef]
- Kim, H.-S.; Park, N.-G. Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: Effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 2014, 5, 2927–2934. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.-H.; Wu, M.-C.; Li, Y.-Y.; Lee, K.-M.; Chen, Y.-F.; Su, W.-F. Barium doping effect on the photovoltaic performance and stability of MA0.4FA0.6BaxPb1−xIyCl3−y perovskite solar cells. Appl. Surf. Sci. 2020, 521, 146451. [Google Scholar] [CrossRef]
- Ho, C.-M.; Wu, M.-C.; Chen, S.-H.; Chang, Y.-H.; Lin, T.-H.; Jao, M.-H.; Chan, S.-H.; Su, W.-F.; Lee, K.-M. High-performance stable perovskite solar cell via defect passivation with constructing tunable graphitic carbon nitride. Sol. RRL 2021, 5, 2100257. [Google Scholar] [CrossRef]
- Chen, S.-H.; Ho, C.-M.; Chang, Y.-H.; Lee, K.-M.; Wu, M.-C. Efficient perovskite solar cells with low J-V hysteretic behavior based on mesoporous Sn-doped TiO2 electron extraction layer. Chem. Eng. J. 2022, 445, 136761. [Google Scholar] [CrossRef]
- Liao, Y.-H.; Chang, Y.-H.; Lin, T.-H.; Chan, S.-H.; Lee, K.-M.; Hsu, K.-H.; Hsu, J.-F.; Wu, M.-C. Boosting the power conversion efficiency of perovskite solar cells based on Sn doped TiO2 electron extraction layer via modification the TiO2 phase junction. Sol. Energy 2020, 205, 390–398. [Google Scholar] [CrossRef]
- Kim, S.; Zhang, F.; Tong, J.; Chen, X.; Enkhbayar, E.; Zhu, K.; Kim, J. Effects of potassium treatment on SnO2 electron transport layers for improvements of perovskite solar cells. Sol. Energy 2022, 233, 353–362. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.S.; Myung, C.W. Efficient electron extraction of SnO2 electron transport layer for lead halide perovskite solar cell. npj Comput. Mater. 2020, 6, 100. [Google Scholar] [CrossRef]
- Correa Baena, J.P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T.J.; Srimath Kandada, A.R.; Zakeeruddin, S.M.; et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934. [Google Scholar] [CrossRef]
- Anaraki, E.H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A.; et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 2016, 9, 3128–3134. [Google Scholar] [CrossRef]
- Wu, Z.; Su, J.; Chai, N.; Cheng, S.; Wang, X.; Zhang, Z.; Liu, X.; Zhong, H.; Yang, J.; Wang, Z.; et al. Periodic Acid Modification of chemical-bath deposited SnO2 electron transport layers for perovskite solar cells and mini modules. Adv. Sci. 2023, 10, 2300010. [Google Scholar] [CrossRef] [PubMed]
- Tay, D.J.J.; Febriansyah, B.; Salim, T.; Wong, Z.S.; Dewi, H.A.; Koh, T.M.; Mathews, N. Enabling a rapid SnO2 chemical bath deposition process for perovskite solar cells. Sustain. Energy Fuels 2023, 7, 1302–1310. [Google Scholar] [CrossRef]
- Ai, Y.; Liu, W.; Shou, C.; Yan, J.; Li, N.; Yang, Z.; Song, W.; Yan, B.; Sheng, J.; Ye, J. SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells. Sol. Energy 2019, 194, 541–547. [Google Scholar] [CrossRef]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Y.; Xu, H.; Chen, W.; Liu, B.; Zhang, J.; Zhang, H.; Wang, Z.; Kang, D.-H.; Zeng, J.; et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 2023, 624, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, C.; Xu, J.; Maxwell, A.; Zhou, W.; Yang, Y.; Zhou, Q.; Bati, A.S.R.; Wan, H.; Wang, Z.; et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 2024, 384, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-Y.; Yang, Y.-W.; Hsu, W.-H.; Chang, E.-W.; Chen, M.-H.; Wu, Y.-R. Influences of dielectric constant and scan rate on hysteresis effect in perovskite solar cell with simulation and experimental analyses. Sci. Rep. 2022, 12, 7927. [Google Scholar] [CrossRef] [PubMed]
