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Abstract: The rapid discovery of photocatalysts with desired performance among tens of thousands
of potential perovskites represents a significant advancement. To expedite the design of perovskite-
oxide-based photocatalysts, we developed a model of ABO3-type perovskites using machine learning
methods based on atomic and experimental parameters. This model can be used to predict specific
surface area (SSA), a key parameter closely associated with photocatalytic activity. The model
construction involved several steps, including data collection, feature selection, model construction,
web-service development, virtual screening and mechanism elucidation. Statistical analysis revealed
that the support vector regression model achieved a correlation coefficient of 0.9462 for the training
set and 0.8786 for the leave-one-out cross-validation. The potential perovskites with higher SSA
than the highest SSA observed in the existing dataset were identified using the model and our
computation platform. We also developed a webserver of the model, freely accessible to users. The
methodologies outlined in this study not only facilitate the discovery of new perovskites but also
enable exploration of the correlations between the perovskite properties and the physicochemical
features. These findings provide valuable insights for further research and applications of perovskites
using machine learning techniques.

Keywords: photocatalyst; machine learning; ABO3-type perovskites; specific surface area; prediction

1. Introduction

Perovskite oxides, with the chemical formula ABO3, are a broad category of com-
pounds with similar structures [1–4]. The earliest compound in this group of compounds is
calcium titanate (CaTiO3), which was discovered in calcium titanium ore [5]. In perovskite
materials, the B-site typically consists of cations with smaller ionic radii. These cations
co-ordinate with oxygen anions and occupy the corners of the octahedral structure in the
cubic lattice [4,6]. The typical structure of ABO3-type perovskites has Pm3m symmetry
(Figure 1). Perovskite structures offer significant flexibility for exploration due to the po-
tential replacement of ions at various positions with those of other elements or groups
with similar radii [7,8]. This versality results in a diverse array of perovskite compounds,
offering a vast potential for specific applications [9,10]. Considering element doping, the
potential number of perovskite compounds can reach approximately 107 [11]. These per-
ovskites exhibit a remarkable diversity, offering several superior properties, including high
light absorption coefficients [12,13], suitable and adjustable bandgap [14], narrow emission
bandwidth [15], long carrier diffusion lengths [16,17], high carrier mobilities [18,19], and
cost-effective solution processability [20]. These attributes make perovskites highly promis-
ing materials in various fields such as solar cells [21,22], photocatalytic materials [7,23],
and photodetectors [24].

Conventional methods of material development typically rely on repeated trial-and-
error processes until the desired material properties are achieved [25,26]. Although first
principle calculation of materials can provide key characteristics of materials without the
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need for experimental synthesis [27,28], it involves extensive equation calculations and
approximations. However, both experimental methods and first principles calculations face
challenges in meeting the demand for large-scale, rapid, and efficient prediction within
the vast chemical search space and complex crystal component structures of perovskite-
type materials.
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perimental data from published references. (2) We developed a support vector regression 
(SVR) model for synthesizing ABO3-type perovskites using the sol–gel method. The model 
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online web service was developed to facilitate rapid and effective prediction of SSA for 
ABO3-type perovskites. This service is accessible at http://1.14.49.110/online_predict/Per-
ovskite (accessed on 7 June 2024). 
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Figure 1. A schematic illustration of the crystal cell of a typical ABO3-type perovskite.

Machine learning (ML), as crucial branch of artificial intelligence, can rapidly and
effectively evaluate or predict research objects [29–32]. This highlights the significant
potential of ML in the design, synthesis, physical property exploration, and application
research of perovskite-type materials [33,34]. ML has been successfully used to accelerate
the development of perovskite-oxide-based photocatalysts and solar cell materials in recent
years [35–37]. ML applications in ABO3-type perovskites primarily include predictions
related to stability, bandgap, crystal structure, and formability (Table S1 of the Support-
ing Information). As Experimental data on perovskite synthesis continue to grow, ML
is anticipated to play an increasingly vital role in the advancement of perovskite-type
photocatalysts [38,39].

ABO3-type perovskite compounds are a novel class of semiconductor photocata-
lysts [40], where specific surface area (SSA) is an important indicator of photocatalytic
activity [41]. A larger SSA enhances the availability of active sites, thereby improving
photocatalytic performance [42]. In this study, a model of ABO3-type perovskites for
designing perovskite-type photocatalysts with desired SSA is proposed. The model was
developed using atomic and experimental parameters with ML methods. The method
involved several steps, including data collection, feature engineering, model construction,
web-service development, virtual screening, and mechanism elucidation.

ABO3-type perovskites are highly promising semiconductor photocatalysts, drawing
increasing interest from researchers [43,44]. This study focused on rapidly screening
promising ABO3-type perovskites for photocatalytic applications and accelerating the
design of perovskite-oxide-based photocatalysts. The main contributions of our work are
outlined as follows: (1) we compiled a dataset of ABO3-type perovskites by gathering
experimental data from published references. (2) We developed a support vector regression
(SVR) model for synthesizing ABO3-type perovskites using the sol–gel method. The model
demonstrates high accuracy and good generalization, with correlation coefficients (R) of
0.9462 for the training set and 0.8786 for leave-one-out cross-validation (LOOCV). (3) Key
factors influencing the SSA of ABO3-type perovskites were identified using forward and
backward selection methods based on the SVR model with radial basis function (RBF).
(4) The model identified promising ABO3-type perovskites with potentially high SSA.
(5) An online web service was developed to facilitate rapid and effective prediction of SSA
for ABO3-type perovskites. This service is accessible at http://1.14.49.110/online_predict/
Perovskite (accessed on 7 June 2024).

The other sections of this paper are organized as follows. In Section 2, the main
steps involved in constructing the SSA model of ABO3-type perovskites are presented in
detail, along with the computational details. Feature selection, model construction, model
application, and mechanism exploration are presented in Section 3. Section 4 presents the
conclusions of the study.

http://1.14.49.110/online_predict/Perovskite
http://1.14.49.110/online_predict/Perovskite
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2. Material and Methods
2.1. Perovskite Model Framework

The SSA model for ABO3-type perovskites was developed through six primary steps,
as shown in Figure 2. These steps include data collection, feature engineering, model
construction, web-service development, virtual screening, and mechanism mining. The
details of each step are as follows.
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2.1.1. Data Collection

Data quality is crucial for ML model quality and fundamentally determines its reliabil-
ity [45]. In most ML research, the upper limit of the model performance depends on the
quality of data and features selected, whereas the choice of models and algorithms can only
help approach this upper limit infinitely [46]. In this study, we established a reliable dataset
by collecting extensive data of ABO3-type perovskites. Specifically, we compiled data
from 99 perovskite samples sourced from the experimental results reported in the previous
literature (Table S2). These ABO3-type perovskites were synthesized using the sol–gel
technique [47], which involves transforming inorganic compounds or metal alkoxides into
oxides or other solid compounds through solidification process involving solution, sol,
gel, and subsequent heat-treat treatment. The three values (namely 1, 2, and 3) in the
PM (synthetic mode) column in Table S2 represent three modes of the sol–gel technique:
traditional, auto-combustion, and citrate methods. The target variable of the dataset, SSA,
denotes the surface area per unit mass of perovskite crystals, measured in square meters
per gram (m2g−1).

