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Abstract: The integration of recycled polymers into additive manufacturing (AM) processes offers a
promising opportunity for advancing sustainability within the manufacturing industry. This review
paper summarizes existing research and developments related to the use of recycled materials in AM,
focusing on distinct polymers, such as polylactic acid (PLA), polyethylene terephthalate (PET), and
acrylonitrile butadiene styrene (ABS), among others. Key topics explored include the availability of
recycled filaments on the market, challenges associated with material variability and traceability, and
efforts toward establishing ethical product standards and sustainability characterization method-
ologies. Regulatory considerations and standards development by organizations such as ASTM
and ISO are discussed, along with recommendations for future advancements in improving the
sustainability of filament recycling and achieving net-zero emissions in AM processes. The collective
efforts outlined in this paper underscore the potential of recycled polymers in AM to foster a more
sustainable and environmentally friendly manufacturing industry.

Keywords: recycled materials; recycled polymers; 3D printing; sustainability; additive manufacturing;
circular economy

1. Introduction

Three-dimensional (3D) printing, also known as additive manufacturing (AM), is a
process of deposing material governed by the International Organization for Standardiza-
tion (ISO) and American Society for Testing and Materials (ASTM) standards [1] and is
being increasingly used. Three-dimensional printers are easy to use and faster to learn
compared to computer numerical control (CNC) or other conventional manufacturing
machines. They show numerous advantages over conventional manufacturing for tech-
nological advancements, considering the environmental impact, since they use just the
amount of material needed for production, leading to a reduction in material waste, unlike
traditional manufacturing which generates more material waste. To address environmental
issues, there is a growing interest in developing sustainable solutions for 3D printing.
This includes, among others, the use of recycled materials, the development of biobased
materials, and the optimization of printing parameters.

The recycling of materials in the additive manufacturing industry has a significant
impact on environmental preservation by reducing the need for new raw materials [2].
Recycled components actively contribute to the conservation of natural resources, helping
to face resource reduction. Moreover, the production of most recycled materials requires
less energy than their virgin counterparts used in conventional methods, leading to a more
sustainable approach to energy consumption in 3D printing processes. Additionally, mate-
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rials recycled from landfills help in waste reduction and pollution mitigation, promoting a
circular economy.

Concerning energy consumption, using more sustainable energy sources leads to
greater energy savings in 3D printing. Furthermore, privileging renewable energy is a
more prudent choice for a greener world. With the advancement of technology and science,
there is an increase in polymer consumption to meet diverse needs. Table 1 summarizes
the utilization of polymers in the European Union (EU) across various sectors. Packing,
accounting for 40–45% of the total, followed by construction, with 20–25% of the total, are
the two largest consumers. Figure 1 provides a statistical overview of packaging waste
generation, recovery, and recycling in the EU for the past 10 years. Total consumption
is progressively growing over time, leading to an increase in waste. Addressing this
challenge requires additional investment in recycling infrastructures, the development
of more efficient recycling technologies, and the implementation of circular economy
principles across the plastic packaging lifecycle. As can be seen in the figure, there is a
continuous increase in both the generated and recovered waste. Regarding the recycled
waste, it experienced an apparent stagnation from 2018 to 2020, followed by an increase in
2021. This shows how crucial recycling is with the growing need over time.

Table 1. Utilization of polymers in the EU [3–9].

Sector Average Share of Total
Polymer Demand (%) Trends and Observations Sources

Packaging 40–45 Dominant sector, increased use of
biodegradable polymers.

PlasticsEurope, European
Bioplastics, Statista.

Construction 20–25 Steady demand, focus on
energy-efficient materials.

PlasticsEurope, European
Commission Reports.

Automotive 8–10 Lightweighting, growth in
engineering plastics.

PlasticsEurope, European
Automobile Manufacturers

Association.

Electric and electronics 5–7 Growth in consumer electronics,
miniaturization.

PlasticsEurope, European Chemical
Industry Council (CEFIC).

Agriculture 3–5 Biodegradable films, precision
farming technologies.

PlasticsEurope,
European Bioplastics.

Consumer goods 10–12 High-performance, aesthetically
pleasing products.

PlasticsEurope, Statista,
European Bioplastics.
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Figure 1. Packaging waste generation, recycling, and recovery in the EU (2010–2021). Values of 2010,
2011, and 2021 are estimates. Source: Eurostat [10].
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This review underlines the transformative potential of recycled polymers in shaping
a more sustainable and responsible future for AM. The focus will mainly be on the inte-
gration of recycling polymers to foster a circular economy within the 3D printing industry,
contributing to the ongoing efforts towards sustainable practices in additive manufacturing.
This paper covers a range of pertinent topics in the field of recycled polymers, such as iden-
tifying recyclable and recycled materials; conducting systematic analyses of their properties
and characteristics; discussing optimized processes based on case studies; conducting com-
parative assessments of environmental impacts to enhance sustainability understanding;
and providing an overview of relevant regulations, challenges, and future perspectives.

2. Recycled Materials for AM

Due to its ease of use and cost-efficiency, additive manufacturing has a huge appli-
cation area and has received more attention from scientists, researchers, and engineers.
Nowadays, filaments, pellets, or granules with recycled polymers are being manufactured
and sold by diverse companies for use in AM extrusion processes. Recycled polymers
can, thus, have a second life if they are reused in additive manufacturing products [11–13].
Current examples include polylactic acid (PLA) [14–16], polyethylene terephthalate (PET),
acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polypropylene (PP), thermoplas-
tic polyurethane (TPU), thermoplastic elastomer (TPE), high-impact polystyrene (HIPS),
polyethylene (PE) [17], polyvinyl chloride (PVC), high-density polyethylene (HDPE) [17],
and low-density polyethylene (LDPE) [18], among others. PLA is derived from renewable
resources like cornstarch, sugarcane, or tapioca roots, and is a bioplastic known for its
biodegradability and recyclability, making it an eco-friendly option. While PLA is a popular
choice for 3D printing, recycled PLA is easy to use and can produce versatile lightweight
parts. However, as indicated in several studies, despite its good thermal behavior, it gener-
ally exhibits lower mechanical properties than virgin PLA [13,19]. Moreover, its source of
waste is well known, such as nonused materials or mixed PLA waste, resulting in lower
viscosity values, higher crystallization ability, and reduced transparency [20].