- Habisreutinger, S.N.; Noel, N.K.; Snaith, H.J. Hysteresis Index: A figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Lett. 2018, 3, 2472–2476. [Google Scholar] [CrossRef]
- Oga, H.; Saeki, A.; Ogomi, Y.; Hayase, S.; Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 2014, 136, 13818–13825. [Google Scholar] [CrossRef]
- Lee, K.-M.; Lin, W.-J.; Chen, S.-H.; Wu, M.-C. Control of TiO2 electron transport layer properties to enhance perovskite photovoltaics performance and stability. Org. Electron. 2020, 77, 105406. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, K. charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett. 2013, 4, 2880–2884. [Google Scholar] [CrossRef]
- Du, D.; Zhang, D.; Liu, H.; Shen, W. Enhanced carrier transport and optical gains in perovskite solar cells based on low-temperature prepared TiO2@SnO2 nanocrystals. J. Alloys Compd. 2024, 983, 173714. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Li, F.; Yang, Z. Recent progress in perovskite solar cells: Status and future. Coatings 2023, 13, 644. [Google Scholar] [CrossRef]
- Cao, Z.; Li, C.; Deng, X.; Wang, S.; Yuan, Y.; Chen, Y.; Wang, Z.; Liu, Y.; Ding, L.; Hao, F. Metal oxide alternatives for efficient electron transport in perovskite solar cells: Beyond TiO2 and SnO2. J. Mater. Chem. A 2020, 8, 19768–19787. [Google Scholar] [CrossRef]
- Raj, A.; Kumar, M.; Kumar, A.; Laref, A.; Singh, K.; Sharma, S.; Anshul, A. Effect of doping engineering in TiO2 electron transport layer on photovoltaic performance of perovskite solar cells. Mater. Lett. 2022, 313, 131692. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, H.; Liu, Y.; Sun, J.; Gao, L. Enhanced perovskite solar cells with cesium-doped TiO2 compact layer. J. Nanosci. Nanotechnol. 2016, 16, 12768–12772. [Google Scholar] [CrossRef]
- Wu, M.-C.; Liao, Y.-H.; Chan, S.-H.; Lu, C.-F.; Su, W.-F. Enhancing organolead halide perovskite solar cells performance through interfacial engineering using Ag-doped TiO2 hole blocking layer. Sol. RRL 2018, 2, 1800072. [Google Scholar] [CrossRef]
- Wu, M.-C.; Chan, S.-H.; Jao, M.-H.; Su, W.-F. Enhanced short-circuit current density of perovskite solar cells using Zn-doped TiO2 as electron transport layer. Sol. Energy Mater. Sol. Cells 2016, 157, 447–453. [Google Scholar] [CrossRef]
- Wang, J.; Qin, M.; Tao, H.; Ke, W.; Chen, Z.; Wan, J.; Qin, P.; Xiong, L.; Lei, H.; Yu, H.; et al. Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Appl. Phys. Lett. 2015, 106, 121104. [Google Scholar] [CrossRef]