The dataset comprised 25 features as the inputs of the ML model (Table S3), including
the 4 synthesis conditions (calcination temperature (CT), calcination time (AH), drying tem-
perature (DT), and PM) and 21 atomic parameters. The atomic parameters were derived
using the molecular formula of the samples through the Online Computational Platform of
Material Data Mining (http://materials-data-mining.com/ocpmdm/) (OCPMDM) [48,49].
The dataset was divided into two parts: the training set comprising 85 samples for con-
structing the model and the testing set comprising 14 samples (marked with asterisks
in Table S2) for external validation. The following rules were observed when dividing
the dataset:

(1) The SSA values of the samples in the testing set were kept within the range of
values observed in the training set to prevent out of range predictions.

(2) Samples in the dataset were sorted based on the SSA values. Samples in the testing
set were selected at regular intervals from this sorted dataset to avoid biased predictions.

http://materials-data-mining.com/ocpmdm/
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In addition, a validation set was established to further verify the model. The validation
set comprised three samples (marked with hashes in Table S2) obtained from recently
published papers.

2.1.2. Feature Engineering

Ensuring the stability and generalization of the prediction model ensures managing
high linear correlations between features used in modeling. An important step in this
process involves removing features with strong correlations to build an effective model.
To achieve this, Pearson correlation coefficients between the 25 features were calculated,
and the correlation matrix is presented in Figure S1. Maximum-relevance minimum-
redundancy (mRMR) scores of all features were calculated (Figure S2). Features with
lower mRMR scores were eliminated from the dataset if their correlation coefficient with
another feature was greater than 0.95. Twenty-three features were retained through this
correlative analysis. Features such as the ratio of ionic radius (RA/RB) and unit cell lattice
edge (α) were eliminated due to their correlation with other features. A feature selection
method based on SVR was used to identify the most representative subset from the feature
pool. This approach ensures that the selected subset contains essential information with
minimal redundancy.

2.1.3. Model Construction

The ML model was designed to establish the relationship between SSA of ABO3-type
perovskites and the corresponding features. An SVR model with RBF kernel was chosen to
accelerate the design of perovskite-type materials. The hyperparameters of the model were
optimized using the grid search technique and cross-validation to enhance the prediction
performance of the model. The external testing set comprising 14 samples, LOOCV, and an
independent validation set were utilized to test the reliability of the model.

2.1.4. Webserver Development

A webserver refers to software modules operating over a network. It is service-
oriented based on distributed programs, allowing users to access data from different web
terminals across different locations. Implementing webservers based on the model sim-
plifies the prediction tasks for the clients. Scientists researching perovskite-type materials
can use online predictions through the webserver without mastering the intricacies of the
ML model.

2.1.5. Virtual Screening

The general molecular formula of ABO3-type perovskites is A1y(A2nA3(1−y−n))B1x
(B2mB3(1−x−m))O3, where x and y range from 0.6 to 1.0 in increments of 0.01, and 0 ≤ n ≤ 0.4,
0 ≤ m ≤ 0.4. This formula facilitates the creation of millions of ABO3-type perovskites. It is
generally assumed that stable perovskites can form if the tolerance factor (tf) falls within
the range of 0.8~1.0. The formula for tf is as follows:

tf =
RA+RO√

2(R B+RO

) (1)

where RA, RB, and RO represent the ionic radii of A-site, B-site, and O, respectively.
The virtual samples were generated to screen perovskites with high SSA consider-

ing the elements present in the perovskites from the existing dataset and the conditions
outlined above.

2.1.6. Mechanism Mining

Mechanism mining is essential in materials research, particularly for understanding
how the features affect the SSA of ABO3-type perovskites. The features that most sig-
nificantly impact the SSA of ABO3-type perovskites can be identified by leveraging the
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interpretability of ML results. Mechanism mining can help to adjust the material design ap-
proach and provide precise guidance for material synthesis. The effectiveness of mechanism
mining directly influences the practical application and usability of the models developed.

2.2. Computational Details

In this study, we conducted most of the ML calculations using HyperMiner software
package (2009 edition) [50] and the in-house OCPMDM [51–53]. HyperMiner is available
for free download from the website of our laboratory (http://materials-data-mining.com/
home). Detailed instructions for using OCPMDM can be accessed from the webserver link
(http://materials-data-mining.com/ocpmdm/).

3. Results and Discussion

To enhance the predictive performance of ML models, it is essential to consider
different types of models and compare their predictive accuracy based on the dataset’s
characteristics and the suitability of the algorithms. The SVR algorithm offers strict mathe-
matical theoretical support, strong interpretability, and robustness. However, its training
process requires significant computational resources and storage capacity, making it more
suitable for smaller sample sets.

In this study, we used the widely used ML algorithms to establish the predictive
models of SSA of ABO3-type perovskites. These algorithms include decision tree regression
(DTR), gradient boosting regression (GBR), partial least squares (PLS), relevance vector ma-
chine (RVM), SVR-RBF, SVR with linear kernel function (SVR-LKF), SVR with polynomial
kernel function (SVR-PKF), random forest regression (RFR), and back propagation neural
network (BPNN). The root mean square error (RMSE) and Pearson correlation coefficient
(R) of the LOOCV results of the nine algorithms are presented in Table 1.

Table 1. The LOOCV results of the nine algorithms.

Index DTR GBR PLS RVM SVR-RBF SVR-LKF SVR-PKF RFR BPNN

RMSE 7.570 5.798 8.588 6.304 4.895 8.408 7.286 7.618 10.301
R 0.688 0.817 0.504 0.791 0.870 0.540 0.679 0.640 0.443

The model using the SVR-RBF algorithm was more effective for predicting the SSA of
ABO3-type perovskites compared to the other algorithms. This conclusion is supported by
its lowest RMSE and highest Pearson correlation coefficient (R) in the LOOCV results. SVR,
which operates on the principle of structural risk minimization, addresses issues such as
uncertain network structure, overfitting, underfitting, and local minima commonly encoun-
tered in some algorithms such as artificial neural networks [54]. It is widely considered
as one of the best methods for small sample regression problems [55]. Leveraging slack
variables and kernel functions, SVR is effective at handling situations where the data are
linearly inseparable. RBF kernel is the most commonly used kernel function in SVR, known
for its applicability to both small and large sample problems, as well as high-dimensional
and low-dimensional datasets. This analysis shows that SVR-RBF is the most suitable for
the dataset. Therefore, it was selected as the algorithm to construct the predictive model
for the SSA of ABO3-type perovskites.

3.1. Feature Selection and Analysis

During the ML training process, datasets often contain many samples and features,
some of which offer little or no value for modeling. When a significant proportion of the
dataset comprises irrelevant features, it can prolong the model training time and increase
the risk of underfitting [56]. Conversely, if a subset of data with minor impact account for a
large proportion of the dataset, it can prolong the model training time and increase the risk
of overfitting of the model [57]. Consequently, feature selection is a key step in building a

http://materials-data-mining.com/home
http://materials-data-mining.com/home
http://materials-data-mining.com/ocpmdm/
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reliable model [58]. The objective of feature selection is to identify the optimal subset of
features from the original feature pool, one with essential information and less redundancy.

