Electrical Resistivity Measurements of Surface-Coated Copper Foils
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, F.; Li, Z.; Shenoy, G.J.; Li, L.; Liu, H. Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene. ACS Nano 2013, 7, 6939–6947. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.Z.; Zhang, Z.B.; Shi, W.J.; Li, Y.W.; Xue, C.W.; Hu, Y.X.; Ding, M.C.; Zhang, Z.Q.; Liu, Z.; Fu, Y.; et al. Enhanced copper anticorrosion from Janus-doped bilayer graphene. Nat. Commun. 2023, 14, 7447. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Wang, K.; Mouele, E.S.M.; Parau, A.C.; Vladescu, A.; Liang, X.; Braic, V.; Petrik, L.F.; Braic, M. Effects of Film Thickness of ALD-Deposited Al2O3, ZrO2 and HfO2 Nano-Layers on the Corrosion Resistance of Ti(N,O)-Coated Stainless Steel. Materials 2023, 16, 2007. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, H.; Guo, P.; Li, X.; Yang, W.; Ma, G.; Nishimura, K.; Ke, P.; Wang, A. Enhanced Long-Term Corrosion Resistance of 316L Stainless Steel by Multilayer Amorphous Carbon Coatings. Materials 2024, 17, 2129. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Jo, M.; Lim, H.; Yoo, M.S.; Lee, E.; Nguyen, N.N.; Han, S.Y.; Cho, K. Toward near-bulk resistivity of Cu for next-generation nano-interconnects: Graphene-coated Cu. Carbon 2019, 149, 656–663. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, M.J.; Seong, H.G.; Jung, J.Y.; Baeck, S.H.; Shim, S.E. Roles of silica-coated layer on graphite for thermal conductivity, heat dissipation, thermal stability, and electrical resistivity of polymer composites. Polymer 2018, 148, 295–302. [Google Scholar] [CrossRef]
- Fan, W.; Lei, J.; Dong, Y.; Xue, Q. Damage detection of CFRP laminate structure based on four-probe method. Chin. J. Sci. Instrum. 2017, 38, 961–968. [Google Scholar]
- Kovalovs, A.; Rucevskis, S.; Kulakov, V.; Wesołowski, M. Damage Detection in Carbon Fibre Reinforced Composites Using Electric Resistance Change Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 102014. [Google Scholar] [CrossRef]
- Cao, M.; Xiong, D.B.; Yang, L.; Li, S.; Xie, Y.; Guo, Q.; Li, Z.; Adams, H.; Gu, J.; Fan, T.; et al. Ultrahigh Electrical Conductivity of Graphene Embedded in Metals. Adv. Funct. Mater. 2019, 29, 1806792. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, B.; Ni, J.; Song, J.; Huang, Y.; Yao, S.; Liu, Y.; Fan, T. Enhanced electrical conductivity of copper by nitrogen-doped graphene. Scr. Mater. 2024, 239, 115797. [Google Scholar] [CrossRef]
- Mehta, R.; Chugh, S.; Chen, Z. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. Nano Lett. 2015, 15, 2024–2030. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, D.; Lai, C.; Tian, G. Quantitative Approach for Thickness and Conductivity Measurement of Monolayer Coating by Dual-Frequency Eddy Current Technique. IEEE Trans. Instrum. Meas. 2017, 66, 1874–1882. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Z.; Xie, F.; Sun, B. Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method. Materials 2019, 12, 1290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ju, Y.; Hosoi, A.; Fujimoto, A. Microwave Atomic Force Microscopy: Quantitative Measurement and Characterization of Electrical Properties on the Nanometer Scale. Appl. Phys. Express 2012, 5, 016602. [Google Scholar] [CrossRef]
- Moulder, J.C.; Uzal, E.; Rose, J.H. Thickness and conductivity of metallic layers from eddy current measurements. Rev. Sci. Instrum. 1992, 63, 3455–3465. [Google Scholar] [CrossRef]
- Cheng, J.; Ji, H.; Qiu, J.; Takagi, T.; Uchimoto, T.; Hu, N. Role of interlaminar interface on bulk conductivity and electrical anisotropy of CFRP laminates measured by eddy current method. NDT E Int. 2014, 68, 1–12. [Google Scholar] [CrossRef]
- Mackenzie, D.M.A.; Whelan, P.R.; Bøggild, P.; Jepsen, P.U.; Redo-Sanchez, A.; Etayo, D.; Fabricius, N.; Petersen, D.H. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Opt. Express 2018, 26, 9220–9229. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M.; Chen, Q. Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy. Front. Phys. 2023, 18, 53303. [Google Scholar] [CrossRef]
- Li, T.; Zhou, J.; Zheng, Y.; Zhu, Z.; Zhou, L.; Rao, X.; Wang, J. Temperature Dependent Sheet Conductivity of MoS2 Measured by Terahertz Time-Domain Spectroscopy. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Chakraborty, D.; Walden, D.; Cheng, J.; Wallace, J.; Niherysh, K.A.; Felsharuk, A.V.; Erts, D.; Komissarov, I.; Sobolewski, R. Terahertz Time-Domain Spectroscopy for Probing DC Conductivity of Single-Layer Graphene. In Proceedings of the 2023 IEEE Western New York Image and Signal Processing Workshop (WNYISPW), Rochester, NY, USA, 3 November 2023; pp. 1–4. [Google Scholar]
