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Abstract: This study examined the impact of temperature optimization on indium tin oxide (ITO)
films in monolithic HJT/perovskite tandem solar cells. ITO films were deposited using magnetron
sputtering at temperatures ranging from room temperature (25 ◦C) to 250 ◦C. The sputtering target
was ITO, with a mass ratio of In2O3 to SnO2 of 90% to 10%. The effects of temperature on the ITO
film were analyzed using X-ray diffraction (XRD), spectroscopic ellipsometry, and sheet resistance
measurements. Results showed that all ITO films exhibited a polycrystalline morphology, with
diffraction peaks corresponding to planes (211), (222), (400), (440), and (622), indicating a cubic
bixbyite crystal structure. The light transmittance exceeded 80%, and the sheet resistance was
75.1 Ω/sq for ITO deposited at 200 ◦C. The optical bandgap of deposited ITO films ranged between
3.90 eV and 3.93 eV. Structural and morphological characterization of the perovskite solar cell was
performed using XRD and FE-SEM. Tandem solar cell performance was evaluated by analyzing
current density-voltage characteristics under simulated sunlight. By optimizing the ITO deposition
temperature, the tandem cell achieved a power conversion efficiency (PCE) of 16.74%, resulting in
enhanced tandem cell efficiency.

Keywords: indium tin oxide (ITO); tandem solar cell; silicon heterojunction; perovskite; deposition
temperature

1. Introduction

The global photovoltaic (PV) market is predominantly led by crystalline silicon (c-Si)
solar cells, which constitute over 95% of the market share, however, in the dynamic of the
PV sector, new photovoltaic materials are continually emerging, with perovskite standing
out as a promising alternative to Si-based solar cells for its versatile applications in solar
cells, LEDs, and even electrochemical water splitting, showcasing its growing importance
in optoelectronics and beyond [1,2]. Recent advancements in perovskite solar cells (PSCs),
with an efficiency ranging from 3.13% to 26.1% between 2009 and 2023, underscore their
potential as a cutting-edge solar technology [3]. The Shockley–Queisser limit represents
the maximum theoretical efficiency that a single-junction solar cell can achieve based on
thermodynamic principles which is about 33.7% for a single-junction solar cell under
standard test conditions; it is determined via the balance between photon absorption and
thermalization losses. Integrating perovskites with crystalline silicon (c-Si) solar cells
offers significant promise, surpassing the Shockley–Queisser limit for single-junction solar
cells [4] and boosting power conversion efficiency (PCE), thereby driving down the cost of
electricity in photovoltaic systems. Jacak et al. also emphasized the inherent limitations
of p-n junction solar cells, defined by the Shockley–Queisser limit. At the same time, they
highlighted the innovative potential of perovskite solar cells to overcome these limitations.
Third-generation cells, such as perovskite cells, achieve efficiencies comparable to p-n
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junction cells. Furthermore, they can enhance operational efficiency by up to 40% through
the use of low-cost metallization, low-temperature processing, and simple manufacturing
techniques, rendering them a competitive solution for future large-scale applications [5,6].