Three approaches based on SVR were used to identify the optimal subset. These
approaches include forward selection method (FSM) [59], backward selection method
(BSM) [60], and genetic algorithm (GA) [61,62]. FSM is a heuristic method that starts with
an empty set and gradually adds features to the feature subsets based on importance. At
each stage, a feature that maximizes the model performance is selected to train the ML
model. This iterative process continues until the main features contributing significantly
to the model are identified and retained for modeling. The principle of BSM is similar to
FSM, except that all features are initially included in training the models. Subsequently,
iteratively, the feature that contributes the least to model performance is removed and the
remaining features are used to train the ML model. GA is a global optimization algorithm
that simulates the evolutionary principles observed in biological systems, where only the
fittest survives. The search processes of the three methods (illustrated in Figure 3) continue
until a feature subset closely approaching the optimal solution is obtained. Notably, the
RMSE value first decreases with an increase in the feature number and gradually increases
after reaching a minimum value (Figure 3a,b). In addition, the RMSE initially decreases
sharply with an increase in the iteration number (Figure 3c). The RMSE reaches its minimum
value after 17 iterations and then stabilizes. Conversely, the parameter “score” exhibits an
opposite trend to RMSE for the three methods (Figure 3). Comparison of the three methods
showed that the FSM-SVR method was superior to the other algorithms, achieving the
lowest RMSE and highest score. According to the results of the FSM-SVR method, the
optimal subset comprised 12 variables: CT, AT, DT, PM, ZIA, ∆fusA, TmA, TmB, TbA, ρA,
EAa, and EAb.
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Figure 3. Feature screening using (a) FSM-SVR, (b) BSM-SVR, and (c) GA-SVR. The blue and red
circles represent RMSE and the minimum RMSE, respectively. In the illustration, the green and
orange circles represent RMSE and Score, respectively.

To further refine the dataset used for modeling, a new dataset was generated incorpo-
rating these 12 features and six principal components [63] (PCA1, PCA2, PCA3, PCA4, PCA5,
and PCA6) calculated based on the 12 features. The formulas of the principal components
are presented as Equations (S1)~(S6) in the Supporting Information. Moreover, nine key
features were identified using BSM-SVR method for modeling: CT, DT, PM, TmB, ρA, EAa,
EAb, PCA3, and PCA6.
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3.2. Model Construction

To establish an effective model, it is not only essential to select appropriate algorithms
and key features for modeling but also to optimize the hyperparameters of the algorithms
and evaluate the models using appropriate methods [64].

3.2.1. Optimizing Hyperparameters

Hyperparameter optimization [65] involves finding the optimal combination of hyper-
parameters to maximize model performance. Therefore, the three hyperparameters [54]
(namely, ε, C, and γ) of SVR-RBF must be adjusted to enhance accuracy and generalization
ability of the SVR-RBF model. The parameter ε controls the smoothness of regression
curves, influencing the model’s tolerance for errors. C is a regularization constant that
controls the penalty intensity applied to the model based on errors encountered during
training. This parameter determines the trade-off between errors and complexity of the
model. The parameter γ is a crucial hyperparameter that controls the kernel function,
determining the impacts of sample points on the model. The ranges of ε, C, and γ used to
optimize the model are (0.01, 0.09), (1, 100), and (0.5, 1.5), and the corresponding step sizes
are 0.02, 2, and 0.1, respectively. The optimization process involved using the grid search
method with 10-fold cross-validation to find the optimal combination of these hyperparam-
eters. The search process is illustrated in Figure 4. The optimal values of ε, C, and γ were
0.07, 97, and 0.9, resulting in a minimal RMSE value of 4.584, respectively.
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3.2.2. Establishing Model

The SVR-RBF model was constructed using the key features and the optimal hyperpa-
rameters. The expression of the model is shown below:

SSA =
n

∑
i=1

βi exp
(
(−0.9) × ||X − Xi||2

)
− 0.0927 (2)

where n and βi represent the corresponding number and Lagrange multiplier of the support
vectors, respectively. X and Xi denote the unknown vector and the support vector, respectively.

R, the coefficient of determination (R2), and RMSE were indices to evaluate the perfor-
mance of the SVR-RBF model by comparing the experimental and predicted SSA values of
ABO3-type perovskites. Figure 5a illustrates the experimental SSA versus the predicted
SSA for the samples in the training set. The SVR-RBF model demonstrated relatively high
accuracy, with R, R2, and RMSE values of 0.9462, 0.8916, and 3.2557, respectively.
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testing set.

3.2.3. Model Evaluation

LOOCV, the testing set, and the validation set were used to verify the predictive
performance of the ML model, with results shown in Figure 5b, Figure 5c, and Table 2,
respectively. The model exhibited higher R and lower RMSE for LOOCV and the external
set, indicating its effectiveness and reliability. The maximum relative error of the samples
was +0.215, with very low relative errors of the other two samples, indicating that the
ML model had robust predictive performance (Table 2). The higher relative prediction
error observed for sample 101 can be attributed to the absence of the molecular formula
of Gd in the samples in the training set, which is the element at the A-site of sample 101.
The prediction range of the model can be expanded by collecting more training samples
of ABO3-type perovskites containing Gd or other elements. In addition, the SVR model
underwent 100 random 10-fold cross-validations using the training samples. The average
R, R2, and RMSE values of the 10-fold cross-validations were 0.8695, 0.7538, and 4.8979,
respectively. These results further demonstrate the robustness and generalization capability
of the SVR-RBF model.

Table 2. The predictive results based on the validation set.

No. Molecular
Formula

Experimental
SSA (m2g−1)

Predictive SSA
(m2g−1) Relative Error

100# LaFeO3 7 6.516 −0.0691
101# GdCoO3 8.69 10.558 +0.215
102# LaMnO3 25 23.830 −0.047

3.3. Model Application

Despite construction of several effective ML models across various fields [66], most of
them are not readily accessible to experimental researchers. We adopted two strategies (de-
veloping an online web service and conducting virtual screening) to facilitate the utilization
of these models by scientists conducting material experiments.
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3.3.1. Online Web Service

We established a webserver based on the SVR-RBF model to simplify the prediction of
SSA for ABO3-type perovskites, aiding in designing materials with desired properties. This
webserver offers efficiency, convenience, and flexibility in guiding the design and development
of ABO3-type perovskites. A screenshot of the webserver (http://1.14.49.110/online_predict/
Perovskite accessed on 7 June 2024) is shown in Figure 6. To use the webserver, users
input the chemical formulas of ABO3-type perovskites into the corresponding dialog box
and select values for the four synthetic parameters need be selected from dropdown lists.
The guidelines for inputting the molecular formulas of perovskites are provided in small
characters at the bottom of Figure 6. The OCPMDM tool automatically generates the atomic
parameters based on the formulas provided, eliminating the need for users to enter them
manually. Subsequently, the predictive value of SSA of the sample is generated by clicking
the “Predict” button. This entire predictive process typically takes a few seconds.
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3.3.2. Virtual Screening

The results based on the LOOCV and external test indicated the effectiveness and
reliability of the SVR-RBF model in predicting the SSA of ABO3-type perovskites. Con-
sequently, the model was used to predict the SSA of virtual samples to identify potential
candidates. A schematic representation of the virtual screening of ABO3-type perovskites
is shown in Figure 7.

http://1.14.49.110/online_predict/Perovskite
http://1.14.49.110/online_predict/Perovskite
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The virtual screening process is summarized below:
(1) In the formula A1y(A2nA3(1−y−n))B1x(B2mB3(1−x−m))O3 for ABO3-type perovskites,

the values of x and y range from 0.6 to 1.0 in increments of 0.01, with 0 ≤ n ≤ 0.4 and
0 ≤ m ≤ 0.4.