For all recycling, including various types of polymers, understanding the provenance
of the polymers that will be recycled is crucial. Nevertheless, determining the origin
of waste recovered from public containers is not an easy task. Waste from tires and
polymers processed by mechanical and cryogenic methods can also be successfully used
in 3D printing, even if they show a slightly larger melting point compared to virgin
materials [21]. Recycled PET, PE, and PP are mainly originated from plastic bags and
packaging, for example, plastic bottles and containers like water bottles, soda bottles, and
salad containers. Potential recycling sources can be footwear industries for TPU, tires for
TPE, and window frames and thermoformed sheets for HIPS [12]. Commercial recycled
ABS polymeric filaments from package food recipients and car dashboards showed no
significant differences in mechanical properties compared to their virgin counterparts [19].

In a recent study carried out by Stoof et al. [22], recycled PP from preconsumers
was used as base material considering 10%, 20%, and 30% by weight of hemp fiber and
harakeke fiber. The results revealed an increase in strength and stiffness for the reinforced
PP 3D printing filament reinforced with 30% fiber content. However, the printed parts
exhibited significantly reduced values, although they showed superior performance to
those of plain PP. PETG is a semitransparent and durable thermoplastic, derived from
recycled PET bottles, and it can be reused for 3D printing, offering excellent toughness,
chemical resistance, and resistance to warping. Filaments obtained from recycled electronic
waste polymers, mostly PC, exhibited a more pronounced degradation in mechanical
properties [23].

Nowadays, recycled filaments can be found on the market, created from different
sources, including recycled polymer waste, polymer injection molding waste, discarded
water bottles, failed 3D-printed parts, etc. In addition, there are also filaments and resins
derived from renewable resources, such as corn starch, or recycled materials. These options
not only enable materials to be reused but also mitigate the environmental impact of AM
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processes. Companies such as Dassault Systems (Vélizy-Villacoublay, France) already use
eco-friendly filaments [11] and many companies sell recycled filaments to use in 3D printing.
Filamentive (Bradford, UK), a UK-based company, offers filaments made from PET and
rPET. Reflow Filament (Amsterdam, The Netherlands), a Dutch company, is specialized
in recycled filaments derived from plastic waste, including PET, ABS, and PLA. 3D Fuel
(Fargo, ND, USA), a USA-based company, provides a wide range of recycled filaments
made from coffee, beer, and hemp, as well as polymers PET and ABS. Finally, Filamania
Kft (Szigetszentmiklós, Hungary) sells filaments made from PET, ABS, and other materials.

Table 2 shows a list of commercial polymers for AM applications with their respective
features and more suitable processing technologies which include fused deposition model-
ing (FDM), selective laser sintering (SLS), injection, and molding. These polymers can also
be recycled to be used in 3D printing. It is interesting to note that there is a vast diversity of
polymers available on the market at affordable prices, although the list is not exhaustive.
There is a variety of recyclable material sources for 3D printing, reducing the dependence
on virgin materials (see Table 2).

Table 2. Commercially available recyclable materials for specific use in 3D printing.

Material Type of Material Printing
Methodologies Price per kg (EUR) Company Features

PET Pellets/Flakes FDM, injection,
molding 1.70–2.20

Carbon LITE (Los Angeles,
CA, USA), Loop Industries
(Terrebonne, QC, Canada),

Envision Plastics (Reidsville,
NC, USA

High transparency,
lightweight, and strong.

HDPE Pellets FDM, injection,
molding 1.50–1.80

KW polymers (Troy, AL,
USA), green Line polymers
(Waterloo, IA, USA), MBA

Polymers (Hackensack,
NJ, USA)

High strength, stiffness,
and chemical resistance.

PP Pellets FDM, injection,
molding 1.20–1.80 LyondellBasell (Rotterdam,

The Netherlands)

Lightweight, high
chemical resistance,

and low
moisture absorption.

ABS Pellets FDM, injection,
molding 1.50–2.00

Total Petrochemicals
(Houston, TX, USA),
INEOS Styrolution

(Frankfurt, Germany)

High-impact resistance,
strength, and toughness.

PLA Pellets FDM 1.60–1.90
Nature Works (Minneapolis,
MN, USA), 3D FUEL (Fargo,

ND, USA)

Biodegradable,
derived from

renewable resources.

Nylon Pellets FDM, SLS 1.80–2.10
BASF (Ludwigshafen,

Germany), Evonik (Essen,
Germany)

High strength, flexibility,
and durability.

PEEK Pellets FDM, SLS 1.60–2.00 Solvay (Brussels, Belgium)
High-temperature

resistance, chemical
resistance, and stiffness.

TPU Pellets FDM 2.50–3.50 Lubrizol (Wickliffe,
OH, USA)

Flexible, durable, and
abrasion-resistant.

PC Pellets FDM, injection,
molding 1.80–2.20

Covestro (Leverkusen,
Germany), SABIC (Riyadh,

Saudi Arabia)

High impact resistance,
optical clarity, and

heat resistance.

PS Pellets FDM, injection,
molding 2.00–2.50

INEOS Styrolution
(Frankfurt, Germany), BASF
(Ludwigshafen, Germany)

Lightweight and rigid.
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Table 3 provides an overview of the available recycled polymers currently available
in the market. These materials are second-life polymers, often reinforced with base pure
polymer or other materials to improve their properties. Recycling materials not only
reduces the cost of the material but also decreases the carbon release and can aid in a greener
environment. However, despite its numerous advantages, it is difficult to determine the
provenance and composition of the materials from the landfill or waste container, and some
polymers cannot be recycled together. More studies have shown that recycled materials face
a major problem because their thermal stability changes over multiple recycling, making
them useless. To mitigate this problem, materials specifically designed for 3D printing
(filaments, pellets, or granules) are being developed by reinforcing and improving their
properties with other materials [16–18,24–26] and optimizing processing parameters [13,27].

Table 3. Recycled polymers available on the market. PLA: polylactic acid, PETG: polyethylene
terephthalate glycol modified, PPGF: thermoplastic reinforced with glass fiber.