The c-Si HJT/perovskite tandem structure merges superior optoelectronic properties
of perovskites with the high short circuit current of c-Si HJT cells, making it ideal for photo-
voltaic devices [7,8]. While solution-based perovskite cell processes offer cost-effectiveness
and easy manufacturability, they face challenges such as degradation [9–12]. The c-Si
subcell addresses degradation concerns with its high environmental and thermal stability,
alongside compatibility with industrial workflows and the use of n-type silicon wafers
for prolonged lifespan and reduced degradation. These advancements, coupled with in-
creased efficiency and affordability, position the c-Si HJT/perovskite tandem structure as a
promising contender for future photovoltaic technology phases, leveraging advantages like
improved surface passivation and a favorable temperature coefficient [13]. The fabrication
of the top cell layers in a monolithic tandem stack is restricted by the properties of the
bottom cell, including required temperature, utilized solvents, and deposition technique.
This can complicate tandem integration, which involves all required processing steps in
the monolithic stack that may interfere with each other [7]. Transparent conductive oxides
(TCOs) play a crucial role in HJT solar cells, serving as transparent electrodes that allow
sunlight to reach the active layer while providing a conductive pathway for generated
electricity, leading to enhanced efficiencies [14–17]. ITO combines high electrical conduc-
tivity and optical transparency, particularly in the visible spectrum. It has high hardness,
wear resistance, and chemical corrosion resistance, ensuring durability. Limited indium
sources, brittleness, and high raw material costs are challenges associated with ITO [18].
Conversely, when compared to other TCO materials, doped zinc oxide (ZnO) exhibits
properties similar to those of ITO in terms of both band gap and optical transmission
values. Aluminum-doped zinc oxide (AZO) has recently attracted significant attention
for its cost-effectiveness and high electrical conductivity. Additionally, its nontoxicity
and excellent transmittance further enhance its appeal [19]. Nevertheless, a downside of
AZO thin films is their high absorption in the infrared (IR) region of the electromagnetic
spectrum, which consequently diminishes the photo-generated current in solar cells. This
absorption behavior is a crucial factor to consider in optimizing the performance of solar
cell technologies [20]. ITO:Zr films, in comparison to ITO films, demonstrate superior
electrical and optical properties. The addition of Zr to ITO films preserves the basic charac-
teristics of ITO while also increasing properties such as near-infrared (NIR) transmittance,
chemical stability, and thermal stability making them promising for future solar cell ap-
plications [21]. Indium tungsten oxide (IWO) and indium chromium oxide (ICO) films,
similar to ITO, are transparent conducting oxide (TCO) materials, though less commonly
used due to various factors. IWO and ICO films exhibit reasonable electrical conductivity,
moderate to high optical transparency, and good durability. However, matching their
electrical and optical properties to specific applications can be challenging due to their
less predictable behavior. Additionally, large-scale industrial production of both IWO and
ICO films poses difficulties compared to more established TCO materials like ITO [22,23].
Ti-doped In2O3 exhibits higher mobility and optical transparency compared to ITO thin
films, especially in the visible light spectrum. However, a high-temperature process is
often preferred to enhance the mobility of these materials. This situation is not suitable
for optoelectronic applications requiring low temperatures, such as SHJ solar cells [24].
ITO plays a crucial role in tandem solar cells. Its high optical transparency ensures that a
significant portion of incident sunlight can reach the underlying solar cell layers without
substantial absorption or reflection, maximizing light absorption and overall tandem cell
efficiency. ITO provides efficient charge collection by facilitating the transport of electrons
from the tandem solar cells to the external circuit. Its high electrical conductivity allows for
low resistive losses and efficient extraction of generated electrical current. Mesmer et al.
simulated ITO thin film deposition at around 200 ◦C, achieving a c-Si/perovskite tandem
solar cell efficiency of approximately 29.5% in a 5-busbar cell with an oxygen flow rate
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of 3 sccm [25]. Ba et al. explored tungsten-doped tin oxide, a less common TCO, in the
conventional HJT subcell structure of a tandem cell, achieving approximately 23% efficiency
for M0 (156 mm × 156 mm) size cells in their simulation study [26]. In summary, ITO
serves as a crucial component in tandem solar cells by providing efficient light transmission,
charge collection, and interface engineering, contributing to enhanced cell efficiency and
performance [27]. The electrical conductivity and optical transparency of ITO films are
significantly influenced by the deposition temperature. Higher deposition temperatures
often result in higher conductivity due to improved crystallinity and reduced defects.
Deposition temperature affects the grain size and crystallinity of ITO films. Generally,
films deposited at higher temperatures exhibit larger grains and improved crystallinity,
leading to smoother and more uniform films. The optical transparency of ITO films can
vary with deposition temperature. Films deposited at specific temperatures often show
higher transparency in the visible spectrum due to reduced grain size and crystallinity.
There is typically a trade-off between transparency and conductivity, with films deposited
at higher temperatures having lower transparency but higher conductivity, and vice versa.
The stability of ITO films under different environmental conditions, such as humidity and
temperature fluctuations, varies depending on the deposition temperature. Therefore, it is
important to determine the temperature that provides the optimal balance of optical and
electrical properties for specific applications. In this study, we evaluated the subcell and
top cell structures separately for monolithic c-Si HJT/perovskite tandem solar cells. The
optimization of deposition temperature for the indium tin oxide (ITO) layer in the subcell
structure was conducted using six different temperature values (room temperature (25 ◦C),
150 ◦C, 175 ◦C, 200 ◦C, 225 ◦C, and 250 ◦C). Subsequently, HJT solar cells were fabricated,
and photovoltaic parameters were measured. Perovskite cells were then produced on
the two HJT cells displaying the highest and lowest efficiency values to generate tandem
solar cells.

2. Materials and Methods
2.1. ITO Film Deposition

ITO films deposited at different temperatures (RT, 150 ◦C, 175 ◦C, 200 ◦C, 225 ◦C,
and 250 ◦C) on soda-lime glass (surface: 2.5 × 2.5 cm2, thickness: 1.1 mm) to investigate
their structural, optical, and electrical properties. In the manufacturing process of the HJT
solar cell, the temperature of the ITO layer is automatically regulated using temperature
sensors and heaters. This automated control ensures precise and consistent temperature
conditions, which are crucial for achieving the desired material properties and device
performance. The films were deposited using direct current (DC) magnetron sputtering
integrated into a physical vapor deposition (PVD) system (Meyer Burger Technology AG,
Thun, Switzerland) operating at 13.56 MHz. A 99.999% (5N) purity ITO sputtering target
(Kurt J. Lesker Company, Jefferson Hills, PA, USA) was employed for the film deposition
process, resulting in ITO films with a thickness of 100 nm.