(2) The tolerance factor tf of perovskites ranged from 0.8 to 1.0 to ensure a stable
perovskite structure.

(3) The A-site and B-site allows for a maximum of three and two different doping
ions, respectively.

(4) When the first element in the A-site space is La, the second element can be Bi, Sr, or
Ca with a doping ratio ranging from 0.0 to 0.4. The third element in the A-site space is Ba
with the remaining doping ratio.

(5) When the first element in the A-site space is Ca, the second element in A-site space
is Ag and the third element is La with the remaining doping ratio.

(6) When the first element in the A-site space is Na, the second element is La with the
remainder of the doping ratio.

(7) The elements in A-site space can be Zn, Pr, Sr, or Ga without doping other elements.
(8) When the first element in the B-site is Co, Fe, Cu, Ni, Mg, or Al, the second element

can be Mg, Co, Ni, Cu, Fe, Bi, or Ru, with the remaining doping ratio, ensuring that the
second element is different from the first element.

(9) The element in the B-site can be Ti, Cr, Ta, or Mn without doping other elements.
(10) The ranges of CT, AT, and DT are (400 ◦C, 1000 ◦C), (2h, 15h), and (80 ◦C, 300 ◦C),

respectively, with steps of 50 ◦C, 1 h, and 10 ◦C, respectively.
(11) The values of PM can be 1, 2, or 3.
We identified the samples with potentially higher SSA than the highest SSA (56 m2g−1)

observed in the existing dataset through virtual screening and predictive calculations using
the SVR-RBF model. The top two candidates are presented in Table 3, with the highest
predictive SSA value reaching 67.884 m2g−1.

Table 3. The top two candidates with potentially higher SSA than the dataset value.

No. Molecular Formula SSA (m2g−1) DT (◦C) AH (h) PM Fisher (1) Fisher (2)

1 La0.61Ba0.39TiO3 67.884 280 9 1 0.953 1.511
2 La0.51Ba0.49TiO3 66.158 280 9 1 0.813 1.471

3.4. Mechanism Mining

We evaluated the relationships between the key features of the model and SSA to
further explore the synthesis mechanism of ABO3-type perovskites. The optimal conditions
for the samples with higher SSA were identified by pattern recognition.
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3.4.1. Relationships between Key Features and SSA

The relationships between the key features and SSA are explored, and the findings
are presented in Figure 8. The results indicate that ABO3-type perovskites may exhibit
higher SSA when the drying temperature is either below 120 ◦C or above 250 ◦C (Figure 8a).
Excessive calcination time tends to result in low SSA. In addition, the excessive melting
point of B-site was not conducive to achieving a high SSA (Figure 8b). Conversely, a higher
density of the A-site correlated with a higher SSA. Furthermore, a higher PCA3 value and a
lower PCA6 value were associated with higher SSA (Figure 8c). A larger electron affinity
at the A-site and a B-site electron affinity ranging between 0 and 40 kJ/mol potentially
generated higher SSA (Figure 8d).
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Figure 9. A clear distribution pattern was observed for the two categories of samples (Fig-
ure 9). The results showed that most of the superior samples were clustered in a rectan-
gular area of the projection graph, accounting for approximately 90.24% of the total sam-
ples in that region. This indicates a significant concentration of samples with higher SSA 
in a specific area of the projection. The results of pattern recognition for all samples in the 
training set are summarized in Table 4. The two categories of samples exhibited F1_score 
equal to or exceeding 0.8, indicating robust performance of the pattern recognition model. 
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3.4.2. Pattern Recognition

The samples were divided into two groups based on their SSA: “superior” with higher
SSA and “inferior” with lower SSA. The samples frequently have relatively high SSA in
the superior region of the projection diagram. The projection of pattern recognition was
obtained through the Fisher discriminant analysis method [67,68] and is illustrated in
Figure 9. A clear distribution pattern was observed for the two categories of samples
(Figure 9). The results showed that most of the superior samples were clustered in a
rectangular area of the projection graph, accounting for approximately 90.24% of the total
samples in that region. This indicates a significant concentration of samples with higher SSA
in a specific area of the projection. The results of pattern recognition for all samples in the
training set are summarized in Table 4. The two categories of samples exhibited F1_score
equal to or exceeding 0.8, indicating robust performance of the pattern recognition model.

The top two samples with potentially higher SSA are highlighted by purple rectangles
in Figure 9. The samples should fall within this rectangular region to achieve new ABO3-
type perovskites with optimal SSA. The expressions defining the superior region are
as follows:

−0.4618 ≤ Fisher(1) ≤ 1.565 (3)

−0.0858 ≤ Fisher(2) ≤ 1.587 (4)
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Table 4. The evaluation results of pattern recognition.

Index “Superior” “Inferior”

True Positives 37 32
False Positives 4 12
False Negatives 12 4
Precision 0.902 0.727
Recall 0.755 0.889
F1_score 0.822 0.8

4. Conclusions

The aim of this study was to construct an SVR model for accelerating the design of
ABO3-type perovskites with optimal SSA, using a six-step approach. The analysis mainly fo-
cused on determining the influence of the key features on the SSA (1.05~56 m2g−1) of ABO3-
type perovskites synthesized through the sol–gel technique. Results from LOOCV, external
test, and the validation set demonstrate that the SVR-RBF model effectively predicts SSA
of ABO3-type perovskites with robust accuracy. Key features affecting SSA of ABO3-type
perovskites were identified using FSM and BSM incorporated in SVR-RBF. The perovskite
candidates with higher SSA (67.884 m2g−1) than the highest value (56 m2g−1) of SSA
observed using the existing dataset were identified by the SVR-RBF model, virtual screen-
ing, and pattern recognition. A webserver (http://1.14.49.110/online_predict/Perovskite
(accessed on 7 June 2024)) based on the constructed model was developed to facilitate
ease of use for researchers interested in ABO3-type perovskites. This webserver allows
rapid and convenient prediction of SSA of ABO3-type perovskites and it is freely accessible.
Furthermore, with the increase in relevant experimental data, we aim to collect more data
and apply more algorithms to further enhance the predictive performance of the model
in future endeavors. The approach outlined in this study is instrumental in accelerat-
ing material design and can be used for various applications in addition to ABO3-type
perovskite materials.
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Abbreviations

