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Abstract: In this study, the ball-on-disk sliding wear and tribocorrosion behavior in the H2SO4 and
HCl solution of NiCoCrMoCu alloys with carbon additions of 0.2, 1, 1.5, and 2 wt.% with the Al2O3

ball as a counterpart was investigated systematically. Obvious tribocorrosion antagonistic effects
were found after wear in both aqueous solutions. Compared with dry sliding wear conditions, the
lubrication effect of the aqueous solution significantly reduces the wear rate of the alloy, and the
reduction effect in the H2SO4 aqueous solution was more obvious than that in HCl. The antagonistic
effects of the 0.2C and 1C alloys decrease with the load and sliding rate, while those of the 1.5C and
2C alloys increase. The (coefficient of friction) COF and wear rate under different loads and sliding
rates were analyzed using the response surface analysis (RSM) method. It was found that the COF
mainly showed dependence on the sliding rate, while the wear rate showed dependence on load and
sliding speed.

Keywords: NiCoCrMoCu alloy; dry sliding wear; tribocorrosion; carbide reinforcement; metal
matrix composites

1. Introduction

Ni-based alloys are used as engineering materials to withstand stress corrosion [1–3]
due to their excellent mechanical properties [4,5] and harsh environment resistance [6–8].
The γ′ precipitated phase in the Ni-based alloy is embedded in the γ matrix in a coherent or
semi-coherent structure [9]. Due to the limited lattice mismatch [10], the coherent distortion
between γ′ and γ has a limited hindering effect on dislocation movement [11,12]. The
current shortcoming of the Ni-based alloy is its low wear resistance caused by insufficient
hardness [13]. Considering the high cost of Ni alloys, it is very economically feasible to
improve the wear resistance of Ni-based alloys.

Introducing high-density and non-deformable particle phases into the matrix is an
effective method to improve wear resistance [14,15], which can reduce material removal by
reducing the contact area between the matrix and the counterpart and inhibiting the plastic
deformation of the matrix [16,17]. The particle phase in the composite can be formed by
an in situ reaction of element doping or added by external addition [18], among which
the in situ precipitation particle phase [19] is small in size, evenly distributed, has good
metallurgical bonding with the matrix, and is more beneficial to wear resistance. Carbide
is a common particle phase in Ni-based alloys and is formed in situ by adding a small
amount of C [4,20]. Ye et al. [21] reduced the wear rate of the CoCrFeNiMn alloy by 78% by
precipitating Cr7C3 in situ through the powder metallurgy method, in which the C element
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was added in the form of graphene. Gao et al. [22] fabricated in situ carbide-reinforced Ni-
based composites by hot-pressing sintering Ni and Ti2AlC powders; the friction coefficient
and wear rates of composites reduce with increasing Ti2AlC content, especially for the wear
rate.

However, the introduction of carbides is generally detrimental to the corrosion resis-
tance and tribocorrosion performance of the alloy. The in situ precipitation of carbides will
consume the key corrosion-resistant elements Cr and Mo in the matrix [23], and the poten-
tial difference between the carbide and the matrix will increase the local corrosion tendency
of the alloy [24]. The tribocorrosion process [25] is more complex than the mechanical wear
process because this process includes the mechanical wear, corrosion, and interaction of
corrosion and wear on the material, which has been summarized in the Mischler [26] by
the wear accelerated corrosion model and Archard [27] by the mechanical wear model.
In the above models, tribocorrosion modeling focused on the chemical and mechanical
factors in the two-body contact system without considering the lubrication effect. Cao
et al. [28] proposed the tribocorrosion of passivated metal under a mixed lubrication state
and used this theoretical model successfully in metal-on-metal artificial hip joints. Zhu
et al. [29] found that the material loss induced by tribocorrosion was much less than that by
mechanical wear in the tribocorrosion process of a Monel 400 alloy in seawater, nano-Cu
particles were formed in situ at the surface under tribocorrosion due to the preferential
corrosion of Ni, and Cu particles enhanced the lubrication effect of the tribolayer and
reduced the wear rate.

External conditions, such as load and the sliding rate, have a great influence on the
tribocorrosion properties of alloys. Due to the lubrication effect of aqueous solutions,
Gao et al. [30] found that the wear rate first increased and then decreased with load
during the tribocorrosion process of SAF 2205 Duplex Stainless Steel in Artificial Seawater,
which is different from the monotonous increase in the wear rate with load in dry sliding
wear. Sun et al. [31] and Namus et al. [32] observed the phenomenon that the wear
rate increases with the sliding rate in the tribocorrosion of stainless steel and Ti6Al4V,
respectively, and the increase in sliding rate will intensify the pitting corrosion behavior
of the alloy and the passive film removal rate. NiCoCrMoCu has been proven to have
excellent corrosion resistance in acidic [33,34] and neutral [35] solutions, even after severe
deformation. However, there is currently a lack of detailed research on the tribocorrosion
performance and mechanism of the NiCoCrMoCu alloy under different media and external
parameter conditions.