Prior to placing the glass substrates into the PVD chamber, they were cleaned in
ultrasonic baths containing acetone for 5 min, ethanol for 5 min, and distilled water
for 10 min, followed by drying with nitrogen (N2) gas. The cleaned substrates were
then introduced into the PVD system, and the system was allowed to reach a working
pressure of 7.3 × 10−6 mbar. A deposition pressure of 2.1 × 10−2 mbar was maintained
by continuously supplying argon (Ar) and oxygen (O2) to the chamber. Oxygen O2 gas
was introduced during the sputtering process to control the stoichiometry of the deposited
ITO film. The presence of oxygen accelerated the oxidation process and created the desired
crystal structure. By adjusting the ratio of oxygen to argon gases, the oxygen content in
the ITO film can be finely tuned, which is critical for achieving the desired electrical and
optical properties. ITO films were deposited via DC magnetron sputtering at different
temperatures while keeping the gas ratios (Ar: 200 sccm and O2: 3.3 sccm) and power
(1850 W) constant. To prevent contamination, the system was initially operated in a vacuum
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before loading the substrates, and the process was then carried out. Table 1 shows these
deposition parameters and their corresponding notation.

Table 1. Deposition parameters and corresponding sample notations of ITO films.

Sample
Notation Ar Flow (sccm) O2 Flow (sccm) Deposition

Power (W)
Deposition

Temperature (◦C)

ITO-RT 200 3.3 1850 RT

ITO-150 200 3.3 1850 150

ITO-175 200 3.3 1850 175

ITO-200 200 3.3 1850 200

ITO-225 200 3.3 1850 225

ITO-250 200 3.3 1850 250

2.2. Fabrication of Solar Cells

A. Silicon Heterojunction solar cell (Subcell)

To investigate the effects of ITO films deposited at different temperatures on HJT solar
cells, random pyramid-structured n-type crystalline silicon (c-Si) wafers with a thickness
of 180 µm and a sheet resistance of 3–5 Ω/sq were fabricated using the Czochralski (CZ)
method. To create the HJT solar cell, the oxide layer on the surface of the c-Si wafer
was removed using hydrofluoric (HF) solution (Merck KGaA, Darmstadt, Germany),
followed by rinsing with deionized water and drying with nitrogen gas to complete the
cleaning process of the c-Si wafer. Subsequently, a total of 20 nm of intrinsic hydrogenated
amorphous silicon (i) a-Si: H/n-type (n) a-Si: H layers were deposited on the front side
of the Si wafer, while 20 nm of (i) a-Si H /p-type (p) a-Si: H layers were deposited on
the rear side using plasma-enhanced chemical vapor deposition (PECVD) (Meyer Burger
Technology AG, Thun, Switzerland). For the (i) a-Si: H layer, silane (SiH4) and hydrogen
(H2) gases were used, for the (n) a-Si H layer, phosphine (PH3), SiH4, and H2 gases
were employed, and for the (p) a-Si: H layer, trimethyl-boron (TMB), SiH4, and H2 gases
were utilized.

On the rear surface, deposition of the n-type a-Si: H layer was followed by the
deposition of 40 nm ITO and 220 nm silver (Ag) layers using the PVD system. After coating
the p-type a-Si: H layer, the front surface coatings were completed with the deposition
of ITO films at different temperatures. Finally, finger and busbar patterns were printed
on the front surface of the HJT solar cells using Ag paste via the screen print method
(ASM Assembly Systems, Munich, Germany), and the solar cell was completed by firing
it at 200 ◦C for 10 min [28,29]. Figure 1a provides a schematic representation and eV
diagram [30] of the HJT solar cell.

B. Perovskite (Top cell) on silicon heterojunction solar cell

The solution-based steps for the production of the top cell began once the production
of the subcells had been completed. All materials used in this study were purchased from
commercial sources and used as received without any purification process. In order to
maintain the purity of the materials, high-purity chemicals and solvents were selected.
Furthermore, the inert (Ar) glove box system (Nanovak, Ankara, Turkey) in which these
materials were produced both maintained the stability of the unstable materials against
temperature and humidity and prevented possible contamination by keeping dust, particles,
and contaminants under control. The ETL was synthesized using SnO2 collodial solution
(Alfa Aesar, Haverhill, MA, USA) and isopropyl alcohol (IPA). For the perovskite layer,
methylammonium iodide (MAI), lead chloride (PbCl2), lead iodide (PbI2), and anhydrous
dimethylformamide (DMF) were used. HTL was formed with spiro-OMeTAD, tBP, Li-TFSI,
99.8% chlorobenzene, and 99.8% acetonitrile, following a specific sequence (all materials
for depositing HTL and Perovskite layer were obtained from Sigma Aldrich (St. Louis,
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MO, USA). Instead of encapsulation, ITO (99.999%) was deposited on HTL to protect
the cell. Finally, Ag (99.99%) was used as a metallization material. Top cell production
was mainly solution based with spin coating. To facilitate this process, each material was
presynthesized and filtered before cell production.
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Figure 1. HJT solar cell (2.5 × 2.5 cm2) (a), HJT/perovskite tandem solar cell (active area: 1.45 cm2)
(b), thin film colors and deposition methods (c), HJT/perovskite tandem solar cell eV diagram (d).