Abbreviation Full Name
SSA Specific Surface Area
ML Machine Learning
SVR Support Vector Regression
LOOCV Leave-one-out Cross-validation
RBF Radial Basis Function
PM Synthetic Mode
CT Calcination Temperature
AH Calcination Time
DT Drying Temperature
OCPMDM Online Computational Platform of Material Data Mining
mRMR Max Relevance Min Redundancy
RA/RB Ratio of ionic radius
α Unit cell lattice edge
tf Tolerance factor
RA Ionic Radius of A-site
RB Ionic Radius of B-site
RO Ionic Radius of O
DTR Decision Tree Regression
GBR Gradient Boosting Regression
PLS Partial Least Squares
RVM Relevance Vector Machine
LKF Linear Kernel Function
PKF Polynomial Kernel Function
RFR Random Forest Regression
BPNN Back Propagation Neural Network
RMSE Root Mean Square Error
R Pearson correlation coefficient
FSM Forward Selection Method
BSM Backward Selection Method
GA Genetic Algorithm
ZIA Ionization Energy of A-site
∆fusA Enthalpy of fusion at the melting point of A-site
TmA Melting Point of A-site
TmB Melting Point of B-site
TbA Boiling Point of A-site
ρA Density of A-site
EAa Electron Affinity of A-site
EAb Electron Affinity of B-site
PCA3 Third principal component
PCA6 Sixth principal component
R2 The coefficient of determination



Materials 2024, 17, 3026 14 of 18

References
1. Ji, Q.Q.; Bi, L.; Zhang, J.T.; Cao, H.J.; Zhao, X.S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction

reaction. Energy Environ. Sci. 2020, 13, 1408–1428. [CrossRef]
2. Zhao, J.F.; Gao, J.C.; Li, W.M.; Qian, Y.T.; Shen, X.D.; Wang, X.; Shen, X.; Hu, Z.W.; Dong, C.; Huang, Q.Z.; et al. A combinatory

ferroelectric compound bridging simple ABO3 and A-site-ordered quadruple perovskite. Nat. Commun. 2021, 12, 747. [CrossRef]
3. Zhu, J.J.; Li, H.L.; Zhong, L.Y.; Xiao, P.; Xu, X.L.; Yang, X.G.; Zhao, Z.; Li, J.L. Perovskite oxides: Preparation, characterizations,

and applications in heterogeneous catalysis. ACS Catal. 2014, 4, 2917–2940. [CrossRef]
4. Shang, C.Y.; Xiao, X.; Xu, Q. Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals for

oxygen evolution catalysis. Coord. Chem. Rev. 2023, 485, 215109. [CrossRef]
5. Wang, Y.; Lv, Z.Y.; Zhou, L.; Chen, X.L.; Chen, J.R.; Zhou, Y.; Roy, V.A.L.; Han, S.T. Emerging perovskite materials for high density

data storage and artificial synapses. J. Mater. Chem. C 2018, 6, 1600–1617. [CrossRef]
6. Wang, Y.N.; Wang, L.A.; Zhang, K.X.; Xu, J.Y.; Wu, Q.N.; Xie, Z.B.; An, W.; Liang, X.; Zou, X.X. Electrocatalytic water splitting

over perovskite oxide catalysts. Chin. J. Catal. 2023, 50, 109–125. [CrossRef]
7. Kumar, A.; Kumar, A.; Krishnan, V. Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS

Catal. 2020, 10, 10253–10315. [CrossRef]
8. Bhattar, S.; Abedin, M.A.; Kanitkar, S.; Spivey, J.J. A review on dry reforming of methane over perovskite derived catalysts. Catal.

Today 2021, 365, 2–23. [CrossRef]
9. Sun, C.W.; Alonso, J.A.; Bian, J.J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv.

Energy Mater. 2021, 11, 2000459. [CrossRef]
10. Deeksha; Kour, P.; Ahmed, I.; Sunny; Sharma, S.K.; Yadav, K.; Mishra, Y.K. Transition metal-based perovskite oxides: Emerging

electrocatalysts for oxygen evolution reaction. ChemCatChem 2023, 15, e202300040.
11. Zhang, S.J.; Jia, Z.R.; Cheng, B.; Zhao, Z.W.; Lu, F.; Wu, G.L. Recent progress of perovskite oxides and their hybrids for

electromagnetic wave absorption: A mini-review. Adv. Compos. Hybrid Mater. 2022, 5, 2440–2460. [CrossRef]
12. Zhang, F.; Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902579.

[CrossRef]
13. Zuo, C.T.; Bolink, H.J.; Han, H.W.; Huang, J.S.; Cahen, D.; Ding, L.M. Advances in perovskite solar cells. Adv. Sci. 2016, 3, 1500324.

[CrossRef] [PubMed]
14. Gharibzadeh, S.; Nejand, B.A.; Jakoby, M.; Abzieher, T.; Hauschild, D.; Moghadamzadeh, S.; Schwenzer, J.A.; Brenner, P.;

Schmager, R.; Haghighirad, A.A.; et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D
perovskite heterostructure. Adv. Energy Mater. 2019, 9, 1803699. [CrossRef]

15. Chen, W.J.; Huang, Z.M.; Yao, H.T.; Liu, Y.; Zhang, Y.H.; Li, Z.J.; Zhou, H.M.; Xiao, P.; Chen, T.; Sun, H.D.; et al. Highly bright and
stable single-crystal perovskite light-emitting diodes. Nat. Photon. 2023, 17, 401–407. [CrossRef]

16. Bai, S.; Wu, Z.W.; Wu, X.J.; Jin, Y.Z.; Zhao, N.; Chen, Z.H.; Mei, Q.Q.; Wang, X.Z.; Ye, Z.; Song, T.Y.; et al. High-performance planar
heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014,
7, 1749–1758. [CrossRef]

17. Zhumekenov, A.A.; Saidaminov, M.I.; Haque, M.A.; Alarousu, E.; Sarmah, S.P.; Murali, B.; Dursun, I.; Miao, X.H.; Abdelhady,
A.L.; Wu, T.; et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion
length. ACS Energy Lett. 2016, 1, 32–37. [CrossRef]

18. Yettapu, G.R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P. Terahertz conductivity within colloidal
CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848.
[CrossRef] [PubMed]

19. Oga, H.; Saeki, A.; Ogomi, Y.; Hayase, S.; Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite
solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 2014, 136,
13818–13825. [CrossRef]

20. Jana, A.; Cho, S.; Patil, S.A.; Meena, A.; Jo, Y.; Sree, V.G.; Park, Y.; Kim, H.; Im, H.; Taylor, R.A. Perovskite: Scintillators, direct
detectors, and X-ray imagers. Mater. Today 2022, 55, 110–136. [CrossRef]

21. Ma, F.; Zhao, Y.; Li, J.H.; Zhang, X.W.; Gu, H.S.; You, J.B. Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem.
2021, 52, 393–411. [CrossRef]

22. Hossain, M.I.; Alharbi, F.H.; Tabet, N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar
cells. Sol. Energy 2015, 120, 370–380. [CrossRef]

23. Huang, L.; Huang, X.J.; Yan, J.; Liu, Y.H.; Jiang, H.; Zhang, H.G.; Tang, J.F.; Liu, Q. Research progresses on the application of
perovskite in adsorption and photocatalytic removal of water pollutants. J. Hazard. Mater. 2023, 442, 130024. [CrossRef]