Material Type of Material Origin Price (EUR) Company Advantages Source

PLA Filaments Production waste 26.50 EUMAKERS
(Barletta, Italy) Not specified. [28]

PLA Filaments in
different colors

Factory waste
streams 20–22 Filamentive

(Bradford, UK)

Low warping,
limited smell, and
good print quality.

[29]

PLA Filaments in
different colors

Food packaging
waste 26.32

Reflow Filament
(Amsterdam, The

Netherlands)

Easy to
print, durable,
and excellent
print quality.

[30]

rPETG Filaments Leading local
recyclers 28

Reflow Filament
(Amsterdam, The

Netherlands)

Durable and easy to
use, exceptional

visual, and
mechanical

performance.

[30]

rPPGF Filaments
Fishing nets and
ropes reinforced
with glass fiber

Not specified
Reflow Filament

(Amsterdam, The
Netherlands)

Anti-warping, and
excellent UV and

chemical resistance.
[30]

The packaging industry heavily relies on recycled PET and HDPE for creating bottles,
containers, and packaging films, which helps in reducing waste and resource consump-
tion [31]. The textile industry incorporates recycled PE from discarded articles [32] and PET
from staple fiber waste to produce distinct textile parts [32,33]. Recycled polyurethanes can
be used in the manufacture of quarter panels, wheel covers, steering wheels, bumper covers,
and cores in automotive vehicles [34]. Recycled TPU can be used to print nonpneumatic
tires [35]. In building and construction applications, recycled PET can be used to replace
aggregates in mixtures as bitumen modifier and mix reinforcement. In addition, recycled
PE can be incorporated into asphalt mixtures while recycled polyurethane is utilized as a
bitumen improver for waterproofing coatings and as a reactive polymer in polyurethane
modified bitumen [36]. Micronized PVC has also been used successfully as modifier for
asphalt concrete [36,37].

3. Sustainable 3D Printing: Process Optimization and Environmental Impact

Fused filament fabrication (FFF) and FDM processes are the most used 3D printing
processes in recycling polymers. Figure 2 summarizes the five-step recycling strategy
commonly proposed in the literature. It comprises sorting/selection, cleaning/washing,
drying, mixing/melting, extrusion/injection molding, and printing process. The sorting
process involves separating different types of polymers from the waste stream. Once sorted,
the polymers need to be cleaned to remove contaminants followed by thorough drying to
remove any moisture. The drying process may include air drying, hot air drying, or vacuum
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drying. Next, the mixing/melting process generally involves shredding or granulating
polymers into smaller pieces to increase surface area which facilitates melting. During the
melting process, virgin or reinforced materials can be added. The molten polymers or com-
posites are then shaped into pellets, filaments, or flake shapes through extrusion/injection
molding. Recycled polymer filaments or pellets obtained from the extrusion/injection
molding process can be then used as feedstock for 3D printers. The addition of virgin or
reinforcing materials is also carried out to improve efficiency. Regarding the methodology
used for analyzing the performance of recycling polymers, Figure 3 displays an overview
of the most relevant testing procedures and measurement methods found in the litera-
ture. For the sake of readability, this information is organized into mechanical testing,
thermal/morphological/rheological characterization, chemical/molecular measurement,
and other analyses.
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Garrido et al. [38] proposed a method for selecting recycled materials to be used in
3D printing, aiming at helping users in materials choice. This selection process is based on
multicriteria decision making (MCDM). More specifically, they employed the technique
for order preference by similarity to an ideal solution (TOPSIS) which contains six steps:
(i) materials are evaluated against criteria depending on properties with the weight of
criterion weight set by the user according to the importance of each property; (ii) elements
and weights are normalized to ensure they are comparable; (iii) normalized elements
are weighted according to the user-defined importance; (iv) according to each criterion
which accounts for both benefit and cost, the best and worst materials are identified;
(v) the distance of each material to the ideal and nonideal solution is computed using
Euclidean distance; and (vi) the closeness of each material to the ideal solution is calculated.
This sequential analysis, based on technical criteria, helps users to make more informed
decisions by meeting the specific requirements for 3D printing.

Three-dimensional printing is gaining more and more interest in industries, companies,
and small organizations. In the fight to reduce pollutants in the sea, Garrido et al. [38] stud-
ied the use of 3D-printed recycled materials from maritime plastic waste, including HDPE,
LDPE, PET, expanded PS, and PP. They identified two important points in integrating
user-oriented 3D printing services: the first is prioritizing decentralized local services, and
the second is leveraging external computer-aided manufacturing (CAM) service providers.
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This solution can also be extended to other fields where there is plastic waste obtained
from alternative sources. In another study, Cress et al. [39], through the recycling of ABS,
proposed that, in the context of utilizing recycled filament, controllable parameters must be
adjusted and continuously measured, for instance, averaging diameter for each batch or
filament diameter.

Materials 2024, 17, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 3. Tests, characterization, and measurements carried out in the recycling process. 

Garrido et al. [38] proposed a method for selecting recycled materials to be used in 
3D printing, aiming at helping users in materials choice. This selection process is based 
on multicriteria decision making (MCDM). More specifically, they employed the tech-
nique for order preference by similarity to an ideal solution (TOPSIS) which contains six 
steps: (i) materials are evaluated against criteria depending on properties with the weight 
of criterion weight set by the user according to the importance of each property; (ii) ele-
ments and weights are normalized to ensure they are comparable; (iii) normalized ele-
ments are weighted according to the user-defined importance; (iv) according to each cri-
terion which accounts for both benefit and cost, the best and worst materials are identified; 
(v) the distance of each material to the ideal and nonideal solution is computed using 
Euclidean distance; and (vi) the closeness of each material to the ideal solution is calcu-
lated. This sequential analysis, based on technical criteria, helps users to make more in-
formed decisions by meeting the specific requirements for 3D printing. 

Three-dimensional printing is gaining more and more interest in industries, compa-
nies, and small organizations. In the fight to reduce pollutants in the sea, Garrido et al. 
[38] studied the use of 3D-printed recycled materials from maritime plastic waste, includ-
ing HDPE, LDPE, PET, expanded PS, and PP. They identified two important points in 
integrating user-oriented 3D printing services: the first is prioritizing decentralized local 
services, and the second is leveraging external computer-aided manufacturing (CAM) ser-
vice providers. This solution can also be extended to other fields where there is plastic 
waste obtained from alternative sources. In another study, Cress et al. [39], through the 
recycling of ABS, proposed that, in the context of utilizing recycled filament, controllable 
parameters must be adjusted and continuously measured, for instance, averaging diame-
ter for each batch or filament diameter. 