The SnO2 colloid solution was dissolved in 10 µL of isopropanol with magnetic stirring
for 2 h at room temperature. Subsequently, filtration was performed to remove particulate
matter and impurities from the solution using a 0.45 µm (PTFE) filter. The solution prepared
on the spin coating was taken with the help of a pipette and then coating was performed on
ITO by rotating it at 3000 rpm for 30 s. After that, the coating was annealed at 150 ◦C for
30 min. The material was then transferred to the glove box to apply a perovskite layer coating.
Before coating the perovskite on the coated ETL layer, it was heated at a low temperature on
the hot plate for a while. The ETL layer was coated with a formulation of CH3NH3PbI3−xClx
in a molar ratio of 1:1:4 containing methylammonium iodide (MAI), PbCl2 and PbI2 in DMF.
The coated layer was then heated on a hot plate at a low temperature of 60 ◦C for one hour.
Next, perovskite solution was dripped onto the ETL layer through a 0.45 µm (PTFE) filter
and spun at 4000 rpm for 45 s. Then, a 70 ◦C annealing process was performed on a hot plate.
Once the perovskite layer was annealed, it was allowed to cool down before the application of
the prepared Spiro-OMeTAD solution. Using the dynamic coating method, the solution was
coated at a speed of 4000 rpm for 30 s. Upon the completion of the monolithic tandem cell, no
encapsulation procedure was implemented.

The use of an ITO layer instead of encapsulation in a tandem solar cell reflected the
trade-off between protection, electrical performance, transparency, and cost-effectiveness.
This particular design choice responded to specific application requirements and the desired
balance between these factors. The final stage of the cell, the front contacts, was carried
out using a mask with a thickness of approximately 150 nm thickness under a pressure of
10−6 Torr. The completed monolithic tandem structure is shown in Figure 1b.
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C. Characterization

The structural, optical, and electrical parameters of the ITO films used in HJT solar
cells were subjected to a detailed analysis using the films deposited. The structural charac-
teristics of the ITO films and the layers of the perovskite solar cells used as top cells were
investigated via X-ray diffraction (Pan analytical-XRD, Malvern, UK, J.J CuKα radiation, λ
= 0.15406 nm). The measurement of the thickness and optical properties of the ITO films
was conducted using a Woollam V-Vase ellipsometer (Lincoln, NE, USA). The thickness
measurement of the layers in perovskite solar cells was carried out using a Bruker Dektak
XT profilometer (Billerica, MA, USA) device.

The electrical properties of the ITO films were determined by employing a contactless
sheet resistance measurement system, EddyCus® TF lab 4040 Hybrid (Dresden, Germany).
Furthermore, cross-sectional images of the c-Si HJT/perovskite tandem solar cells were
examined using field emission-scanning electron microscopy, FE-SEM (HITACHI SU5000,
Tokyo, Japan).

3. Results
3.1. Effect of Temperature on the Structural Properties of ITO Films

Figure 2 shows the XRD analysis of ITO films deposited at different temperatures (RT,
150, 175, 200, 225, 250 ◦C). ITO films were scanned by selecting the 2θ scanning range of
10 to 80◦. According to the analysis, the diffraction peaks (211), (222), (400), (440), and
(622) corresponded to cubic ITO [31]. According to the analysis, the diffraction peaks (211),
(222), (400), (440), and (622) corresponded to cubic ITO and all films showed polycrystalline
properties [31–34]. While the (400) peak was not visible in the ITO-RT, ITO-150, and ITO-175
samples, it was clearly seen when the temperature was applied above 175 ◦C (Figure 2).
This meant that the applied temperature treatment improved the arrangement of atoms,
which lead to a better crystal structure [35]. Table 2 shows the structural parameters of
ITO films deposited at different temperatures. The structural parameters of ITO films were
calculated according to the diffraction peak (222) plane of the highest intensity. It should
be noted that the orientation of ITO (222) and (400) diffraction peaks can be changed by
increasing the film ratio [36] and temperature [37]. According to (222) plane, the ITO-150
sample had the lowest full width half max (FWHM) value (7.18 × 10−3 rad), while the
FWHM value of the ITO-250 was the highest (8.67 × 10−3 rad). In addition, a continuous
increase was observed in the FWHM values of ITO films deposited above 150 ◦C as the
temperature increased. The 2θ values of the all ITO-RT, ITO-150, ITO-175, ITO-200, and
ITO-250 samples in the (222) orientation were found to be 30.14◦, 30.23◦, 30.22◦, 30.19◦,
30.25◦, and 30.32◦, respectively ((ICSD Card No: 98-005-0848 (ITO-RT, ITO-150, and ITO-
200), ICSD Card No: 98-005-0847 (ITO-175), and ICSD Card No: 98-005-0849 (ITO-225,
and ITO-250)).

Table 2. FWHM (β), Bragg angle (θ), crystal size (D), dislocation density (δ), microstrain (ε), and
number of crystallites per unit area (N) values of ITO films.