- Giordano, F.; Abate, A.; Correa Baena, J.P.; Saliba, M.; Matsui, T.; Im, S.H.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Hagfeldt, A.; Graetzel, M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 2016, 7, 10379. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.-C.; Lee, C.S.; Jokar, E.; Kim, J.H.; Diau, E.W.-G. Well-organized mesoporous TiO2 photoanode by using amphiphilic graft copolymer for efficient perovskite solar cells. J. Phys. Chem. C 2016, 120, 9619–9627. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Chen, K.; Tian, W.; Sheng, Y.; She, B.; Jiang, Y.; Zhang, D.; Liu, Y.; Qi, J.; et al. Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science 2024, 383, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Qiu, Z.; Liu, Y.; Qiu, C.; Zhang, W.; Qi, J.; Chen, K.; Wang, W.; Wang, C.; et al. Stratified oxygen vacancies enhance the performance of mesoporous TiO2 electron transport layer in printable perovskite solar cells. Small 2023, 19, 2300737. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhang, H.; Eickemeyer, F.T.; Gao, J.; Zakeeruddin, S.M.; Grätzel, M.; Luo, J. CsPbBr3 quantum dots-sensitized mesoporous TiO2 electron transport layers for high-efficiency perovskite solar cells. Sol. RRL 2023, 7, 2300072. [Google Scholar] [CrossRef]
- Xiao, Y.; Cheng, N.; Kondamareddy, K.K.; Wang, C.; Liu, P.; Guo, S.; Zhao, X.-Z. W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. J. Power Sources 2017, 342, 489–494. [Google Scholar] [CrossRef]
- Qin, P.; Domanski, A.L.; Chandiran, A.K.; Berger, R.; Butt, H.-J.; Dar, M.I.; Moehl, T.; Tetreault, N.; Gao, P.; Ahmad, S.; et al. Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale 2014, 6, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Rafieh, A.I.; Ekanayake, P.; Wakamiya, A.; Nakajima, H.; Lim, C.M. Enhanced performance of CH3NH3PbI3-based perovskite solar cells by tuning the electrical and structural properties of mesoporous TiO2 layer via Al and Mg doping. Sol. Energy 2019, 177, 374–381. [Google Scholar] [CrossRef]
- Lu, H.; Zhuang, J.; Ma, Z.; Zhou, W.; Xia, H.; Xiao, Z.; Zhang, H.; Li, H. Crystal recombination control by using Ce doped in mesoporous TiO2 for efficient perovskite solar cells. RSC Adv. 2019, 9, 1075–1083. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, J.; Wu, T.; Bao, Q.; He, X.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L. Tuning the fermi level of TiO2 electron transport layer through europium doping for highly efficient perovskite solar cells. Energy Technol. 2017, 5, 1820–1826. [Google Scholar] [CrossRef]
- Wu, M.-C.; Chan, S.-H.; Lee, K.-M.; Chen, S.-H.; Jao, M.-H.; Chen, Y.-F.; Su, W.-F. Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO2 as the electron extraction layer through band alignment. J. Mater. Chem. A 2018, 6, 16920–16931. [Google Scholar] [CrossRef]
- Abdoul-Latif, M.M.; Xu, J.; Yao, J.X.; Dai, S.Y. Au nanoparticles doped TiO2 mesoporous perovskite solar cells. Mater. Sci. Forum 2017, 896, 18–25. [Google Scholar]
- Kim, D.H.; Han, G.S.; Seong, W.M.; Lee, J.-W.; Kim, B.J.; Park, N.-G.; Hong, K.S.; Lee, S.; Jung, H.S. Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells. ChemSusChem 2015, 8, 2392–2398. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Chan, S.-H.; Lin, Y.-T.; Wu, M.-C. Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO2 electron transport layer. Appl. Surf. Sci. 2019, 469, 18–26. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, J.-Y.; Son, H.J.; Lee, C.-H.; Jang, S.S.; Ko, M.J. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 2016, 26, 208–215. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 2, 16177. [Google Scholar] [CrossRef]