In this study, we conducted tribocorrosion experiments under different loads and
sliding rates on the carbide-strengthened NiCoCrMoCu alloy in oxidizing and reducing
media, and dry sliding wear experiments were conducted under the same parameters
for comparison. The effect of the addition of C content on the wear behavior and wear
mechanism of the NiCoCrMoCu alloy under different conditions and different parameters
was analyzed. We used the response surface analysis (RSM) [36,37] method to analyze
the experimental results, which can enumerate the correlation between input parameters
and output variables with the minimum number of experiments and is very suitable for
establishing the relationship between wear behavior and parameter variables in wear
experiments.

2. Experiment
2.1. Materials

The nominal compositions of the four NiCoCrMoCu alloys prepared by powder
metallurgy are shown in Table 1. According to the addition of C content, they are named
the 0.2C, 1C, 1.5C, and 2C alloys. Alloy powder with a particle size of less than 150 µm is
collected and formed by hot isostatic pressing (HIP). The parameters are insulation and
pressure holding at 1200 ◦C and 155 MPa for 4 h.
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Table 1. Nominal composition of the 0.2C, 1C, 1.5C, and 2C alloys (wt.%).

Nominations Ni Co Cr Mo Cu W V Si Ti Mn C

0.2C Bal. 30 17 16 2 4 — — — — 0.2
1C Bal. 20 20 16 1.5 2 2 0.25 0.25 0.5 1

1.5C Bal. 20 20 16 1.5 3 3 0.375 0.375 0.5 1.5
2C Bal. 20 20 16 1.5 4 4 0.5 0.5 0.5 2

2.2. Phase Identification

To accurately analyze the types of carbides in different alloys, we extracted the carbides
in the 0.2C, 1C, 1.5C, and 2C alloys through the standard extraction method of ASTM-E963-
95 [38]. The extraction solution is hydrochloric acid and methanol with a volume ratio of
10:1. The extracted carbides were dried and then subjected to X-ray diffraction (XRD) phase
identification, and the equipment and experimental parameters used in XRD experiments
are summarized in Section 2.5.

2.3. Mechanical Behavior

The hardness of the 0.2C, 1C, 1.5C, and 2C alloys was measured by a hardness tester
(200HV-5, Laizhou, China) with a loading force of 2 kg and a holding time of 15 s. Each alloy
was tested ten times, and the hardness result was the average of the data after removing
the maximum and minimum values. The compression property of the HIP and HEX alloy
was performed by a universal material testing machine (INSTRON 5982, Norwood, MA,
USA). The compression rate was 10−3 m/s, and each test was repeated three times.

2.4. Dry Sliding Wear and Tribocorrosion Tests

A ball-on-flat wear testing machine (MWF-002, Jinan, China) was used to conduct
dry sliding wear and tribocorrosion experiments on the 0.2C, 1C, 1.5C, and 2C alloys.
The sliding time, load, and sliding rate were consistent, and the corrosion medium was
0.5 mol/L H2SO4 and 1.2 mol/L HCl aqueous solutions. The sliding time is 3600 s, the
load is 30, 50, and 70 N, and the sliding speed is 75, 150, and 225 mm/s. The counterpart
is an alumina ball with a diameter of 6 mm, and the Vickers hardness is 1600 HV. To
ensure the accuracy of the experiment, three experiments were conducted under each set of
parameters. The wear rate of the alloy can be calculated according to the following formula:

ω =
V

L × P
(1)

where V is the wear volume loss (mm3), L is the sliding distance (m), and P is the applied
load (N). V is obtained by dividing the wear mass loss by the alloy density.

As shown in Formula (2) [39,40], the wear rate T in tribocorrosion can be divided into
three parts as follows:

T = W0 + C0 + S (2)

where W0 is the mechanical wear rate, C0 is the corrosion rate, and S is the synergistic effect
of corrosion and wear on the wear rate.

2.5. Characterization of the Microstructure

X-ray diffraction (XRD, Smart lab 3 kW, Tokyo, Japan) was used to identify the phases
in the alloy and the extracted carbides. XRD measurements were conducted from 30 to
100◦ with a scanning rate of 8◦/min. Initial microstructures, wear surface morphology, and
element distribution of the 0.2C, 1C, 1.5C, and 2C alloys were characterized by a scanning
electron microscope (SEM) and an energy-dispersive spectrometer (EDS) using a field
emission scanning electron microscope (SEM; FEI Quanta 650; Waltham, USA). The effect of
carbon addition on grain size was analyzed using electron backscattered diffraction (EBSD)
technology with a voltage of 30 kV and a step size of 0.1 µm. Further EBSD analysis was
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performed with HKL Channel 5 software (https://nano.oxinst.cn/products/ebsd/post-
processing-software, accessed on 13 June 2024) (HKL Technology Ltd., Hobro, Denmark). A
laser scanning microscope (LSM, S neox 090, Barcelona, Spanish) was used to characterize
the width and depth of the wear surface.