- Kim, N.; Jung, D.; Kim, Y.; Kim, S.; Han, G.H.; Bahk, Y.M. Optical conductivity measurement of chemically-doped graphene via terahertz time-domain spectroscopy. In Proceedings of the 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, The Netherlands, 28 August 2022–2 September 2022; p. 1. [Google Scholar]
- Cafe, A.I.; De Los Reyes, A.; Lopez, L.; Husay, H.A.; Faustino, M.A.; Mag-usara, V.K.; Tani, M.; Salvador, A.; Somintac, A.; Estacio, E. Non-contact detection of a naturally formed oxide layer on copper metal surface using terahertz time-domain spectroscopy. Curr. Appl. Phys. 2023, 50, 61–68. [Google Scholar] [CrossRef]
- He, K.; Li, Y.; Chen, X.; Wang, J.; Zhang, Q. Influence of finite size probes on the measurement of electrical resistivity using the four-probe technique. J. Semicond. 2014, 35, 082003. [Google Scholar] [CrossRef]
- Lee, K.S.; Phiri, I.; Kim, S.H.; Oh, K.; Ko, J.M. Preparation and Electrical Properties of Silicone Composite Films Based on Silver Nanoparticle Decorated Multi-Walled Carbon Nanotubes. Materials 2021, 14, 948. [Google Scholar] [CrossRef] [PubMed]
- Dahal, A.; Batzill, M. Graphene-nickel interfaces: A review. Nanoscale 2014, 6, 2548–2562. [Google Scholar] [CrossRef] [PubMed]
- Kjeldby, S.B.; Evenstad, O.M.; Cooil, S.P.; Wells, J.W. Probing dimensionality using a simplified 4-probe method. J. Phys. Condens. Matter 2017, 29, 394008. [Google Scholar] [CrossRef] [PubMed]
- Lugansky, L.B.; Tsebro, V.I. Four-probe methods for measuring the resistivity of samples in the form of rectangular parallelepipeds. Instrum. Exp. Tech. 2015, 58, 118–129. [Google Scholar] [CrossRef]
- Lherbier, A.; Blase, X.; Niquet, Y.-M.; Triozon, F.; Roche, S. Charge Transport in Chemically Doped 2D Graphene. Phys. Rev. Lett. 2008, 101, 036808. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.; Adam, S.; Chen, J.H.; Williams, E.D.; Das Sarma, S.; Fuhrer, M.S. Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects of Dielectric Screening on Short- and Long-Range Potential Scattering. Phys. Rev. Lett. 2008, 101, 146805. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Qaisi, R.; Liu, Z.; Yu, Q.; Hussain, M.M. Low-Voltage Back-Gated Atmospheric Pressure Chemical Vapor Deposition Based Graphene-Striped Channel Transistor with High-κ Dielectric Showing Room-Temperature Mobility > 11,000 cm2//V·s. ACS Nano 2013, 7, 5818–5823. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, J.; Wen, T.; Yang, Q.; Feng, Z.; Tan, W.; Li, X.; Wen, Q.; Zhang, H. Flexible terahertz modulators based on graphene FET with organichigh-k dielectric layer. Mater. Res. Express 2018, 5, 115607. [Google Scholar] [CrossRef]
- Adam, S.; Hwang, E.H.; Galitski, V.M.; Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. USA 2007, 104, 18392–18397. [Google Scholar] [CrossRef]
- Du, Y.; Kang, W.; Zheng, R. Variations of the electrical conductivity and the Fermi velocity of epitaxial graphene with temperature. Acta Phys. Sin. 2017, 66, 014701. [Google Scholar]
- Newaz, A.K.M.; Puzyrev, Y.S.; Wang, B.; Pantelides, S.T.; Bolotin, K.I. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nat. Commun. 2012, 3, 734. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xia, J.; Ferry, D.K.; Tao, N. Dielectric Screening Enhanced Performance in Graphene FET. Nano Lett. 2009, 9, 2571–2574. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Chen, S.; Cai, W.; Zhu, Y.; Zhu, C.; Ruoff, R.S. Controlling the electrical transport properties of graphene by in situ metal deposition. Appl. Phys. Lett. 2010, 97, 053107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.; Yan, Z.; Liu, Y.; Wang, J. Electrical Resistivity Measurements of Surface-Coated Copper Foils. Materials 2024, 17, 2951. https://doi.org/10.3390/ma17122951
Ni J, Yan Z, Liu Y, Wang J. Electrical Resistivity Measurements of Surface-Coated Copper Foils. Materials. 2024; 17(12):2951. https://doi.org/10.3390/ma17122951
Chicago/Turabian StyleNi, Jiamiao, Zhuoxin Yan, Yue Liu, and Jian Wang. 2024. "Electrical Resistivity Measurements of Surface-Coated Copper Foils" Materials 17, no. 12: 2951. https://doi.org/10.3390/ma17122951
APA StyleNi, J., Yan, Z., Liu, Y., & Wang, J. (2024). Electrical Resistivity Measurements of Surface-Coated Copper Foils. Materials, 17(12), 2951. https://doi.org/10.3390/ma17122951