Sample
Name β (Rad) θ (Degrees) cosθ D (nm) δ (Lines/nm2)

(×10−3)
ε (×10−3) N (nm−2)

(×10−2)

ITO-RT 7.90 × 10−3 15.0699 0.9656 18 3.1 1.9 1.7

ITO-150 7.20 × 10−3 15.1153 0.9654 20 2.5 1.7 1.3

ITO-175 7.30 × 10−3 15.1082 0.9654 19 2.8 1.8 1.5

ITO-200 7.90 × 10−3 15.0948 0.9655 18 3.1 1.9 1.7

ITO-225 8.20 × 10−3 15.1266 0.9654 17 3.5 2 2

ITO-250 8.70 × 10−3 15.1621 0.9652 16 3.9 3.1 2.4
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The crystal size was calculated using Equation (1) where k is the shape factor (0.9),
λ is the X-ray wavelength, β is the broadening of the diffraction line peak at an angle of
2θ at FWHM in radians measured using Gaussian distribution, and θ is the Bragg angle.
Table 2 shows the crystal size and β values of ITO films deposited at different temperatures.
It was observed that the crystal size and β values were inversely proportional, and the
β decreased clearly while the crystal size increased (Figure 3). In addition, as shown in
Table 2, while a decrease in crystal size was observed with increasing temperature from
150 to 250 ◦C, the best crystal size was determined as 20 nm at 150 ◦C [38]. Although this
shows that ITO samples crystallize better at 150 ◦C, different characterization methods are
needed since the values were very close to each other.

D =
kλ

β cos θ
(1)

The dislocation density (δ), microstrain (ε) and number of crystallites per unit area
(N) were calculated using Equations (2)–(4) and are shown in Table 2 [39]. The t value in
Equation (4) is the film thickness. At 150 ◦C and above, a steady increase in the dislocation
density of the ITO films deposited was observed. The dislocation densities of ITO-RT and
ITO-200 were equal and calculated as 3.1 × 10−3 lines/nm2. While the lowest dislocation
density was calculated for ITO-150 (2.5 × 10−3 lines/nm2), the highest dislocation density
was calculated for the ITO-250 (3.9 × 10−3 lines/nm2). The microstrain parameters showed a
steady increase in the ITO films deposited at 150 ◦C and above. The microstrain parameter of
the ITO-RT and ITO-200 was equal and calculated as 1.9 × 10−3. While the lowest microstrain
parameter was calculated in the ITO-150 (1.7 × 10−3), the highest microstrain was calculated
in the ITO-250. The number of crystallites per unit area showed a steady increase in ITO
films deposited at 150 ◦C and above. The number of crystallites per unit area of ITO-RT and
ITO-200 was equal and calculated as 1.7 × 10−2 nm−2. In addition, the lowest number of
crystallites per unit area was calculated in the ITO-150 (1.3 × 10−2 nm−2), and the highest
number of crystallites per unit area was calculated in the ITO-250 (2.4 × 10−2 nm−2).

δ =
1

D2 (2)

ε =
β cos θ

4
(3)



Materials 2024, 17, 2784 8 of 17

N =
t
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The temperature coefficients (TC) for diffraction peak (211), (222), (400), (440), and
(622) were calculated using ICSD cards and Equation (5) [40].

TChkl =

Imeans (hkl)
I0(hkl)

1
N ∑h́ḱĺ

Imeas(h́ḱĺ)
I0(h́ḱĺ)

(5)

where Imeans, I0 and N are defined as the measured intensities of each (hkl) point, the theo-
retical relative intensity given in the ICSD cards and the number of reflections considered,
respectively. For diffraction peaks (211), (222), and (440), we used N = 6, for (622) we used
N = 4, and for (400) we used N = 3. The N values corresponding to the XRD peaks seen
in Figure 2 were used for each ITO thin film. Figure 3 illustrates the texture coefficients of
ITO films deposited at different temperatures, with corresponding values given in Table 3.
In addition, Table 3 shows the Imeans corresponding to the diffraction peaks (211), (222),
(400), (440), and (622) and the I0 values obtained from the ICSD card. Considering the TChkl
values, it was observed that the orientations of the ITO films were towards the diffraction
peaks (211), (222), and (440). Additionally, it was noted that there was a consistent increase
in TChkl values for TC400 and TC622 as the temperature rose.
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Table 3. Texture coefficient values calculated for the 5 main peaks obtained from XRD.

Sample
Diffraction Peaks

(211) (222) (400) (440) (622)

ITO-RT 10.3 100 30.5 37.3 27.4

I0

ITO-150 10.3 100 30.5 37.3 27.4
ITO-175 10.7 100 30.6 37.1 27.4
ITO-200 10.3 100 30.5 37.3 27.4
ITO-225 11.1 100 30.5 36.8 26.9
ITO-250 11.1 100 30.5 36.8 26.9

ITO-RT 319.6 2373.8 - 172.7 -

Imeans

ITO-150 364.8 1944.7 - 225.4 -
ITO-175 470.4 2919.7 - 318 100
ITO-200 302.8 2098.4 190.8 211 105.1
ITO-225 533.3 2469.8 214.3 303.7 110.8
ITO-250 623.3 2128.4 217.2 356 147.3

ITO-RT 0.76 1.02 - 0.65 -

Texture
Coefficient

(TC)

ITO-150 0.87 0.84 - 0.85 -
ITO-175 1.08 1.26 - 1.20 0.85
ITO-200 0.72 0.90 0.92 0.79 0.90
ITO-225 1.18 1.06 1.03 1.16 0.96
ITO-250 1.38 0.92 1.05 1.36 1.28