Gebrehiwot et al. [27] studied the effect of infill strategy on the mechanical perfor-
mance of additively manufactured parts printed through FFF using Reform rPLA sup-
plied by Formfutura. The research aimed to optimize the FFF process parameters by using 
Taguchi’s method and grey relational analysis. Taguchi’s method, implemented in a sin-
gle-response approach, indicated that infill orientation and density were the most 

Figure 3. Tests, characterization, and measurements carried out in the recycling process.

Gebrehiwot et al. [27] studied the effect of infill strategy on the mechanical perfor-
mance of additively manufactured parts printed through FFF using Reform rPLA supplied
by Formfutura. The research aimed to optimize the FFF process parameters by using
Taguchi’s method and grey relational analysis. Taguchi’s method, implemented in a single-
response approach, indicated that infill orientation and density were the most influential
factors in achieving optimum tensile strength while specific combinations of infill geometry,
infill density, infill orientation, nozzle temperature, and infill speed influenced the modulus
of toughness. Infill orientation and nozzle temperature were highlighted as particularly
significant factors affecting the modulus of toughness, while infill density had a lower
impact. Grey relational analysis, a multiple-response approach, confirmed the findings of
single-response optimization and identified specific parameter levels for achieving opti-
mum responses. Infill orientation was found to be the most influential factor, followed by
infill density and nozzle temperature. Based on the above-described optimization proce-
dure, predictive models for tensile strength and modulus of toughness were successfully
developed. The study also provided insights into the failure mechanisms associated with
the different infill orientations. The practical implications of these findings are significant
for optimizing the FFF process as well as achieving the desired mechanical properties
in recycled PLA. Figure 4 presents an overview of the design of experiments (DoE), in a
step-by-step guide, while Figure 5 shows the application of Taguchi’s DoE proposed in the
study carried out by Gebrehiwot et al. [27].
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Another research area in the field of sustainable 3D printing processes is the devel-
opment and optimization of material-recycling machines for reusing polymer materials.
Nattukallingal et al. [40] successfully introduced a user-friendly unit, named 3DP-MRM,
designed to recycle plastic waste into new filaments, offering an efficient solution for sus-
tainable material utilization in additive manufacturing. Azadani et al. [41] modeled the
heat transfer phenomena in an extruder for recycling polymers into filaments for use in ad-
ditive manufacturing. The main goal of this research was to enhance both the temperature
distribution and the cooling rates within the extruder. Wang et al. [35] assessed the perfor-
mance of 3D-printed nonpneumatic tires and highlighted the importance of optimizing
and controlling the printing temperature and the filling percentage for FDM optimization.

Research has explored the reusability of PP, PVC, HDPE, LDPE, PS, PET, ABS, and
PC as 3D printing filaments, highlighting the extensive study of PLA due to its natural
origin [42].

PLA is the easiest and most recyclable polymer. It is a biomaterial and generally shows
a slight decrease in mechanical properties after multiple injection or molding processes
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compared to virgin PLA [43–45]. Furthermore, studies carried out by Agbakoba et al. [46],
Gil Muñoz et al. [15], and Tanney et al. [47] provide insights into the quality of recycled
PLA. An interesting outcome is that recovered PLA, when reused with the same virgin raw
materials, can obtain better thermal stability [15,46,47]. According to Gil Muñoz et al. [15],
the recycling process efficiency depends on factors such as the material type, the processing
volume, and the presence of contaminants. This conclusion was also reported in the paper
by Yoha et al. [48]. After multiple extrusion, ABS and PLA exhibited an increase in melt
flow, as observed by Tanney et al. [47]. The assessment performed by Patti et al. [16],
based on dynamic mechanical analysis, confirmed minimal impact on thermomechanical
properties in 3D-printed parts made of commercially recycled filaments, indicating a slight,
but acceptable, level of polymer degradation during the recycling process.

Agbakoba et al. [46] evaluated the thermomechanical properties of different recy-
cled PLA materials, including those derived from failed 3D-printed components and
waste biocomposite filaments. The main features of the tested polymers are summa-
rized in Table 4. The thermogravimetric analysis, displayed in Figure 6, shows that a
slight decrease in thermal stability for 100% virgin recycled PLA compared to ESun fil-
ament can be observed. In addition, recycled PLA-based filaments with varying blends
(e.g., 80% recycled PLA + 20% virgin PLA, 50% recycled PLA + 50% virgin PLA, and 20%
recycled PLA + 80% virgin PLA) exhibited improved thermal stability over those with-
out addition (e.g., 100% virgin PLA, and 100% virgin recycled PLA). This confirms the
existing literature, suggesting that the addition of pure PLA to recycled variants improves
thermal stability.

Table 4. Recycled PLA from different sources. Table reprinted from reference [46] with permission by
Wiley (CC BY).

S/N Filament Description Filament Diameter [mm]

1 ESun Commercial filament 1.72 (±0.03)
2 100PLA 100% virgin PLA 1.65 (±0.02)
3 rPLA100 100% virgin recycled PLA 1.67 (±0.11)
4 rPLA80 80% recycled PLA + 20% virgin PLA 1.65 (±0.12)
5 rPLA50 50% recycled PLA + 50% PLA 1.67 (±0.10)
6 rPLA20 20% recycled PLA + 80% virgin PLA 1.64 (±0.08)
7 fPLA20 20% recycled biocomposite filament f + 80% virgin PLA 1.70 (±0.02)
8 10r10fPLA 10% rPLA + 10% fPLA, +80% virgin PLA 1.68 (±0.07)
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The DSC results from Agbakoba et al. [46] help in understanding the glass transition
behavior, melting point, and crystallinity characteristics of PLA, a semicrystalline material.
The 100% virgin PLA has a glass transition temperature that is hardly observed, while the
100% virgin recycled PLA shows a slightly lower glass transition temperature compared to
the ESun filament. The other materials (i.e., blended materials, including ESun and 100%
virgin PLA, as well as filaments with 20% recycled biocomposite, etc.) show a decrease in
glass transition temperature values. The observed decrease in glass transition temperature
in recycled PLA indicates potential alterations in molecular structure due to processing or
the presence of impurities. Furthermore, the declining trend in glass transition temperature
with lower proportions of recycled PLA in blends suggests a potential avenue for fine-
tuning material properties by adjusting recycled content levels. Filaments containing
recycled materials show an increase in melting temperature compared to ESun filament,
indicative of more thermally stable PLA crystallites. In addition, filaments with recycled
materials present a higher overall degree of crystallinity, particularly those with nucleating
effects from cellulose particles, indicating increased crystallization, such as the 10r10fPLA
filament. The addition of virgin PLA to recycled PLA further improved the crystallinity
behavior of the materials.