3. Results and Discussion
3.1. Microstructure of the NiCoCrMoCu-xC Alloy

Figure 1 shows the XRD results of the hot isostatically pressed alloy and the carbides
in the alloy after extraction. As can be seen in Figure 1a, there are Ni matrix peaks and
Ni3Mo3C peaks in the 0.2C and 1C alloys. As the C content increases, V2C peaks are
detected in the 1.5C and 2C alloys. Figure 1b shows that the Ni3Mo3C peak intensity is the
highest among the 0.2C, 1C, and 1.5C alloys, while the V2C peak intensity is the highest in
the 2C alloy. The changes in the corresponding carbide types of the highest peak indicate
the existence of transitions between carbides. It is worth noting that the peak of Cr23C6 was
detected in the carbide after extraction for the 1C, 1.5C, and 2C alloys.
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Figure 1. The XRD results of (a) the HIPed alloy and (b) extracted carbide.

Figure 2 shows the initial microstructure of the 0.2C, 1C, 1.5C, and 2C alloys in BSE
mode. It can be seen that there are white, black, and gray carbide phases, which we have
identified in previous studies as Ni3Mo3C, Cr23C6, and V2C, respectively [41]. Image-J
(https://imagej.nih.govij/ (accessed on 13 June 2024)) software was used to count the size
and phase fraction of carbides in the alloy, and the results are summarized in Table 2. The
sizes of the Ni3Mo3C phases in the 0.2C, 1C, 1.5C, and 2C alloys are 1.03, 1.39, 1.42, and
1.08 µm, respectively, and their phase fractions are 9.5, 25, 23.5, and 17.3%, respectively. The
size and phase fraction of the Ni3Mo3C ffswfswephase showed a trend of first increasing
and then decreasing, and the changing trends were not completely synchronous. The peaks
of the size and phase fraction appeared in the 1.5C and 1C alloys, respectively. The sizes of
the Cr23C6 phases in the 1C, 1.5C, and 2C alloys are 1.77, 0.67, and 0.63 µm, respectively,
and their phase fractions are 10, 5.8, and 6.1%, respectively. The size and phase fraction of
the Cr23C6 phase both show a monotonically decreasing trend. The sizes of the V2C phases
in the 1.5C and 2C alloys are 0.7 and 0.73 µm, respectively, and their phase fractions are
11.8 and 17.8%, respectively. Both the size and phase fraction of the V2C phase show a
monotonically increasing trend. Overall, as the C content increases, the Ni3Mo3C phase
and the Cr23C6 phase tend to transform into the V2C phase. It is worth noting that the
presence of prior particle boundaries (PPBs) was observed in the 1.5C and 2C alloys, which
is a common defect in powder metallurgy and is detrimental to mechanical properties [42].

https://nano.oxinst.cn/products/ebsd/post-processing-software
https://nano.oxinst.cn/products/ebsd/post-processing-software
https://imagej.nih.govij/
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Table 2. Phase fractions and average particle size of the Ni3Mo3C, Cr23C6, and V2C carbides.

Alloys Ni3Mo3C Cr23C6 V2C Area Fraction, %

0.2C
Phase fraction, % 9.38 — — 9.5

Size, µm 1.03 — — —

1C
Phase fraction, % 25.0 10.0 — 35

Size, µm 1.39 1.77 — —

1.5C
Phase fraction, % 23.5 5.8 11.8 41.1

Size, µm 1.42 0.67 0.7 —

2C
Phase fraction, % 17.3 6.1 17.8 41.2

Size, µm 1.08 0.63 0.73 —

Figure 3 shows the inverse pole figures (IPFs) superimposed with the band contrast
of the 0.2C, 1C, 1.5C, and 2C alloys. The colored parts in the picture are grains and the
gray parts are unresolved carbides. The average grain sizes of the 0.2C, 1C, 1.5C, and
2C alloys are 2.6, 1.8, 1.6 and 1.4 µm. The addition of C content can effectively refine the
grains by precipitating carbides in situ [43]. A large number of twins can be observed in
the 0.2C alloy, which is due to the reduction in stacking fault energy caused by the higher
Co content [44]. Carbides in the 0.2C and 1C alloys are distributed at grain boundaries
and grain boundary intersections, which can effectively inhibit grain boundary sliding and
grain growth and improve the strength of the alloy. Carbides in the 1.5C and 2C alloys exist
in large quantities at grain boundaries and PPBs.