- Song, S.; Kang, G.; Pyeon, L.; Lim, C.; Lee, G.-Y.; Park, T.; Choi, J. Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett. 2017, 2, 2667–2673. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239. [Google Scholar] [CrossRef]
- Hui, W.; Yang, Y.; Xu, Q.; Gu, H.; Feng, S.; Su, Z.; Zhang, M.; Wang, J.; Li, X.; Fang, J.; et al. Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2020, 32, 1906374. [Google Scholar] [CrossRef]
- Jung, E.H.; Chen, B.; Bertens, K.; Vafaie, M.; Teale, S.; Proppe, A.; Hou, Y.; Zhu, T.; Zheng, C.; Sargent, E.H. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 2020, 5, 2796–2801. [Google Scholar] [CrossRef]
- Yuan, R.; Cai, B.; Lv, Y.; Gao, X.; Gu, J.; Fan, Z.; Liu, X.; Yang, C.; Liu, M.; Zhang, W.-H. Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 2021, 14, 5074–5083. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.-P.; et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ahmad, I.; Leung, T.; Lin, J.; Chen, W.; Liu, F.; Ng, A.M.C.; Zhang, Y.; Djurišić, A.B. Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Mater. Au 2022, 2, 215–236. [Google Scholar] [CrossRef]
- Li, J.; Xia, R.; Qi, W.; Zhou, X.; Cheng, J.; Chen, Y.; Hou, G.; Ding, Y.; Li, Y.; Zhao, Y.; et al. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J. Power Sources 2021, 485, 229313. [Google Scholar] [CrossRef]
- Wang, M.; Yan, G.; Su, K.; Chen, W.; Brooks, K.G.; Feng, Y.; Zhang, B.; Nazeeruddin, M.K.; Zhang, Y. Ultraviolet filtration passivator for stable high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 19459–19468. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tang, M.; He, B.; Shen, K.; Zhang, W.; Sun, X.; Sun, M.; Chen, H.; Duan, Y.; Tang, Q. Ultraviolet filtration and defect passivation for efficient and photostable CsPbBr3 perovskite solar cells by interface engineering with ultraviolet absorber. Chem. Eng. J. 2021, 404, 126548. [Google Scholar] [CrossRef]
- Jarmouni, N.; Tomaiuolo, M.; Gabbani, A.; Genovese, D.; Pineider, F.; Bassam, R.; Belaaouad, S.; Benmokhtar, S. Low temperature synthesis of ultra-green luminescent colloidal FAPbBr3 perovskite nanocrystals. Mater. Today: Proc. 2022, 58, 1480–1484. [Google Scholar] [CrossRef]
- Li, F.; Hou, X.; Wang, Z.; Cui, X.; Xie, G.; Yan, F.; Zhao, X.-Z.; Tai, Q. FA/MA cation exchange for efficient and reproducible tin-based perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 40656–40663. [Google Scholar] [CrossRef]
- Song, Y.-H.; Ge, J.; Mao, L.-B.; Wang, K.-H.; Tai, X.-L.; Zhang, Q.; Tang, L.; Hao, J.-M.; Yao, J.-S.; Wang, J.-J.; et al. Planar defect–free pure red perovskite light-emitting diodes via metastable phase crystallization. Sci. Adv. 2022, 8, eabq2321. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C.K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L.; et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408–415. [Google Scholar] [CrossRef]
- Bu, T.; Liu, X.; Zhou, Y.; Yi, J.; Huang, X.; Luo, L.; Xiao, J.; Ku, Z.; Peng, Y.; Huang, F.; et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 2017, 10, 2509–2515. [Google Scholar] [CrossRef]