Regarding the monotonic tensile behavior of 3D-printed specimens through FFF
(see Figure 7), ESun filaments exhibited the highest ultimate tensile strength (UTS) and
maximum force at break (MFb), followed by variations in UTS and MFb for different recy-
cled and virgin PLA filaments. The tensile modulus (TMod) indicated increased stiffness
in recycled PLA100 compared to ESun, correlating with higher crystallinity. Moreover,
elongation at break (Eb) varied among specimens, with binary blends of recycled and
virgin PLA showing improved tensile deformation which was attributed to plasticizers.
Fracture behavior analysis indicated brittle fracture for all samples, and DMA revealed a
higher initial storage modulus for recycled filament (rPLA100) due to increased crystallinity.
Visible permanent deformation was observed for ESun and rPLA100 at the end of the DMA
analysis. Agbakoba et al. [46] highlighted the suitability of these recycled PLA materials
for 3D printing applications based on their thermal and mechanical properties.
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Another successful example of using FFF in recycling PLA is documented in the
study by Cruz Sanchez et al. [49]. During five cycles, the polymer (PLA) was printed
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for four more cycles, even if the mechanical properties of the printed parts decreased
due to the 3D printing process. Moreno et al. [20] demonstrated that 3D printing under
controlled conditions did not significantly affect the thermal stability of recycled PLA.
However, they found that washing and reprocessing steps influenced the intrinsic viscosity
of the polymers.

Oussai et al. [50] evaluated the mechanical performance of materials made from both
recycled PET and virgin PET with four different printing settings (100%, 80%, 60%, and 40%
recycled PET) and compared their tensile strength, shear strength, and hardness properties
with those from virgin PET. The assessed properties showed minimal variation compared
to those of virgin material. There was a 3–9% decrease in the average hardness properties of
recycled samples compared to virgin counterparts (see Table 5). However, the result from
the shear strength tests of recycled materials showed a 6.8% increase over virgin materials
(see Table 5). This unexpected outcome was probably caused by changes at the microscopic
level during extrusion and deposition of recycled PET, and the change in Poisson’s ratio
led to increased shear strength or the risk for increased emissions of ultrafine particles in
recycled PET. The result from the tensile strength tests of recycled materials displayed a
14.7% increase (see Figure 8). The optimal printing setting for recycling PET in 3D printing
leading to both the highest tensile strength and elongation at break was found to be 100%
recycled PET.

Table 5. Shear strength and hardness of virgin and recycled 3D printed PET [50].

Polymer Type Shear Strength (MPa) Hardness (Shore D)

Virgin 28.45 ± 0.69 73.10 ± 0.73
Recycled 29.25 ± 2.00 68.71 ± 2.00
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Another study by Pricop et al. [51] on recycled PET (see Figure 9) showed a 20%
decrease in crystallization degree after three recovery cycles, compared to the initial cycle.
In addition, it showed how recycled PET grain, filament, and printed specimens at 0◦ and
40◦ can exhibit variations in glass transition, recrystallization, and melting temperature
during the first recycling cycle.

Materials 2024, 17, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 8. TS and Eb of virgin and recycled 3D printed PET. Data taken from reference [50] with 
permission by MDPI (CC BY). 

Another study by Pricop et al. [51] on recycled PET (see Figure 9) showed a 20% 
decrease in crystallization degree after three recovery cycles, compared to the initial cycle. 
In addition, it showed how recycled PET grain, filament, and printed specimens at 0° and 
40° can exhibit variations in glass transition, recrystallization, and melting temperature 
during the first recycling cycle. 

 
Figure 9. (a) Recycled PET grain, filament, and printed specimens at 0° and 40°; (b) printed specimen 
at 40° in an initial state and after three recovery cycles. Figure reprinted from reference [51] with 
permission by MDPI (CC BY). 

Vidakis et al. [52] studied the possibility of using recycled PETG as filament in 3D 
printing. Continuous recycling of PETG over six cycles showed improved mechanical sta-
bility. In the third cycle, the tensile strength was 15.8% higher than pure PETG, and an 

Figure 9. (a) Recycled PET grain, filament, and printed specimens at 0◦ and 40◦; (b) printed specimen
at 40◦ in an initial state and after three recovery cycles. Figure reprinted from reference [51] with
permission by MDPI (CC BY).

Vidakis et al. [52] studied the possibility of using recycled PETG as filament in 3D
printing. Continuous recycling of PETG over six cycles showed improved mechanical
stability. In the third cycle, the tensile strength was 15.8% higher than pure PETG, and
an increase in tensile modulus of elasticity was observed in the fourth cycle. Moreover,
PETG maintained its thermal stability up to the degradation onset temperature (~380 ◦C)
across six-cycle rounds, suggesting that the operational temperatures for recycling and
3D printing are safely below this critical temperature to prevent rapid degradation of
PETG. Recycling PETG during four-cycle rounds resulted in high-quality printed parts and
good layer adhesion with a brittle behavior in the first, fifth, and sixth cycles. Finally, this
research highlighted the importance of recycling PETG up to four-cycle rounds to maintain
or improve its mechanical properties.