3.2. Effect of Temperature on the Optical Properties of ITO Films

The optical transmittance and reflectance spectra versus wavelength of ITO deposited by
the PVD system on glass substrates at different temperatures are shown in Figures 4 and 5.
The results in Table 4 include the optical properties of the film with glass substrate. The trans-
mittance spectra of the films deposited at different temperatures showed that they were highly
transparent in the visible region of the electromagnetic spectrum. In the wavelength range of
400 to 1200 nm, ITO deposited at different temperatures showed an average transmittance of
over 77% and an average reflectance of over 14% (Table 4). It was also observed that while the
average transmittance value increased with increasing temperatures, it decreased at 225 ◦C.
The highest average transmittance was measured in ITO-200 (80%), and the lowest transmit-
tance was measured in ITO-RT (77%). The increase in temperature increased the transmittance
in the near-infrared region, while it decreased the transmittance at higher wavelengths. The
increase in reflectance in the long wavelength region may be attributed to an increase in carrier
concentration, likely caused by oxygen deficiency at high temperatures [41].
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Table 4. Transmittance, reflectance, and energy band gaps of ITO films.

Sample Name Average Transmittance (%)
(400–1200 nm)

Average Reflectance (%)
(400–1200 nm) Eg (eV) Transmittance (%) (550 nm)

ITO-RT 77 15 3.9 77

ITO-150 78 16 3.91 78

ITO-175 78 16 3.91 78

ITO-200 80 15 3.91 78

ITO-225 79 15 3.92 79

ITO-250 79 14 3.93 76

The optical absorption coefficient in the visible region (α) and the energy of the incident
photon (hν) are needed to determine the optical band gap (Eg) in semiconductor materials [42].
In this study, the band gap measurement of ITO deposited at different temperatures was
obtained by plotting hν versus (αhν)2 (Figure 6). The optical bandgap obtained from the
deposited ITO films was calculated to be between 3.90 eV and 3.93 eV. Energy band gap values
are given in Table 4. According to the results obtained, an increase in the bandgap of ITO
films was observed as the temperature increased. The increase in the bandgap of ITO can be
attributed to the shift of the absorption edge towards the near UV region. This phenomenon,
commonly referred to as the Burstein–Möss (B-M) effect [43], may arise from factors such as
higher deposition temperatures and increased carrier concentrations.

3.3. Effect of Temperature on the Electrical Properties of ITO Films

Transmittance values at 550 nm were used to calculate the temperature-dependent
Figure of Merit (FOM) of the ITO films (Table 4). Additionally, the sheet resistance, FOM,
and resistivity of the ITO films were plotted [44]. According to Haacke, the optical and
electrical properties of transparent conductive oxide (TCO) films are best characterized via
electrical sheet resistance and optical transmittance. Therefore, the FOM value was defined
as an important parameter for evaluating the performance and determining the material
quality of the films [45–48]. It is calculated using Equation (6) below.

ΦTC = T10/Rsh (6)

where T is the transmittance and Rsh is the sheet resistance of ITO films [49]. Figure 7
shows the ΦTC and Rsh values of ITO deposited at different temperatures. It was seen that
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ΦTC values increased as the deposition temperature increased (except 250 ◦C). ITO-225 was
calculated to have the best FOM value (1.28 × 10−3 Ohm−1). Figure 7 shows the Rsh values
of ITOs deposited at different temperatures. The electrical properties of ITO thin films
depended on the deposition parameters such as film composition, temperature, and oxygen
content. It was observed that a steady decrease in Rsh and resistivity values occurred with
the increase in the temperature. Among the ITO films deposited, the highest Rsh value
was 102.7 Ohm/sq in ITO-RT, and the lowest Rsh value was 59.9 Ohm/sq in ITO-250. In
the resistivity values, the highest value was obtained as 102.7 × 10−3 ohm.cm in ITO-RT
film, and the lowest value was obtained as 59.9 × 10−3 ohm.cm in ITO-250. The electrical
properties of the ITO films were improved as the temperature increased.
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Figure 6. Band gap measurement of ITO deposited at different temperatures, obtained by plotting hν

versus (αhν)2. The optical band gap of the deposited ITO films was calculated to be between 3.90 eV
and 3.93 eV (The band gap was calculated using fitted curves, which are represented by dashed lines
in the figure).
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3.4. Effect of Temperature on the HJT Solar Cell Parameters

The optimization of the deposition temperature proved to be a crucial factor for the
optical and electrical properties of ITO thin films, and also for the cell parameters of
HJT solar cells. Table 5 summarizes the key parameters obtained at each ITO deposition
temperature, showcasing notable variations in the solar cell performance. Notably, at room
temperature, the efficiency remained suboptimal, indicating clearly insufficient VOC. It is
well known that VOC is strongly correlated with conductivity and is inversely proportional
to RSH values (Figure 7) of the TCO layer. Based on that, the lowest VOC value of the
ITO-RT sample can be easily explained.

Table 5. Cell parameters of temperature-dependent ITO layers deposited on identical HJT solar cells.