- Lee, J.-W.; Dai, Z.; Han, T.-H.; Choi, C.; Chang, S.-Y.; Lee, S.-J.; De Marco, N.; Zhao, H.; Sun, P.; Huang, Y.; et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 2018, 9, 3021. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Y.; Liang, C.; Xing, G.; Liu, X.; Li, F.; Liu, X.; Hu, X.; Shao, G.; Song, Y. Phase pure 2D perovskite for high-performance 2D–3D heterostructured perovskite solar cells. Adv. Mater. 2018, 30, 1805323. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Guo, H.; deQuilettes, D.W.; Jariwala, S.; De Marco, N.; Dong, S.; DeBlock, R.; Ginger, D.S.; Dunn, B.; Wang, M.; et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 2017, 3, e1700106. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, P.; Wang, M.; Huang, S.; Zhao, Z.; Tan, S.; Han, T.-H.; Lee, J.-W.; Huang, T.; Wang, R.; et al. A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, 1907769. [Google Scholar] [CrossRef] [PubMed]
- Chai, N.; Chen, X.; Zeng, Z.; Yu, R.; Yue, Y.; Mai, B.; Wu, J.; Mai, L.; Cheng, Y.-B.; Wang, X. Photoexcitation-induced passivation of SnO2 thin film for efficient perovskite solar cells. Natl. Sci. Rev. 2023, 10, nwad245. [Google Scholar] [CrossRef]
- Sha, X.; Sheng, J.; Yang, W.; Sun, J.; Shou, C.; Zhang, L.; Zhang, N.; Ying, Z.; Yang, X.; Zhao, H.; et al. Interfacial defect passivation by using diethyl phosphate salts for high-efficiency and stable perovskite solar cells. J. Mater. Chem. A 2023, 11, 6556–6564. [Google Scholar] [CrossRef]
- Xiong, Z.; Chen, X.; Zhang, B.; Odunmbaku, G.O.; Ou, Z.; Guo, B.; Yang, K.; Kan, Z.; Lu, S.; Chen, S.; et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 2022, 34, 2106118. [Google Scholar] [CrossRef]
- Liu, B.-T.; Zhang, Y.-Z.; Zuo, Y.-Y.; Rachmawati, D. Passivation and energy-level change of the SnO2 electron transport layer by reactive titania for perovskite solar cells. J. Alloys Compd. 2022, 929, 167349. [Google Scholar] [CrossRef]
Metal-Doped ETL | Device Structure | VOC (V) | JSC (mA·cm2) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|
Cs-TiO2 | FTO/Cs-TiO2/CH3NH3PbI3−xClx /P3HT/Ag | 0.64 | 14.40 | 57.1 | 5.3 | [38] |
Mg-TiO2 | FTO/Mg-compact TiO2/TiO2 /CH3NH3PbI3/spiro-OMeTAD/Au | 1.05 | 18.34 | 62.0 | 12.3 | [41] |
Ag-TiO2 | FTO/Ag-TiO2/CH3NH3PbI3−xClx /spiro-OMeTAD/Ag | 1.00 | 20.50 | 68.7 | 14.1 | [39] |
Zn-TiO2 | FTO/Ag-TiO2/CH3NH3PbI3−xClx /spiro-OMeTAD/Au | 0.91 | 22.30 | 68.8 | 14.0 | [40] |
Sn-TiO2 | FTO/Sn-TiO2/CH3NH3PbI3−xClx /spiro-OMeTAD/Ag | 0.99 | 21.00 | 69.4 | 14.4 | [18] |
Metal-Doped ETL | Device Structure | VOC (V) | JSC (mA·cm−2) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|
Au-mesoTiO2 | FTO/Au NPs-TiO2/CH3NH3PbI3 /spiro-OMeTAD/Ag | 0.80 | 18.70 | 55.0 | 8.8 | [53] |
W-mesoTiO2 | FTO/W-meso TiO2 /CH3NH3PbI3/Carbon | 0.86 | 20.79 | 59.0 | 10.5 | [47] |
Y-mesoTiO2 | FTO/Y-mesoTiO2/CH3NH3PbI3 /spiro-OMeTAD/Au | 0.95 | 18.10 | 66.0 | 11.2 | [48] |
Nb-mesoTiO2 | FTO/c-TiO2/Nb-mesoTiO2 /CH3NH3PbI3/spiro-OMeTAD/Au | 0.99 | 18.70 | 72.3 | 13.4 | [54] |
Al-mesoTiO2 | FTO/c-TiO2/Al-mesoTiO2 /CH3NH3PbI3/spiro-OMeTAD/Au | 1.07 | 20.86 | 63.0 | 14.1 | [49] |
Ag-mesoTiO2 | FTO/c-TiO2/Ag-mesoTiO2 /CH3NH3PbI3/spiro-OMeTAD/Ag | 1.03 | 22.82 | 75.4 | 17.7 | [55] |
Ce-mesoTiO2 | FTO/c-TiO2/Ce-mesoTiO2 /CH3NH3PbI3/spiro-OMeTAD/Ag | 1.05 | 23.61 | 71.7 | 17.8 | [50] |
Eu-mesoTiO2 | FTO/c-TiO2/Eu-mesoTiO2 /CH3NH3PbI3/spiro-OMeTAD/Au | 1.10 | 22.62 | 72.3 | 17.9 | [51] |