24. Li, C.L.; Han, C.; Zhang, Y.B.; Zang, Z.G.; Wang, M.; Tang, X.S.; Du, J.H. Enhanced photoresponse of self-powered perovskite
photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Sol. Energy Mater. Sol. Cells 2017, 172, 341–346. [CrossRef]

25. Zhao, K.; He, F.; Huang, Z.; Wei, G.Q.; Zheng, A.Q.; Li, H.B.; Zhao, Z.L. Perovskite-type oxides LaFe1-xCoxO3 for chemical
looping steam methane reforming to syngas and hydrogen co-production. Appl. Energy 2016, 168, 193–203. [CrossRef]

26. Qin, F.; Chen, J.; Liu, J.W.; Liu, L.; Tang, C.J.; Tang, B.; Li, G.F.; Zeng, L.C.; Li, H.L.; Yi, Z. Design of high efficiency perovskite solar
cells based on inorganic and organic undoped double hole layer. Sol. Energy 2023, 262, 111796. [CrossRef]

https://doi.org/10.1039/D0EE00092B
https://doi.org/10.1038/s41467-020-20833-6
https://doi.org/10.1021/cs500606g
https://doi.org/10.1016/j.ccr.2023.215109
https://doi.org/10.1039/C7TC05326F
https://doi.org/10.1016/S1872-2067(23)64452-3
https://doi.org/10.1021/acscatal.0c02947
https://doi.org/10.1016/j.cattod.2020.10.041
https://doi.org/10.1002/aenm.202000459
https://doi.org/10.1007/s42114-022-00458-7
https://doi.org/10.1002/aenm.201902579
https://doi.org/10.1002/advs.201500324
https://www.ncbi.nlm.nih.gov/pubmed/27812475
https://doi.org/10.1002/aenm.201803699
https://doi.org/10.1038/s41566-023-01167-3
https://doi.org/10.1007/s12274-014-0534-8
https://doi.org/10.1021/acsenergylett.6b00002
https://doi.org/10.1021/acs.nanolett.6b01168
https://www.ncbi.nlm.nih.gov/pubmed/27367476
https://doi.org/10.1021/ja506936f
https://doi.org/10.1016/j.mattod.2022.04.009
https://doi.org/10.1016/j.jechem.2020.04.027
https://doi.org/10.1016/j.solener.2015.07.040
https://doi.org/10.1016/j.jhazmat.2022.130024
https://doi.org/10.1016/j.solmat.2017.08.014
https://doi.org/10.1016/j.apenergy.2016.01.052
https://doi.org/10.1016/j.solener.2023.111796


Materials 2024, 17, 3026 15 of 18

27. Qin, W.B.; Yuan, Z.Y.; Gao, H.L.; Zhang, R.Z.; Meng, F.L. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation
on its gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015. [CrossRef]

28. Hossain, M.K.; Toki, G.F.I.; Kuddus, A.; Rubel, M.H.K.; Hossain, M.M.; Bencherif, H.; Rahman, M.F.; Islam, M.R.; Mushtaq, M.
An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based
perovskite solar cells. Sci. Rep. 2023, 13, 2521. [CrossRef]

29. Luo, W.; Phung, D.; Tran, T.; Gupta, S.; Rana, S.; Karmakar, C.; Shilton, A.; Yearwood, J.; Dimitrova, N.; Ho, T.B.; et al. Guidelines
for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view. J. Med.
Internet Res. 2016, 18, e323. [CrossRef] [PubMed]

30. Cuoco, E.; Powell, J.; Cavaglià, M.; Ackley, K.; Bejger, M.; Chatterjee, C.; Coughlin, M.; Coughlin, S.; Easter, P.; Essick, R.; et al.
Enhancing gravitational-wave science with machine learning. Mach. Learn. Sci. Technol. 2021, 2, 011002. [CrossRef]

31. Hamdia, K.M.; Ghasemi, H.; Bazi, Y.; AlHichri, H.; Alajlan, N.; Rabczuk, T. A novel deep learning based method for the
computational material design of flexoelectric nanostructures with topology optimization. Finite Elem. Anal. Des. 2019, 165, 21–30.
[CrossRef]

32. Fu, Y.Z.; Downey, A.R.J.; Yuan, L.; Zhang, T.Y.; Pratt, A.; Balogun, Y. Machine learning algorithms for defect detection in metal
laser-based additive manufacturing: A review. J. Manuf. Process. 2022, 75, 693–710. [CrossRef]

33. Zhang, L.; He, M.; Shao, S.F. Machine learning for halide perovskite materials. Nano Energy 2020, 78, 105380. [CrossRef]
34. Wang, Z.M.; Yang, M.; Xie, X.X.; Yu, C.Y.; Jiang, Q.L.; Huang, M.N.; Algadi, H.; Guo, Z.H.; Zhang, H. Applications of machine

learning in perovskite materials. Adv. Compos. Hybrid Mater. 2022, 5, 2700–2720. [CrossRef]
35. Ali, A.; Park, H.; Mall, R.; Aissa, B.; Sanvito, S.; Bensmail, H.; Belaidi, A.; El-Mellouhi, F. Machine learning accelerated recovery of

the cubic structure in mixed-cation perovskite thin films. Chem. Mater. 2020, 32, 2998–3006. [CrossRef]
36. Weng, B.C.; Song, Z.L.; Zhu, R.L.; Yan, Q.Y.; Sun, Q.D.; Grice, C.G.; Yan, Y.F.; Yin, W.J. Simple descriptor derived from symbolic

regression accelerating the discovery of new perovskite catalysts. Nat. Commun. 2020, 11, 3513. [CrossRef] [PubMed]
37. Tao, Q.L.; Chang, D.P.; Lu, T.; Li, L.; Chen, H.M.; Yang, X.; Liu, X.J.; Li, M.J.; Lu, W.C. Multiobjective stepwise design strategy-

assisted design of high-performance perovskite oxide photocatalysts. J. Phys. Chem. C 2021, 125, 21141–21150. [CrossRef]
38. Shi, L.; Chang, D.P.; Ji, X.B.; Lu, W.C. Using data mining to search for perovskite materials with higher specific surface area.

J. Chem. Inf. Model. 2018, 58, 2420–2427. [CrossRef]
39. Yang, J.Q.; Mannodi-Kanakkithodi, A. High-throughput computations and machine learning for halide perovskite discovery.