3.2. Mechanical Behavior of the NiCoCrMoCu-xC Alloys

As shown in Figure 4, the Vickers hardness values of the 0.2C, 1C, 1.5C, and 2C alloys
are 319, 465, 541, and 559 HV, respectively. The addition of C content can significantly
increase the hardness of the alloy. Table 3 summarizes the yield strength and ultimate
compressive strength of the 0.2C, 1C, 1.5C, and 2C alloys. For convenience of comparison,
the maximum contact stress during the wear process is also placed in the table, and
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the calculation results are based on the Hertzian contact stress method [45]. The yield
strength of the alloy increases significantly with the C content, which is mainly due to
the precipitation of carbides that increases the plastic deformation resistance in the alloy
and the refinement of the grains [46]. The elongation drops from 45% in the 0.2C alloy
to 20% in the 2C alloy. The decrease in elongation is due to the existence of carbides and
original particles. Dislocation accumulation is prone to occur at the interface between
carbides and the matrix, leading to stress concentration cracking. The original particle
boundaries composed of carbides are often the source of crack initiation. These two reasons
lead to a significant decrease in elongation. It is worth noting that the 0.2C alloy has the
highest compressive strength of 2287 MPa among all alloys, which comes from its excellent
work-hardening ability. We can also see in Table 3 that, except for the 0.2C alloy under a
30 N load, the maximum contact stress of the alloy under all loads exceeds the ultimate
compressive strength of the alloy. It can be expected that cracks will appear in the alloy
during wear.
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Table 3. Compressive properties and maximum contact stress [41] at 30, 50, and 70 N loads for the
0.2C, 1C, 1.5C, and 2C alloys.

Alloys Yield Strength
(MPa)

Ultimate Compressive
Strength (MPa)

Maximum Contact Stress (MPa)

30 N 50 N 70 N

0.2C 698 2287 2077 2463 2755
1C 978 1873 2114 2507 2804

1.5C 1166 2007 2141 2538 2839
2C 1335 2088 2163 2565 2870
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3.3. Friction Coefficient and Wear Rate of the NiCoCrMoCu-xC Alloys in Various Conditions

Figure 5 shows the average friction coefficient curves of the 0.2C, 1C, 1.5C, and 2C
alloys as a load function at different sliding rates. Figure 5 (a, d and, g), Figure 5 (b, e
and, h), and Figure 5 (c, f and, i), respectively, correspond to dry wear conditions and
tribocorrosion in H2SO4 and HCl. When the sliding rate is 75 mm/s, the COF gradually
increases with the load under dry wear conditions, and the load increases the contact area,
causing the friction resistance to increase. The COF in H2SO4 gradually decreases with
load, and the COF in HCl decreases with load, except for the 0.2C alloy. When the sliding
rate is 150 mm/s, the COF decreases with load in dry wear and H2SO4 tribocorrosion.
The former is due to the lubrication effect of the alloy surface oxide, and the latter is the
lubrication effect of the H2SO4 aqueous solution. The COF shows an increasing trend with
load in HCl tribocorrosion. When the sliding rate is 75 and 150 mm/s, the COF decreases
with the increase of alloy C content in the three wear states. This is because the rise of
carbides reduces the actual contact area between the alloy and its counterpart. The COF in
the H2SO4 solution is lower than that in the HCl solution, indicating that the former has a
better lubrication effect. When the sliding rate is 225 mm/s, the COF does not change with
the alloy’s load and C content. It is speculated that the wear mechanism has changed at
this sliding rate compared with 75 and 150 mm/s.

Figure 6 shows the wear rate curves of the 0.2C, 1C, 1.5C, and 2C alloys as the load
changes at different sliding rates. Figure 6 (a, d and, g), Figure 6 (b, e and, h), and Figure 6 (c,
f and, i), respectively, correspond to dry wear conditions and tribocorrosion in H2SO4 and
HCl. At all sliding rates, the wear rate gradually increases with load, which increases the
contact area and results in increased material removal. When the sliding rate is 75 mm/s,
the alloy wear rate decreases with the C content and is inversely proportional to the Vickers
hardness. When the sliding rate is 225 mm/s, the alloy wear rate increases with the C
content, indicating that the wear mechanism has changed. The wear rates of tribocorrosion
in H2SO4 and HCl are lower than dry wear. This is due to the lubrication and load
distribution effects of the aqueous solution. The wear rate in H2SO4 is lower than that in
HCl. This is consistent with the trend of the friction coefficient in Figure 5, indicating that
the lubrication effect of H2SO4 is better than that of HCl.
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3.4. Dry Sliding and Tribocorrosion Behavior of the NiCoCrMoCu-xC Alloys under Various Loads