Sample Name Efficiency (%) Current Density,
JSC (A/cm2)

Open Circuit Voltage,
VOC (V) Fill Factor, FF (%)

ITO-RT 14.69 0.0365 0.5008 80.39

ITO-150 15.05 0.0368 0.5430 75.40

ITO-175 15.30 0.0372 0.5520 74.40

ITO-200 15.60 0.0377 0.5460 75.70

ITO-225 15.20 0.0374 0.5590 72.50

ITO-250 14.90 0.0364 0.5430 75.40

To improve the monolithic tandem cell efficiency of the HJT cells shown in Figure 8,
the top perovskite cell production stage was initiated taking into account the Jsc and FF
values in Table 5 and the subcells with the lowest and highest efficiency values as reference.
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3.5. Structural and Morphological Properties of Monolithic c-Si HJT/perovskite Tandem Solar Cell

Structural analyses of the films of the tandem cell were carried out using XRD with
the CuKα (λ = 0.15406 nm) X-ray source. The scanning range was 2θ = 10–90◦. The results
of the XRD analysis for the tandem films are presented in Figure 9. Measurements were
taken in ambient air. As the Si peak at 2θ 68.66 was more dominant than the intensity of
the other peaks, the red area has been zoomed in and is shown in the figure. The following
Si peaks were observed: 2θ = 28.26◦ (110), 47.18◦ (220), and 68.66◦ (400). The Ag peaks
were at 37.96◦ (111), 44.16◦ (200), and 64.26◦ (220). SnO2 peaks were located at 26.64◦ (110),
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34.17◦ (101), 37.96◦ (200), 42.96◦ (210), 52.38◦ (211), and 60.72◦ (002) [50]. The In2O3 peaks
were at 21.23◦ (211), 30.3◦ (222), 35.1◦ (400), and 21.23◦ [51,52]. Finally, CH3NH3PbI3-xClx
peaks were found at 13.92◦ (110), 19.82◦ (112), 23.32◦ (211), 24.32◦ (202), 31.68◦ (220), 40.38◦

(224), 45.54◦ (116), and 50.14◦ (222) [53,54]. No X-ray diffraction peaks were observed from
the spiro-OMeTAD HTL, indicating that the material was amorphous [55].
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lar cells has provided information on the morphology, structure, and quality of individual 
layers and interfaces within the solar cell structure. Figure 10a illustrates the random pyr-
amid structure of n-type c-Si and perovskite solar cells. While Figure 10c exhibits the 
cross-section of a HJT cell, Figure 10d shows the top perovskite cell structure. SEM images 
of the perovskite top cell exhibited structural defects and pinholes in areas where the tex-
tured HJT sublayer did not entirely fill the valleys; these regions of pinholes and defects 
had a negative impact on the efficiency of the monolithic tandem solar cell. The silicon 
heterojunction solar cell (subcell) comprised a 180 µm thick n-type crystalline silicon (c-
Si) layer, 10 nm thick amorphous silicon (a-Si: H) thin films, and 100 nm thick indium tin 
oxide (ITO) layers. The layer thicknesses of the top cell were as follows: ITO 77 nm, Spiro-
OMeTAD 200 nm, and SnO2+perovskite 1200 nm, as illustrated in Figure 10b. 

 
Figure 10. c-Si HJT/perovskite tandem solar cell SEM images. (a) Random pyramid-structured n-
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Figure 9. The XRD results for the monolithic c-Si heterojunction perovskite tandem solar cell,
including a focus on the top cell.

The SEM measurements in the context of perovskite/c-Si HJT monolithic tandem solar
cells has provided information on the morphology, structure, and quality of individual
layers and interfaces within the solar cell structure. Figure 10a illustrates the random
pyramid structure of n-type c-Si and perovskite solar cells. While Figure 10c exhibits
the cross-section of a HJT cell, Figure 10d shows the top perovskite cell structure. SEM
images of the perovskite top cell exhibited structural defects and pinholes in areas where
the textured HJT sublayer did not entirely fill the valleys; these regions of pinholes and
defects had a negative impact on the efficiency of the monolithic tandem solar cell. The
silicon heterojunction solar cell (subcell) comprised a 180 µm thick n-type crystalline silicon
(c-Si) layer, 10 nm thick amorphous silicon (a-Si: H) thin films, and 100 nm thick indium
tin oxide (ITO) layers. The layer thicknesses of the top cell were as follows: ITO 77 nm,
Spiro-OMeTAD 200 nm, and SnO2+perovskite 1200 nm, as illustrated in Figure 10b.

Materials 2024, 17, x FOR PEER REVIEW 14 of 18 
 

 

10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

10 15 20 25 30 35 40 45 50 55 60 65
0

100

200

300

400

500

600

(2
22

)

(1
16

)

(2
24

)

(2
20

)

(2
02

)

(1
10

)

(2
11

)

(1
12

)

(1
10

)

(2
11

) (4
00

)

(2
22

)

(1
01

)

(0
02

)

(2
11

)

(2
10

)

(2
00

)

(1
10

)

(2
20

)

(2
00

)

(1
11

)

(2
20

)

♥

♥♥

♠
♠

♥

••

•

♦

•

♠

♥
♥

♥
♠

♥

♣

♣: Si

♦♦

♦

♦

♦

♦: SnO2

 

 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

2θ (degree)

♣

♥

: CH3NH3PbI3-xClx
: In2O3

 : Ag

(1
10

)

(4
00

)

♣: Si
♣

 

 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

2θ (degree)  
Figure 9. The XRD results for the monolithic c-Si heterojunction perovskite tandem solar cell, in-
cluding a focus on the top cell. 