ABS is a tough and versatile thermoplastic extensively used in household products
and industrial applications. The use of recycled ABS in 3D printing offers a cost-effective
alternative to its virgin counterpart. In a study by Cress et al. [39], the effect of recycling
on the polymer chemistry and molecular structure of ABS printed by FDM was assessed
via different characterization techniques. This study revealed a substantial overlap in all
FTIR peaks, indicating spectral identicality between virgin and recycled ABS within the
detection limit of FTIR analysis. A comprehensive characterization through DSC, TGA,
FTIR, and GPC revealed no discernible alteration in the molecular structure of recycled
ABS, even after multiple recycling cycles. However, XRF analysis revealed a progressive
increase in iron content with each recycling iteration. The tensile strength decreased during
the third cycle, which may be caused by the presence of increased variation of porosity in
the recycled ABS. The study conducted by Pinho et al. [19] reported that recycled black
ABS offers a thermal stability similar to the virgin material with a slight difference in glass
transition temperature. These authors also reported that recycled ABS exhibits smoother
surfaces and higher value of contact angle. Concerning their mechanical properties, a slight
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increase was observed in both the tensile strength and the modulus of elasticity as well as a
lower elongation strain at break which was associated with the introduction of additives.

Pan et al. [17] presented the effect of additives on properties of recycled PP/HDPE.
Recycled PP/HDPE with the addition of nanocrystalline powders of iron (Fe), silicon (Si),
and aluminum (Al) showed a more uniform morphology with fewer cracks compared to
the one with Fe–Si and Fe–Si–chromium (Cr) addition. Furthermore, recycled PP/HDPE
with Fe–Si–Al and Fe–Si–Cr showed an improvement in thermal stability. The analysis
of its mechanical properties showed that recycled PP/HDPE with Fe–Si–Al has the best
yield strength, and recycled PP/HDPE with Fe–Si–Cr/Al has a good Young’s modulus.
The addition of metal powders resulted in shortening the plastic regime of the recycled
materials. However, the elastic regime increased, resulting in a stronger filament.

Garrido et al. [38] addressed the possibility of using recycled polymers from waste in
marine as a second life in 3D printing. They demonstrated that the addition of additives
can increase the flexibility of PP and reduce its overall shrinkage coefficient which can
contribute to improved printability of recycled PP. Domingues et al. [21] studied recyclable
PP blended with tire wastes. The thermal properties of the blended materials assessed
through STA showed a crystallization temperature of virgin PP lower than the recycled
PP–tires blended material and a slightly closer melting temperature. However, the recycled
PP–tires blended material presented two melting peaks; the first was related to the melting
of one constituent of the tires and the second was related to the polymer fusion.

Vidakis et al. [53] assessed the mechanical response of PP over multiple recycling
processes (six cycles). The results showed a reduction in the ultimate tensile strength, and
an increase of 45% in both the flexural strength and modulus of elasticity. The second-cycle
sample showed the highest thermal stability, while the six-cycle sample showed the lowest
thermal stability. The two samples after the third and sixth cycles showed a single melting
peak, while the sample after the second cycle exhibited an additional small peak around
130 ◦C, indicating the presence of β-polypropylene crystals.

Singh et al. [25] investigated the utilization of recycled HDPE and Nylon 6 for bearing
application. It was found that different proportions of zirconium oxide (ZrO2) reinforce-
ment can significantly affect the flow properties and microstructure of recycled HDPE
and Nylon 6. The MFI values for Nylon 6 varied with the different proportions of ZrO2,
generally decreasing with increased proportion of ZrO2. In addition, increased ZrO2 con-
tent also made Nylon 6 composites more difficult to melt and flow. The MFI values of
HDPE with additions up to 40% ZrO2 were moderate, keeping these materials suitable
for FDM. However, higher ZrO2 proportions further reduce the MFI values, indicating
less melt flowability. The corresponding microstructures showed the formation of fine
grains for HDPE-ZrO2 with the finest grains for the Nylon 6-ZrO2 matrix. The HDPE-40%
ZrO2 combination gave the lowest coefficient of friction, emphasizing its resistance to wear
environments and its suitability for bearing applications. In another study, Singh et al. [18]
investigated recycling LDPE as base material and SiC/Al2O3 as reinforcements. The MFI
values of LDPE-SiC/Al2O3 were slightly higher as the reinforcement percentage increased
(30%, 20%, and 10%). An interesting outcome was that 100% LDPE gave the lowest MFI
value.

Wang et al. [35] investigated the performance of 3D-printed nonpneumatic tires made
from recycled TPU. They highlighted the necessity to print this type of polymer before its
decomposition temperature. The tests performed to evaluate its wear resistance and fatigue
strength showed that recycled TPU material is a very good choice. It was also noticed that
when the 3D filling percentage increases, the printed parts exhibit higher tensile strength,
at the specific temperature of 210 ◦C, with fewer voids. In another study carried out by
Plummer et al. [54], during repeated recycling of TPU, the tensile strength showed a slight
decrease and a small overall increase in melt flow rate corresponding to a decrease in
viscosity. The decrease in viscosity is an interesting outcome for SLS application. However,
it can decrease the mechanical properties of recycled TPU. Nanni et al. [55] evaluated the
mechanical behavior of recycled TPU over time, up to 50 days. They observed that there
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was no significant decrease in mechanical properties even if the material is subjected to
degradation phenomena. The study confirmed the possibility of recycling TPU multiple
times. Recycled TPU experienced diverse simulated environmental conditions, such as
exposure to ultraviolet rays, heat, and humidity. The result showed that recycled TPU
can resist up to a certain period without significant loss of properties. In the same context,
Vidakis et al. [56], through multiple recycling of TPU, showed that there were no significant
differences in thermal properties after six cycles. On the other hand, the results of tensile
tests showed an increase in both tensile strength and modulus of elasticity in the sixth
cycle, contrary to the impact tests which led to decreasing values as the number of cycles
increased. From the fractured surface analysis, a brittle behavior was observed up to the
fourth cycle. However, the last two cycles exhibited a ductile behavior.

The use of recycled PC in 3D printing was evaluated by Gaikwad et al. [23]. These
authors assessed the mechanical behavior of recycled PC made from e-waste filament and
3D-printed parts. E-waste filament exhibited a ductile behavior at both lower stress and
lower elongation, and a brittle fracture just after necking. The SEM images showed rougher
fracture surfaces. Recycled PC exhibited a tensile strength equal to 83% of the virgin PC
but with higher flexibility. However, it showed lower resistance to deformation. Recycled
PC showed a higher thermal conductivity which resulted in rapid cooling during printing
and in reduced mechanical properties. They also reported a decrease in thermal stability
over recycling. Recycling resulted in a reduction in the mechanical performance of PC, but
despite this, recycled PC is also a viable solution.