According to Formula (2), the wear rate of the tribocorrosion of the 0.2C, 1C, 1.5C, and
2C alloys in H2SO4 and HCl was divided into three parts: W0, C0, and S, and the results
are shown in Figure 7. Overall, the tribocorrosion wear rate T of the alloy is less than the
mechanical wear rate W0 plus the corrosion rate C0 of the alloy; that is, the synergistic
effect of corrosion and wear can reduce the wear rate of the alloy (S < 0). As the load
increases, the antagonistic effect of the 0.2C and 1C alloys decreases, while that of the 1.5C
and 2C alloys increases. The antagonistic effect on corrosion and wear of the 1.5C and 2C
alloys is greater than that of the 0.2C and 1C alloys, regardless of loads, and the effect is
more obvious in H2SO4 than in HCl. In liquid media, the thickness of the lubricating film
between contact surfaces determines the lubrication effect to a certain extent. The film
thickness hmin can be calculated using the Hamrock–Dowson formula [47] as follows:

hmin =
3.63α0.49(ηU)0.68R0.466

E′0.117P0.073

(
1 − e−0.68k

)
(3)

where hmin is the minimum hydrodynamic film thickness (µm), α is the material coefficient,
η is the liquid viscosity (Pa·s), U is sliding speed (m/s), R is the equivalent radius of
curvature (mm), E′ is the equivalent elastic modulus of the wear system (GPa), P is the
load (N), and k is the ellipticity of the contact domain. It can be seen in Formula (3) that
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the thickness of the lubricating film is proportional to the viscosity of the liquid medium.
The viscosities of H2SO4 [48] and HCl [49] at room temperature are 26.7 Pa·s and 10 mPa·s,
respectively. The greater liquid viscosity is why the H2SO4 solution lubricates better than
HCl.
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Figure 6. The relationship between the wear rate and the applied load of the 0.2C, 1C, 1.5C, and 2C
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Figure 8 shows the two-dimensional width and depth results of the 0.2C and 2C alloys
after sliding under the load of 30 and 70 N, respectively. The wear cross-sectional area under
dry wear is larger than that under tribocorrosion conditions, regardless of loads, which
means that the lubricating effect of the solution on alloy wear is greater than the promoting
effect of corrosion on wear, and the lubrication effect of the H2SO4 solution appears to be
better than that of HCl. As the load increases, the cross-sectional area reduction in the 0.2C
alloy shows a decreasing trend after corrosion wear compared with dry sliding wear, while
the opposite trend is observed in the 2C alloy.
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Figure 9 shows the comparison of the microstructure of the wear surface of the 0.2C and
2C alloys after dry sliding and tribocorrosion under a 30 N load. The main characteristics
of the wear surface of the 0.2C alloy under dry wear conditions are grooves, oxidation,
and carbide spalling, which are typical abrasive wear characteristics. Only slight scratch
characteristics were observed in the 2C alloy, and the wear mechanism was abrasive wear.
After tribocorrosion in the H2SO4 solution, the surface characteristics of the 0.2C alloy
are grooves and delamination, which are typical delamination wear characteristics. The
heat generated during the wear process is taken away by the solution, and the oxidation
phenomenon disappears. The lubricating effect of the aqueous solution causes the surface
to be uniformly pressured and work hardening on the alloy’s surface. Under repeated
loads, the work-hardened layer generates cracks and expands to form massive wear debris,
showing delamination characteristics. The surface characteristics of the 0.2C alloy after
tribocorrosion in the HCl solution are similar to those in H2SO4, and carbide fragmentation
was also observed, which is due to the fact that the HCl solution is not as lubricating as
H2SO4, and the alloy surface is subjected to greater pressure. The wear surface of the 2C
alloy after corrosion wear is smooth, and cracks are observed on the surface of the alloy in
HCl.
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Figure 8. Two-dimensional width and depth results of (a,c) the 0.2C and (b,d) 2C alloys after dry
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Figure 10 shows the comparison of the microstructure of the wear surface of the 0.2C
and 2C alloys after dry sliding and tribocorrosion under a 70 N load. Under dry sliding
conditions, the depth and width of the groove on the surface of the 0.2C alloy are larger
than that under 30 N, and the surface oxide coverage area increases. The wear mechanism
is abrasive wear and oxidative wear. The surface of the 2C alloy is covered with a large
number of oxides, and the main wear mechanism is oxidative wear. After tribocorrosion
in H2SO4, the main characteristics of the wear surface of the 0.2C alloy are grooves and
carbide fragmentation, and the main wear mechanism is abrasive wear. Compared with the
30 N load, the increase in load causes the contact area to increase and the lubricating film
thickness to decrease, and the response of the wear surface changes from local cracking
to carbide fragmentation. The degree of abrasive wear of the 2C alloy is reduced under
the same load due to the higher hardness and yield strength. The increase in carbide
content increases the bearing capacity of the alloy surface and eliminates the phenomenon
of carbide fragmentation. The reason for local cracking in HCl is due to its relatively poor
lubrication effect.
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Figure 10. Comparison of the microstructure morphology of the wear surface of (a,c,e) the 0.2C
and (b,d,f) 2C alloys after (a,b) dry sliding and tribocorrosion in (c,d) H2SO4 and (e,f) HCl aqueous
solutions at 70 N and 75 mm/s.