The SEM measurements in the context of perovskite/c-Si HJT monolithic tandem so-
lar cells has provided information on the morphology, structure, and quality of individual 
layers and interfaces within the solar cell structure. Figure 10a illustrates the random pyr-
amid structure of n-type c-Si and perovskite solar cells. While Figure 10c exhibits the 
cross-section of a HJT cell, Figure 10d shows the top perovskite cell structure. SEM images 
of the perovskite top cell exhibited structural defects and pinholes in areas where the tex-
tured HJT sublayer did not entirely fill the valleys; these regions of pinholes and defects 
had a negative impact on the efficiency of the monolithic tandem solar cell. The silicon 
heterojunction solar cell (subcell) comprised a 180 µm thick n-type crystalline silicon (c-
Si) layer, 10 nm thick amorphous silicon (a-Si: H) thin films, and 100 nm thick indium tin 
oxide (ITO) layers. The layer thicknesses of the top cell were as follows: ITO 77 nm, Spiro-
OMeTAD 200 nm, and SnO2+perovskite 1200 nm, as illustrated in Figure 10b. 

 
Figure 10. c-Si HJT/perovskite tandem solar cell SEM images. (a) Random pyramid-structured n-
type c-Si and area with perovskite solar cell, (b) cross-section view of tandem layers and thickness 
(the yellow circles), (c) the cross-section of HJT solar cell, (d) top perovskite cell structure. 

Figure 10. c-Si HJT/perovskite tandem solar cell SEM images. (a) Random pyramid-structured
n-type c-Si and area with perovskite solar cell, (b) cross-section view of tandem layers and thickness
(the yellow circles), (c) the cross-section of HJT solar cell, (d) top perovskite cell structure.
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3.6. c-Si HJT and Monolithic c-Si HJT/Perovskite Tandem Solar Cell Efficiency

Figure 11 shows the efficiency of a monolithic tandem solar cell composed of n-type c-
Si/ITO/SnO2/CH3NH3PbI3−xClx/Spiro-OMeTAD/ITO/Ag and a c-Si HJT solar cell. The
conversion efficiency of the tandem solar cell, utilizing ITOs deposited at room temperature
and 200 ◦C, was measured as 15.78% and 16.74%, respectively. The results indicated
that the crystallinity of materials used in tandem solar cells was significantly affected by
temperature optimization during deposition processes. Higher temperatures generally led
to better crystallinity, which typically resulted in lower defect densities. This, in turn, can
facilitate more efficient charge carrier transport and collection, ultimately contributing to
higher overall efficiency.
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enabled cells to operate at high efficiency. Minimizing temperature stress and expansion 
mismatches maintained the structural integrity of the cells and ensured their long lifetime. 

Figure 11. A comparison of the efficiency of a monolithic tandem solar cell comprising n-type
c-Si/ITO/SnO2/CH3NH3PbI3−xClx/Spiro-OMeTAD/ITO/Ag and a c-Si HJT solar cell is presented.
The tandem solar cell’s conversion efficiencies utilizing ITO deposited at room temperature and
200 ◦C are designated as Tandem-RT (15.78%) and Tandem-200 (16.74%), respectively.

4. Conclusions

In conclusion, this study investigated the effects of temperature optimization on the
ITO film in the subcell of a monolithic HJT/perovskite tandem solar cell architecture.
Through optimization, the optimal temperature for the ITO film within the subcell was
determined to be 200 ◦C. The efficiency of the Tandem-200 configuration was found to be
16.74%, which represented a significant improvement over the efficiency of the Tandem-RT
configuration, which stood at 15.78%. The optimization of the temperature in the subcell
resulted in an increase in efficiency of approximately 1%. The light transmittance exceeded
80% and the sheet resistance was 75.1 Ω/sq for ITO deposited at 200 ◦C. Analysis revealed
the presence of structural defects and pinholes in the perovskite top cell, as well as areas
on the textured surface of the HJT bottom cell where the perovskite did not uniformly
cover. Additionally, while thicker layers of the perovskite top cell initially enhanced
light absorption, they also introduced various limiting factors, including increased self-
absorption, losses in charge transport, optical losses, and stability issues. The presence of
pinholes, defects, and thick cell structures collectively impaired the efficiency of monolithic
tandem solar cells. In general, the response of ITO to temperature changes has a direct
impact on the overall performance and durability of tandem solar cells. Optimizing the
electrical and optical properties of ITO, as well as its thermal management capability,
enabled cells to operate at high efficiency. Minimizing temperature stress and expansion
mismatches maintained the structural integrity of the cells and ensured their long lifetime.
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Therefore, optimizing ITO against temperature effects is critical to improving the overall
performance of tandem solar cells. Recent progress in silicon HJT/perovskite tandem
solar cells has centered on optimizing the layers in both the top and bottom cells and
incorporating innovative materials and diversifying the types of silicon cells used as the
bottom layer. Future research can aim to develop commercially viable methods to improve
the interface between HJT and perovskite solar cells, such as improving the TCO structures
used as buffer layers and developing techniques to enable the homogeneous deposition of
perovskite solar cells onto HJT solar cells.
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