Romani et al. [57] tested both recycled PC and blended recycled PC/ABS (30% weight
of rABS). The tested parts showed a similar mechanical behavior and the failure was char-
acterized by brittle mechanisms. The increased impact energy and increased mechanical
resistance of rPC/ABS were attributed to the presence of rABS. Comparatively, the frac-
tured surface of rPC was considerably homogeneous without visible voids. Reich et al. [58]
evaluated the mechanical performance of recycled PC printed using different 3D printing
systems: Gigabot X with pellet extrusion/melt extrusion (PME/FGF), FFF-based Gigabot,
and FFF-based TAZ. The tensile testing results indicated that the recycled TPU material,
when printed using the different 3D printing systems, exhibited mechanical properties com-
parable to those of commercial filaments. Compression testing results revealed significant
differences in the performance of samples printed with the Gigabot X and FFF-based TAZ
printers. Samples printed using the FFF-based TAZ printer showed higher compressive
stresses compared to those printed using the Gigabot X printer.

Three-dimensional printing with recycled materials contributes to sustainability by
reusing materials, instead of relying solely on virgin resources. To comprehensively eval-
uate the environmental impact, a life cycle assessment is recommended, with a focus on
recyclability [59]. This should consider factors such as raw material extraction, manufactur-
ing, transportation, product use, and end-of-life management [53]. A study by Oladapo
et al. [60] highlighted the fact that recycling in 3D printing consumes less energy and
generally leads to lower greenhouse gas emissions because of the energy requirements
depending on the type of material, recycling process, and energy source. Schwarz et al.,
2021 [59] advocated that the environmental impact of recycling depends on treatment
methods, with a trade-off between treatment intensity and the positive impact of avoided
products; and highlighted that improving recycled product quality and quantity is crucial
for reducing overall environmental impact. Even if recycling 3D printing does not consume
more energy, the energy sources used and the recycling processes have an impact on the
environment. Oladapo et al. [60] added that achieving net-zero carbon emission depends
on factors such as energy consumption, economic viability, and materials to be recycled.
Another study by Kreiger et al. [61] highlighted the impact of transportation on energy
consumption related to the recycling of HDPE affecting the environment. Conventional
recycling was found to be less environmentally friendly when compared with distributed
recycling, and the kg CO2 equivalent per kg HDPE showed a substantial reduction of 89%
in greenhouse gas emissions for distributed recycling compared to virgin material. Using
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recycled PET over PLA has been found to contribute to a more sustainable and eco-friendly
3D printing process [62].

4. Considerations on Regulation and Standards

Regulation and standards for the sustainability of manufacturing processes is an im-
portant challenge that requires concerted efforts from policymakers, industry stakeholders,
and the public to promote innovation, invest in infrastructure, and adopt robust regulatory
measures. Feeley et al. [63] worked on the development of an ethical product standard for
3D printing filaments. Their approach involved integrating established fair-trade standards,
life cycle analysis of the embodied energy and emissions associated with recycled filament
production and 3D printing manufacturing, and extensive consultations with partners and
stakeholders. The accreditation standards for “ethical filament” follow a similar approach
to other fair-trade standards. They include baseline requirements for accreditation while
incorporating additional requirements that evolve with industry advancement. These
standards encompass distinct criteria, such as minimum pricing, application of fair-trade
premiums, labor regulation, environmental considerations, and health and safety protocols,
as well as social standards covering discrimination, harassment, freedom of association,
collective bargaining, and discipline practices.

Mani et al. [64] proposed the sustainability characterization methodology summarized
in Figure 10. The main steps, as displayed in the figure, comprise plan, do, check, and
act. The planning step involves understanding the physics of the AM process (e.g., energy
sources, melting and solidification, etc.) and collecting relevant information accordingly. In
the second step, defining the key performance indicators and the analytics before applying
the process-specific datasets is primordial. The next step encompasses checking the data
obtained from the sustainable characterization and comparing them with other processes.
The last step includes the action plan for improvement. The authors presented compiled
ASTM standards related to AM. Additive manufacturing technology standards established
by ASTM Committee F42 [65] play a crucial role in advancing the AM industry. These
standards are instrumental in promoting knowledge dissemination, stimulating research
efforts, and facilitating technology implementation within the AM sector. The standards ad-
dress several topics, including terminology, production process performance, end-product
quality, and machine calibration. They are continuously refined by technical subcommittees
within ASTM Committee F42, and the National Institute of Standards and Technology
(NIST) in the USA [66,67]. Moreover, the collaborative efforts between the ASTM F42 Com-
mittee and the ISO Technical Committee 261 hold new prospects for advancing recycling
initiatives in AM, favoring a future more marked by sustainability [67,68]. An interesting
discussion on the lack of standards governing quality assurance and quality control in AM
can be found in the paper by Kietzmann et al. [69].

Rejeski et al. [67] highlighted the need for research in waste management and life
cycle assessment. To meet industry requirements, it is essential to implement robust
standardization and quality control measures. Regulations and standards play an important
role in protecting product safety, ensuring high quality, and guaranteeing compliance with
environmental regulations [69]. Currently, regulations and standards related to the use of
recycled materials in 3D printing are limited. Existing regulations such as Registration,
Evaluation, Authorization, and Restriction of Chemicals (REACH) [66,70] primarily focus
on ensuring that hazardous substances present in base materials are properly managed
and minimized when used in recycled materials. In addition, the ASTM F3091/F3019M-14
standard for Powder Bed Fusion of Plastic Materials also addresses these concerns [68].

ASTM and ISO [71] are actively developing standards for the use of recycled ma-
terials in 3D printing. In the same way, the American Chemical Society [72] is focused
on establishing standards that detail the characterization of recycled materials, including
their chemical composition and physical properties. Additionally, the Society of Plastics
Engineers (SPE) [73] is working on standards for the design and testing of 3D-printed
structures created from recycled materials.
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establishing standards that detail the characterization of recycled materials, including 
their chemical composition and physical properties. Additionally, the Society of Plastics 

Figure 10. Characterization methodology for a sustainable process within the ASTM E60.13 standards
committee [64].