3.5. Wear and Tribocorrosion Behavior of the NiCoCrMoCu-xC Alloys under Various Sliding
Speeds

Figure 11 shows the comparison of dry sliding wear and tribocorrosion wear rates
of the 0.2C and 2C alloys at sliding rates of 75 and 225 mm/s. The antagonistic effect of
corrosion wear decreased in the 0.2C and 1C alloys but increased in the 1.5C and 2C alloys.
The antagonistic effect of tribocorrosion decreased in the 0.2C and 1C alloys but increased
in the 1.5C and 2C alloys. According to Formula (3), the thickness of the lubricating film
increases with the sliding rate. The abnormal phenomena of the 0.2C and 1C alloys indicate
that the wear mechanism may change with the sliding rate.
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Figure 11. The contribution of mechanical wear (W0), corrosion (C0), and synergistic effects of
corrosion and wear (S) on the tribocorrosion wear rate (T) of the 0.2C, 1C, 1.5C, and 2C alloys in
(a,c) H2SO4 and (b,d) HCl aqueous solutions under (a,b) 75 and (c,d) 225 mm/s.

Figure 12 shows the two-dimensional width and depth results of the 0.2C and 2C
alloys after sliding under sliding speeds of 75 and 225 mm/s, respectively. The wear
cross-sectional area under dry wear is larger than that under tribocorrosion conditions,
regardless of sliding speed. In the 2C alloys, the tribocorrosion antagonistic effect has
obvious medium dependence, and the effect is stronger in H2SO4 than in HCl. The wear
cross-sectional areas of the 0.2C alloy after tribocorrosion in H2SO4 and HCl are almost the
same.

Figure 13 shows the wear surface morphology of the 0.2C and 2C alloys after dry
sliding and tribocorrosion at a sliding rate of 75 mm/s. Under dry sliding wear, the wear
surface of the 0.2C alloy is characterized by grooves of varying depths and a small amount
of oxide adhesion, and the wear mechanism is abrasive wear. A large amount of oxide
adhesion and slight scratches were observed on the worn surface of the 2C alloy; many
cracks can be observed on the oxide surface, and the wear mechanism was oxidative wear.
A large number of grooves and ridge features were observed on the surface of the 0.2C alloy
after tribocorrosion in H2SO4, and carbide fragmentation on the worn surface was also
observed, which are typical abrasive wear features. Only slight scratching was observed
on the wear surface of the 2C alloy. The main feature of the surface of the 2C alloy is raised
ridges, which is caused by the extrusion effect of carbides in the alloy on the matrix.
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Figure 12. Two-dimensional width and depth results of (a,c) the 0.2C and (b,d) 2C alloys after dry
sliding and tribocorrosion in H2SO4 and HCl aqueous solutions at (a,b) 75 and (c,d) 225 mm/s.

Figure 14 shows the microstructure morphology of the wear surface of the 0.2C and
2C alloys after dry sliding wear and tribocorrosion at a sliding rate of 225 mm/s. The main
characteristics of the 0.2C surface under dry wear conditions are the accumulation of wear
debris and the adhesion of oxides and grooves almost disappears compared with 75 mm/s,
this is a typical adhesion wear feature. The heat generated by the high sliding rate softens
and oxidizes the wear debris on the wear surface and is cold welded to the surface under the
repeated action of the counterpart. The surface of the 2C alloy shows obvious delamination
and oxidation characteristics, which are typical delamination wear characteristics; among
them, the outermost layer has the most obvious degree of oxidation, and the material is
removed layer by layer through wear and cracking. The surface characteristics of both
the 0.2C and 2C alloys after tribocorrosion in H2SO4 are grooves and delaminations. The
increase in the sliding rate increases the frequency of action on the alloy surface per unit
time, resulting in the work hardening of the surface and cracking. The wear mechanism
of the 0.2C alloy in HCl is abrasive wear and is represented by grooves and delamination
wear caused by cracking. The wear surface of the 2C alloy shows wide grooves and carbide
aggregation on the surface, which is caused by the plastic deformation of the matrix around
the carbides.
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3.6. Worn Surface Characterization of the 0.2C and 2C Alloys in Various Conditions

Table 4 summarizes the roughness of the wear surface of the 0.2C and 2C alloys after
wear under different conditions and parameters. Overall, the roughness of the 2C alloy is
lower than that of the 0.2C alloy under all wear conditions and parameters, indicating that
the increase in carbides helps maintain the integrity of the wear surface of the alloy during
wear. The surface roughness is the lowest after tribocorrosion in H2SO4 and the highest
under dry wear conditions, which benefits from the lubrication of the aqueous solution.

Table 4. The roughness of the wear surface of the 0.2C and 2C alloys after wear under different
conditions and parameters.