Zn-mesoTiO2 | FTO/c-TiO2/Zn-mesoTiO2 /CH3NH3PbI3/spiro-OMeTAD/Ag | 1.05 | 22.70 | 78.7 | 18.7 | [52] |
Sn-mesoTiO2 | FTO/c-TiO2/Sn-mesoTiO2 /CH3NH3PbI3/spiro-OMeTAD/Ag | 1.07 | 23.10 | 79.5 | 19.5 | [17] |
SnO2 ETL | Device Structure | VOC (V) | JSC (mA·cm−2) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|
SnO2 | FTO/SnO2/CH3NH3PbI3 /spiro-OMeTAD/Au | 1.11 | 23.27 | 67.0 | 17.2 | [56] |
Li:SnO2 | FTO/Li:SnO2/CH3NH3PbI3 /spiro-OMeTAD/Au | 1.01 | 23.27 | 70.7 | 18.2 | [57] |
SnO2 | ITO/ SnO2/ (FAPbI3)0.97(MAPbBr3)0.03 /spiro-OMeTAD/Au | 1.09 | 24.88 | 75.7 | 20.5 | [58] |
Bilayer | FTO/SnO2@a-TiO2 /perovskite/HTM/Ag | 1.20 | 22.90 | 76.4 | 21.1 | [59] |
EDTA-SnO2 | ITO/EDTA-SnO2/FA0.95Cs0.05PbI3 /spiro-OMeTAD/Au | 1.11 | 24.57 | 79.2 | 21.6 | [60] |
SnO2-RCQs | ITO/SnO2-RCOs /Cs0.05FA0.81MA0.14PbI2.55Br0.45 /spiro-OMeTAD/MoO3/Au | 1.14 | 24.10 | 82.9 | 22.8 | [61] |
NH4F-SnO2 | TCO (ITO or FTO) /NH4F-SnO2/(FAPbI3)0.95(MAPbBr3)0.05 /spiro-OMeTAD/Au | 1.16 | 24.60 | 81.4 | 23.2 | [62] |
SnO2/NbOx | ITO/SnO2/NbOx/FA1-xMAxPbI3-yCly /spiro-OMeTAD/Au | 1.18 | 24.95 | 81.6 | 24.0 | [63] |
SnO2 | FTO/SnO2/(FAPbI3)1-x(MAPBBr3)x /spiro-OMeTAD/Au | 1.19 | 25.09 | 84.7 | 25.4 | [64] |
Cl-SnO2 | FTO/SnO2/FASnClx/FAPbI3 /spiro-OMeTAD/Au | 1.19 | 25.71 | 84.4 | 25.8 | [65] |
Passivator | Device Structure | VOC (V) | JSC (mA·cm−2) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|
NaF/KF | ITO/SnO2/CsFAMA-NaF /spiro-OMeTAD/Au | 1.13 | 24.23 | 80.4 | 21.9 | [73] |
KI | FTO/SnO2/KCsFAMAPbIxBr3-x /spiro-OMeTAD/Au | 1.13 | 22.95 | 79.0 | 20.6 | [74] |
PEAI | ITO/SnO2/FA0.98Cs0.02PbI3-PEA2PbI4 /spiro-OMeTAD/Au | 1.13 | 22.44 | 76.5 | 21.0 | [75] |
EDBEI | FTO/SnO2/perovskite /spiro-OMeTAD/Au | 1.13 | 23.53 | 79.2 | 21.0 | [76] |
Poly(4-vinylpyridine) | ITO/SnO2/PbI2-MAI/PVP /spiro-OMeTAD/Au | 1.15 | 21.74 | 80.9 | 20.2 | [77] |
Dimethyl itaconate | ITO/SnO2/FAI-MAI-MACl-DI /spiro-OMeTAD/Ag | 1.15 | 24.90 | 80.8 | 23.0 | [78] |
PiP | FTO/PiP-SnO2/FA0.83Cs0.17 /i-BABr/spiro-OMeTAD/Au | 1.17 | 24.85 | 83.0 | 24.1 | [79] |
EMIM DEP | ITO/SnO2/EMIM DEP /FAI-MAI-CsCl-PbI2 /spiro-OMeTAD/Au | 1.17 | 24.19 | 81.9 | 23.2 | [80] |
BGCI | ITO/SnO2/BGCI/(FAPbI3)x(MAPbI3)y /PEAI/spiro-OMeTAD/MoO3/Ag | 1.19 | 25.00 | 82.7 | 24.4 | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.-H.; Chang, Y.-H.; Lin, T.-H.; Lee, K.-M.; Wu, M.-C. Recent Advances in Metal Oxide Electron Transport Layers for Enhancing the Performance of Perovskite Solar Cells. Materials 2024, 17, 2722. https://doi.org/10.3390/ma17112722
Liao Y-H, Chang Y-H, Lin T-H, Lee K-M, Wu M-C. Recent Advances in Metal Oxide Electron Transport Layers for Enhancing the Performance of Perovskite Solar Cells. Materials. 2024; 17(11):2722. https://doi.org/10.3390/ma17112722
Chicago/Turabian StyleLiao, Ying-Han, Yin-Hsuan Chang, Ting-Han Lin, Kun-Mu Lee, and Ming-Chung Wu. 2024. "Recent Advances in Metal Oxide Electron Transport Layers for Enhancing the Performance of Perovskite Solar Cells" Materials 17, no. 11: 2722. https://doi.org/10.3390/ma17112722
APA StyleLiao, Y. -H., Chang, Y. -H., Lin, T. -H., Lee, K. -M., & Wu, M. -C. (2024). Recent Advances in Metal Oxide Electron Transport Layers for Enhancing the Performance of Perovskite Solar Cells. Materials, 17(11), 2722. https://doi.org/10.3390/ma17112722