5. Challenges and Future Prospects
5.1. Challenges Identification in Using Recycled Polymers

The use of recycled polymers in 3D printing represents a set of several challenges such
as variability in material properties, quality control, traceability, and market limitations.
They have a large range of properties due to the diverse types of polymers and other
kinds of materials present in the recycling process, making it difficult to predict the final
properties of the printed parts. The lack of standardized testing methods [67] for recycled
polymers hinders ensuring the required quality of the materials used in 3D printing.
Furthermore, recycled polymers often originate from complex supply chains with limited
traceability, which makes it difficult to track their provenance and chemical composition.
In addition, the current market for 3D-printed products derived from recycled polymers
remains restricted due to insufficient awareness regarding the benefits of recycled materials
and concerns about product quality and performance.

Despite recycling being a good solution to give a new life to material waste, multiple
recycling cycles can cause fluctuation in material properties. The possible deterioration
in the mechanical properties of PLA after repeated recycling may limit the usability of
the material, potentially resulting in increased waste if the degraded material cannot
be effectively recycled [74]. However, some recent studies have explored solutions to
this issue by reinforcing the polymer with virgin material or by adding other reinforcing
materials [17,18,24,26,27,47,75]. The variation of properties has been confirmed through
mechanical, thermal, and morphological analyses of recycled parts.

The abovementioned changes depend on various factors, including crystallinity, poly-
mer chain shortening, and molecular weight distribution, among others. Vidakis et al. [36]
emphasized the importance of considering these factors when evaluating the suitability
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of recycled PP for specific applications. They have also worked on the suitability and
mechanical response of recycled PETG and PLA [52,74]. Further investigations, including
X-ray diffraction (XRD), are recommended to better understand alterations in crystalline
structure [53]. Other studies have highlighted the challenges associated with achieving
optimal printability for recycled PP and PET [22,50], due to issues such as bed adhesion,
deformation, and weak interfacial welding between printed layers. The success of the
printing process is closely linked to the cooling process and the diffusion of polymer chains
between layers, with common failures occurring at these interfaces. Additionally, there
has been limited progress in recycling conventional thermosets for AM [76]. Tian et al. [24]
emphasized that the price of recycled material exceeds that of virgin material and that the
additive manufacturing process of a part generally consumes more time compared to tradi-
tional methods, such as casting, extrusion, fabrication, or injection molding. Furthermore,
the formation of voids is commonly listed as a significant defect that results in inferior and
anisotropic mechanical properties of parts produced through FDM, the most used process
in recycling polymers [77,78].

5.2. Potential Advancements and Future Directions

The world is trying to adopt greener practices to reduce carbon emissions and other
pollutants. In this perspective, efforts are being made to explore more sustainable solutions.
An alternative approach to address this issue is to consider the utilization of biodegradable
materials since the 3D printing process is a promising tool in this regard due to its inherent
advantages. However, we cannot just focus on the advantages; AM also has challenges.
Thus, potential advancements are needed for future directions. On this matter, Oladapo
et al. [60] elaborated a list of recommendations for the sustainability of filament recycling
and for achieving net-zero emissions such as the (i) adoption of renewable energy sources
in the recycling process to minimize greenhouse gas emissions; (ii) implementation of
efficient transportation systems and optimizing logistics to reduce transportation-related
emissions; (iii) development of policy incentives and promotion of consumer awareness to
encourage the use of recycled filament; and (iv) investment in research and development to
improve the recycling process and the quality of recycled filaments.

Oliveira et al. [79] recommended further research focused on optimizing the printing
orientation for improved results and to mitigate its impact on mechanical performance.
Scanlon et al. [80] concluded that mixing and melting for recycling polymers before the
extrusion process could improve issues related to low intrinsic viscosity. Furthermore, to
address challenges and accelerate the adoption of recycled polymers in 3D printing, it is es-
sential to consider better traceability of recycled polymers throughout the supply chain and
further develop new applications for 3D-printed products made from recycled polymers.

6. Conclusions

This review highlighted studies exploring the application of recycled polymers in AM
and their role in achieving net-zero carbon emissions and promoting economy circular
methodology implementation. The integration of recycled polymers into AM processes
holds promise for advancing sustainability in the manufacturing sector. Despite the chal-
lenges associated with this technology, namely, material variability as well as regulatory
limitations, ongoing research and development efforts have been identifying the potential
benefits of utilizing recycled materials in 3D printing. Collaborative initiatives aimed
at enhancing material traceability, establishing ethical standards, and optimizing recy-
cling processes are crucial for maximizing the environmental and economic benefits of
recycled polymers in AM. Moving forward, continued investment in research, policy
incentives, and industry collaboration will be fundamental to unlocking the full poten-
tial of recycled polymers in achieving a more sustainable and environmentally friendly
manufacturing ecosystem.
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Nomenclature

3D Three-dimensional
ABS Acrylonitrile butadiene styrene
AM Additive manufacturing
ASTM American Society for Testing and Materials
CAM Computer-aided manufacturing
CNC Computer numerical control
DMA Dynamic mechanical analysis
DoE Design of experiments
DSC Differential scanning calorimetry
Eb Elongation at break
EU European Union
FDM Fused deposition modeling
FEA Finite element analysis
FFF Fused filament fabrication
FTIR Fourier-transform infrared spectroscopy
GPC Gel permeation chromatography
HDPE High-density polyethylene
HIPS High-impact polystyrene
ISO International Organization for Standardization
LDPE Low-density polyethylene
MT Metric ton
MFb Maximum force at break
MFI Melt flow index
NIST National Institute of Standards and Technology
PC Polycarbonate
PE Polyethylene
PEEK Polyether ether ketone
PET Polyethylene terephthalate
PETG Polyethylene terephthalate glycol modified
PLA Polylactic acid
PP Polypropylene
PPGF Thermoplastic reinforced with glass fiber
PS Polystyrene
PVC Polyvinyl chloride
r Material containing recycled polymer
REACH Registration, evaluation, authorization, and restriction of chemicals
SEM Scanning electron microscope
SLS Selective laser sintering
SPE Society of Plastics Engineers
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TGA Thermogravimetric analysis
TMod Tensile modulus
TPE Thermoplastic elastomer
TPU Thermoplastic polyurethane
TS Tensile strength
USA United States of America
UTS Ultimate tensile strength
XRD X-ray diffraction
XRF X-ray fluorescence
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