Roughness/µm 0.2C-Dry 0.2C-H2SO4 0.2C-HCl 2C-Dry 2C-H2SO4 2C-HCl

30 N/75 mm/s 0.228 0.109 0.138 0.144 0.074 0.166
70 N/75 mm/s 0.282 0.045 0.176 0.150 0.062 0.119
75 mm/s/50 N 0.175 0.085 0.136 0.267 0.031 0.042

225 mm/s/50 N 0.185 0.127 0.142 0.256 0.14 0.057
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Figure 14. Comparison of the microstructure morphology of the wear surface of (a,c,e) the 0.2C
and (b,d,f) 2C alloys after (a,b) dry sliding and tribocorrosion in (c,d) H2SO4 and (e,f) HCl aqueous
solutions at 50 N and 225 mm/s.

Figure 15 shows the morphology and elemental distribution of the worn surface of
the 0.2C and 2C alloys subjected to tribocorrosion in H2SO4 and HCl under 30 and 70 N
loads. The morphology of the wear surface has been analyzed above, and here we focus
on analyzing the distribution of corrosion-resistant elements, Cr, Mo, and Cu. The Cr and
Cu elements are evenly distributed on the surface of the 0.2C alloy, and the Mo element is
enriched in the form of carbides. After tribocorrosion under 30 and 70 N loads in H2SO4,
the 2C alloy surface showed obvious enrichment of the Cu element. The enrichment of the
Cu element may be due to the following three reasons. 1. Element segregation caused by
severe plastic deformation. Feng et al. [50] observed obvious grain boundary segregation
of the Cu element in the Al-Cu alloy after high-pressure torsional deformation. 2. The
dissolution and re-precipitation behavior of the Cu element in the H2SO4 solution. Zhang
et al. [24] and Yamanaka et al. [51] observed the enrichment phenomenon of the Cu alloy
on the surface in the sulfuric acid corrosion experiment of the carbide-strengthened Fe-
16Cr-3W-1C-xCu alloy. Cu significantly improved the corrosion resistance of the alloy.
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3. Preferential corrosion of the matrix and precipitation of Cu particles caused by contact
stress. Zhu et al. [29] observed the enrichment of Cu particles on the surface of the wear
surface under stress in the corrosion and wear experiment of the Monel400 (Ni-30Cu) alloy
in seawater. The lubrication effect of Cu significantly reduces the friction coefficient and the
wear rate of the alloy. There is no obvious enrichment of Cu on the surface of the 2C alloy
after corrosion and wear in HCl. The enriched position of the O element in the wear surface
of the 2C alloy after corrosion wear coincides with the position of the Cr23C6 carbide. It is
speculated that Cr2O3 is formed on the surface of Cr23C6. Webb et al. [52] pointed out that
carbide oxidation occurs by the diffusion of oxygen through the surface oxide layer down
to the oxide–carbide interface. Matthews et al. [53] found in high-temperature oxidation
experiments of Cr3C2/NiCr composite coatings that chromium carbide can be oxidized
through a gradual decarburization mechanism to form Cr2O3, and Cr3C2 is oxidized to
Cr7C3, Cr23C6, and Cr2O3 in sequence. The enrichment of Cu [54] and the presence of
Cr2O3 [55] can not only reduce the corrosion of the alloy but also reduce the wear rate of
the alloy through lubrication.
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Figure 16 shows the morphology and elemental distribution of the worn surface of
the 0.2C and 2C alloys subjected to tribocorrosion in H2SO4 and HCl under sliding speeds
of 75 and 225 mm/s. No segregation of the Cr, Mo, and Cu elements was observed after
the wear of the 0.2C alloy at both sliding rates. The enrichment of the Cu element was
observed on the surface of the 2C alloy after tribocorrosion in H2SO4 and HCl at a sliding
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rate of 75 mm/s, which was distributed in a chain shape in H2SO4. It is distributed in
strips in HCl and the enriched area is the area of severe plastic deformation on the surface,
indicating that plastic deformation can promote the segregation of Cu. No segregation
of Cu was observed on the surface of the 2C alloy after tribocorrosion at a sliding rate of
225 mm/s. This is due to the fatigue damage of the surface wear layer caused by the high
sliding rate. The oxidation of Cr23C6 was observed on the wear surface of the 2C alloy at
all sliding rates.
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Figure 16. The morphology and elemental distribution of the worn surface of (a,c,e,g) the 0.2C and
(b,d,f,h) 2C alloys subjected to tribocorrosion in (a,b,e,f) H2SO4 and (c,d,g,h) HCl under (a–d) 75 and
(e–h) 225 mm/s sliding speed.

3.7. Optimization of the COF and Wear Rate Using the Response Surface Model

Figures 17 and 18 show the COF and wear rate fitting diagrams obtained under differ-
ent wear states and parameters using the response surface analysis method
(RSM) [56,57]. The variables are loads and sliding speeds, and the solid points are ex-
perimental data. The multiple quadratic regression equation used for fitting is shown in
Formula (4) as follows:

y = b1 + b2·x1 + b2·x2 + b3·x1·x1 + b4·x2·x2 + b5·x1·x2 (4)

where b1, b2, b3, b4, and b5 are the fitting coefficients, x1, and x2 are the load and sliding
rate, respectively, and y is the COF or wear rate.
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Figures 17 and 18 show the COF and wear rate behavior of the 0.2C and 2C alloys
in dry sliding and tribocorrosion experiments. Under dry sliding conditions, the COF
behavior in the 0.2C and 2C alloys shows obvious sliding rate dependence, and the wear
rate behavior shows load and sliding rate dependence. When sliding at 75 mm/s, the
surface degradation form of the 0.2C and 2C alloys is abrasive wear. The yield strength of
the 0.2C alloy is lower than that of the 2C alloy under the same load, and the depth of action
of the friction pair on the surface of the 0.2C alloy is greater, leading to an increase in the
COF. Under load, the surface of the 0.2C alloy appears with the characteristics of grooves
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and carbide spalling. There is only slight scratching on the surface of the 2C alloy; less
material is removed, and the wear rate is low. As the sliding rate increases to 150 mm/s, the
surface oxides of the 0.2C and 2C alloys increase, and the COF decreases. When the sliding
rate increases to 225 mm/s, plastic deformation occurs on the surface of the 0.2C and 2C
alloys due to the softening of the matrix [39], and the COF further decreases. The softened
matrix cracks and generates massive wear debris after repeated cold work hardening, and
the wear rate increases significantly.
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Figure 18. Evolution of the wear rate concerning the applied load and sliding speed for (a,b) dry
sliding and tribocorrosion in (c,d) H2SO4 and (e,f) HCl of (a,c,e) the 0.2C and (b,d,f) 2C alloys using
response surface analysis.
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Under tribocorrosion conditions, the solution lubricates the wear surface and dis-
tributes the load evenly [58]. The COF behavior and wear rate behavior of the 0.2C alloy
did not change significantly compared with dry sliding conditions, while the 2C alloy
showed an obvious tribocorrosion antagonistic effect; that is, the COF and wear rate were
significantly reduced. This is consistent with the experimental results in Figures 7 and 11.
During the sliding process, the solution can lubricate the worn surface and evenly distribute
the load [59]. Due to the low yield strength and the high work hardening ability of the 0.2C
alloy, the surface shows the characteristics of delamination wear caused by fatigue cracks,
and the wear rate does not decrease significantly compared with the dry sliding wear state.
During the tribocorrosion process, Cu enrichment and Cr23C6 surface oxidation occurred
on the 2C alloy surface, which enhanced the lubrication effect during the sliding process,
and the COF and wear rate decreased. The yield strength of the 2C alloy is higher than
that of the 0.2C alloy; only slight scratch marks are left on the surface after sliding, and less
material is removed.

4. Conclusions

In this study, we conducted tribocorrosion tests on the NiCoCrMoCu alloys with
different carbide contents/types in two different acidic media (H2SO4 and HCl) under
various external loading conditions (load and sliding speed). The dry sliding wear behavior
of the same alloys was also studied to compare it with the tribocorrosion behavior. The
main conclusions are summarized as follows:

1. The carbide content, Vickers hardness, and yield strength in the NiCoCrMoCu-xC
alloy increase with the C content, whereas the alloy grain size is refined with the
increase of carbide content.

2. Compared with dry sliding wear, the NiCoCrMoCu-xC alloys exhibit a lower wear
rate in the tribocorrosion process due to the lubrication effect of the solution, regardless
of wear parameters. The lubrication effect can be promoted by the enrichment of Cu
elements and the Cr2O3 on the surface. In addition, the H2SO4 solution has a better
lubricating effect than HCl because of its higher viscosity.

3. A general antagonistic effect was observed in the tribocorrosion of the NiCoCrMoCu-
xC alloy. As the load and sliding rate increased, the antagonistic effect of the 0.2C and
1C alloys decreased because the destruction of the integrity of the wear surface leads
to the disappearance of the Cu-rich zone and Cr2O3.

4. The COF and wear rate under different loads and sliding rates were analyzed using
the response surface analysis method. It was found that the COF mainly showed
dependence on the sliding rate, while the wear rate showed dependence on load and
the sliding rate.
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Nomenclature

ω wear rate(10−5 mm3/N·m)
V wear volume loss (mm3)
L the sliding distance (m)
P the applied load (N)
T wear rate caused by tribocorrosion (10−5 mm3/N·m)
W0 wear rate caused by dry sliding wear (10−5 mm3/N·m)
C0 wear rate caused by immersion corrosion (10−5 mm3/N·m)
S wear rate caused by the synergistic effect of corrosion and wear (10−5 mm3/N·m)
Hmin the minimum hydrodynamic film thickness (µm)
α constant
η the liquid viscosity (Pa·s)
U sliding speed (m/s)
R equivalent radius of curvature(mm)
E′ the equivalent elastic modulus of the wear system (GPa)
k the ellipticity of the contact domain
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