MRS Bull. 2022, 47, 940–948. [CrossRef]
40. Wei, K.X.; Faraj, Y.; Yao, G.; Xie, R.Z.; Lai, B. Strategies for improving perovskite photocatalysts reactivity for organic pollutants

degradation: A review on recent progress. Chem. Eng. J. 2021, 414, 128783. [CrossRef]
41. Bajorowicz, B.; Nadolna, J.; Lisowski, W.; Klimczuk, T.; Zaleska-Medynska, A. The effects of bifunctional linker and reflux time

on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts. Appl.
Catal. B Environ. 2017, 203, 452–464. [CrossRef]

42. Ma, Y.J.; Su, P.; Ge, Y.Z.; Wang, F.W.; Xue, R.X.; Wang, Z.J.; Li, Y.S. A novel LaAlO3 perovskite with large surface area supported
Ni-based catalyst for methane dry reforming. Catal. Lett. 2022, 152, 2993–3003. [CrossRef]

43. Sohrabian, M.; Mahdikhah, V.; Alimohammadi, E.; Sheibani, S. Improved photocatalytic performance of SrTiO3 through a
Z-scheme polymeric-perovskite heterojunction with g-C3N4 and plasmonic resonance of Ag mediator. Appl. Surf. Sci. 2023,
618, 156682. [CrossRef]

44. Zulfiqar, W.; Javed, F.; Abbas, G.; Larsson, J.A.; Alay-e-Abbas, S.M. Stabilizing the dopability of chalcogens in BaZrO3 through
TiZr co-doping and its impact on the opto-electronic and photocatalytic properties: A meta-GGA level DFT study. Int. J. Hydrogen
Energy 2024, 58, 409–415. [CrossRef]

45. Hagendorff, T. Linking human and machine behavior: A new approach to evaluate training data quality for beneficial machine
learning. Minds Mach. 2021, 31, 563–593. [CrossRef] [PubMed]

46. Akhter, R.; Sofi, S.A. Precision agriculture using IoT data analytics and machine learning. J. King Saud Univ. Comput. Inf. Sci. 2022,
34, 5602–5618. [CrossRef]

47. Qin, W.B.; Yuan, Z.Y.; Shen, Y.B.; Zhang, R.Z.; Meng, F.L. Phosphorus-doped porous perovskite LaFe1-xPxO3-δ nanosheets with
rich surface oxygen vacancies for ppb level acetone sensing at low temperature. Chem. Eng. J. 2022, 431, 134280. [CrossRef]

48. Chang, D.P.; Lu, W.C.; Wang, G. Designing bulk metallic glasses materials with higher reduced glass transition temperature via
machine learning. Chemom. Intell. Lab. Syst. 2022, 228, 104621. [CrossRef]

49. Chang, D.P.; Xu, P.C.; Ji, X.B.; Li, M.J.; Lu, W.C. Application of Online Computational Platform of Materials Data Mining
(OCPMDM) in Search for ABO3 Perovskites with Multi-Properties. Sci. Adv. Mater. 2023, 15, 1014–1025. [CrossRef]

50. Xu, P.C.; Ji, X.B.; Li, M.J.; Lu, W.C. Small data machine learning in materials science. NPJ Comput. Mater. 2023, 9, 42. [CrossRef]
51. Chang, D.P.; Xu, P.C.; Li, M.J.; Lu, W.C. OCPMDM 2.0: An intelligent solution for materials data mining. Chemom. Intell. Lab. Syst.

2023, 243, 105022.
52. Shen, Y.S.; Wang, J.Y.; Ji, X.B.; Lu, W.C. Machine Learning-Assisted Discovery of 2D Perovskites with Tailored Bandgap for Solar

Cells. Adv. Theory Simul. 2023, 6, 2200922. [CrossRef]
53. Liu, X.J.; Xu, P.C.; Zhao, J.J.; Lu, W.C.; Li, M.J.; Wang, G. Material machine learning for alloys: Applications, challenges and

perspectives. J. Alloys Compd. 2022, 921, 165984. [CrossRef]

https://doi.org/10.1016/j.snb.2021.130015
https://doi.org/10.1038/s41598-023-28506-2
https://doi.org/10.2196/jmir.5870
https://www.ncbi.nlm.nih.gov/pubmed/27986644
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1016/j.finel.2019.07.001
https://doi.org/10.1016/j.jmapro.2021.12.061
https://doi.org/10.1016/j.nanoen.2020.105380
https://doi.org/10.1007/s42114-022-00560-w
https://doi.org/10.1021/acs.chemmater.9b05342
https://doi.org/10.1038/s41467-020-17263-9
https://www.ncbi.nlm.nih.gov/pubmed/32665539
https://doi.org/10.1021/acs.jpcc.1c05482
https://doi.org/10.1021/acs.jcim.8b00436
https://doi.org/10.1557/s43577-022-00414-2
https://doi.org/10.1016/j.cej.2021.128783
https://doi.org/10.1016/j.apcatb.2016.10.027
https://doi.org/10.1007/s10562-021-03910-3
https://doi.org/10.1016/j.apsusc.2023.156682
https://doi.org/10.1016/j.ijhydene.2024.01.202
https://doi.org/10.1007/s11023-021-09573-8
https://www.ncbi.nlm.nih.gov/pubmed/34602749
https://doi.org/10.1016/j.jksuci.2021.05.013
https://doi.org/10.1016/j.cej.2021.134280
https://doi.org/10.1016/j.chemolab.2022.104621
https://doi.org/10.1166/sam.2023.4525
https://doi.org/10.1038/s41524-023-01000-z
https://doi.org/10.1002/adts.202200922
https://doi.org/10.1016/j.jallcom.2022.165984


Materials 2024, 17, 3026 16 of 18

54. Roy, A.; Chakraborty, S. Support vector machine in structural reliability analysis: A review. Reliab. Eng. Syst. Saf. 2023, 233, 109126.
[CrossRef]

55. Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529.
[CrossRef]

56. Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.W.; Brooks, M.; Lee, M.J.; Asadi, H. Peering into the black
box of artificial intelligence: Evaluation metrics of machine learning methods. Am. J. Roentgenol. 2019, 212, 38–43. [CrossRef]
[PubMed]

57. Gui, G.; Liu, F.; Sun, J.L.; Yang, J.; Zhou, Z.Q.; Zhao, D.X. Flight delay prediction based on aviation big data and machine learning.
IEEE Trans. Veh. Technol. 2020, 69, 140–150. [CrossRef]

58. Li, J.D.; Cheng, K.W.; Wang, S.H.; Morstatter, F.; Trevino, R.P.; Tang, J.L.; Liu, H. Feature selection: A data perspective. ACM
Comput. Surv. 2018, 50, 1–45. [CrossRef]

59. He, Z.M.; Li, L.Z.; Huang, Z.M.; Situ, H.Z. Quantum-enhanced feature selection with forward selection and backward elimination.
Quantum Inf. Process. 2018, 17, 154. [CrossRef]

60. Aregbesola, S.O.; Won, J.; Kim, S.; Byun, Y.H. Sequential backward feature selection for optimizing permanent strain model of
unbound aggregates. Case Stud. Constr. Mater. 2023, 19, e02554. [CrossRef]

61. Oreski, S.; Oreski, G. Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 2014, 41,
2052–2064. [CrossRef]

62. Zhang, Y.; Gong, D.W.; Gao, X.Z.; Tian, T.; Sun, X.Y. Binary differential evolution with self-learning for multi-objective feature
selection. Inf. Sci. 2020, 507, 67–85. [CrossRef]

63. Aït-Sahalia, Y.; Xiu, D.C. Principal Component Analysis of High-Frequency Data. J. Am. Stat. Assoc. 2019, 114, 287–303. [CrossRef]
64. Navarro, C.L.A.; Damen, J.A.A.; Takada, T.; Nijman, S.W.J.; Dhiman, P.; Ma, J.; Collins, G.S.; Bajpai, R.; Riley, R.D.; Moons,

K.G.M.; et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic
review. BMJ Br. Med. J. 2021, 375, n2281. [CrossRef]

65. Lindauer, M.; Eggensperger, K.; Feurer, M.; Biedenkapp, A.; Deng, D.; Benjamins, C.; Ruhkopf, T.; Sass, R.; Hutter, F. SMAC3:
A versatile bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 2022, 23, 1–9.

66. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [CrossRef]
67. Mahmoudi, N.; Duman, E. Detecting credit card fraud by Modified Fisher Discriminant Analysis. Expert Syst. Appl. 2015, 42,

2510–2516. [CrossRef]
68. Zheng, Z.; Petrone, R.; Péra, M.C.; Hissel, D.; Becherif, M.; Pianese, C.; Steiner, N.Y.; Sorrentino, M. A review on non-model based

diagnosis methodologies for PEM fuel cell stacks and systems. Int. J. Hydrogen Energy 2013, 38, 8914–8926. [CrossRef]
69. Li, W.; Jacobs, R.; Morgan, D. Predicting the thermodynamic stability of perovskite oxides using machine learning models. Comp.

Mater. Sci. 2018, 150, 454–463. [CrossRef]
70. Liu, H.Y.; Cheng, J.C.; Dong, H.Z.; Feng, J.G.; Pang, B.L.; Tian, Z.Y.; Ma, S.; Xia, F.J.; Zhang, C.K.; Dong, L.F. Screening stable and

metastable ABO3 perovskites using machine learning and the materials project. Comp. Mater. Sci. 2020, 177, 109614. [CrossRef]
71. Balachandran, P.V.; Emery, A.A.; Gubernatis, J.E.; Lookman, T.; Wolverton, C.; Zunger, A. Predictions of new ABO3 perovskite

compounds by combining machine learning and density functional theory. Phys. Rev. Mater. 2018, 2, 043802. [CrossRef]
72. Li, C.J.; Hao, H.; Xu, B.; Zhao, G.H.; Chen, L.H.; Zhang, S.J.; Liu, H.X. A progressive learning method for predicting the band gap

of ABO3 perovskites using an instrumental variable. J. Mater. Chem. C 2020, 8, 3127–3136. [CrossRef]
73. Zhai, X.Y.; Chen, M.T.; Lu, W.C. Accelerated search for perovskite materials with higher Curie temperature based on the machine

learning methods. Comp. Mater. Sci. 2018, 151, 41–48. [CrossRef]
74. Yang, Z.X.; Gao, Z.R.; Sun, X.F.; Cai, H.L.; Zhang, F.M.; Wu, X.S. High critical transition temperature of lead-based perovskite

ferroelectric crystals: A machine learning study. ACTA Phys. Sin-Ch Ed. 2019, 68, 210502. [CrossRef]
75. Xiao, L.H.; Zhang, Q.; Xu, X.; Ji, X.B.; Lu, W.C. Support vector regression assisted predictions the néel temperature of perovskites

manganites. Comput. Appl. Chem. 2018, 35, 349–357.
76. Zhang, Y.; Xu, X.J. Machine learning the magnetocaloric effect in manganites from lattice parameters. Appl. Phys. A Mater. 2020,

126, 341. [CrossRef]
77. Xu, L.; Wencong, L.; Chunrong, P.; Qiang, S.; Jin, G. Two semi-empirical approaches for the prediction of oxide ionic conductivities

in ABO3 perovskites. Comp. Mater. Sci. 2009, 46, 860–868. [CrossRef]
78. Priyanga, G.S.; Mattur, M.N.; Nagappan, N.; Rath, S.; Thomas, T. Prediction of nature of band gap of perovskite oxides (ABO3)

using a machine learning approach. J. Mater. 2022, 8, 937–948.
79. Chen, L.P.; Wang, X.C.; Xia, W.J.; Liu, C.H. PSO-SVR predicting for the Ehull of ABO3-type compounds to screen the thermody-

namic stable perovskite candidates based on multi-scale descriptors. Comp. Mater. Sci. 2022, 211, 111435. [CrossRef]
80. Priyadarshini, R.; Joardar, H.; Bisoy, S.K.; Badapanda, T. Crystal structural prediction of perovskite materials using machine

learning: A comparative study. Solid. State Commun. 2023, 361, 115062. [CrossRef]
81. Naseri, M.; Gusarov, S.; Salahub, D.R. Quantum Machine Learning in Materials Prediction: A Case Study on ABO3 Perovskite

Structures. J. Phys. Chem. Lett. 2023, 14, 6940–6947. [CrossRef]
82. Chen, L.P.; Xia, W.J.; Yao, T.Z. Identifying descriptors for perovskite structure of composite oxides and inferring formability via

low-dimensional described features. Comp. Mater. Sci. 2023, 226, 112216. [CrossRef]

https://doi.org/10.1016/j.ress.2023.109126
https://doi.org/10.1016/j.catena.2018.03.003
https://doi.org/10.2214/AJR.18.20224
https://www.ncbi.nlm.nih.gov/pubmed/30332290
https://doi.org/10.1109/TVT.2019.2954094
https://doi.org/10.1145/3136625
https://doi.org/10.1007/s11128-018-1924-8
https://doi.org/10.1016/j.cscm.2023.e02554
https://doi.org/10.1016/j.eswa.2013.09.004
https://doi.org/10.1016/j.ins.2019.08.040
https://doi.org/10.1080/01621459.2017.1401542
https://doi.org/10.1136/bmj.n2281
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1016/j.eswa.2014.10.037
https://doi.org/10.1016/j.ijhydene.2013.04.007
https://doi.org/10.1016/j.commatsci.2018.04.033
https://doi.org/10.1016/j.commatsci.2020.109614
https://doi.org/10.1103/PhysRevMaterials.2.043802
https://doi.org/10.1039/C9TC06632B
https://doi.org/10.1016/j.commatsci.2018.04.031
https://doi.org/10.7498/aps.68.20190942
https://doi.org/10.1007/s00339-020-03503-8
https://doi.org/10.1016/j.commatsci.2009.04.047
https://doi.org/10.1016/j.commatsci.2022.111435
https://doi.org/10.1016/j.ssc.2022.115062
https://doi.org/10.1021/acs.jpclett.3c01703
https://doi.org/10.1016/j.commatsci.2023.112216


Materials 2024, 17, 3026 17 of 18

83. Fan, X.Y. Prediction of formation energy using two-stage machine learning based on clustering. Mater. Tehnol. 2021, 55, 263–268.
[CrossRef]

84. Sharma, V.; Kumar, P.; Dev, P.; Pilania, G. Machine learning substitutional defect formation energies in ABO3 perovskites. J. Appl.
Phys. 2020, 128. [CrossRef]

85. McGuinness, K.P.; Oliynyk, A.O.; Lee, S.; Molero-Sanchez, B.; Addo, P.K. Machine-learning prediction of thermal expansion
coefficient for perovskite oxides with experimental validation. Phys. Chem. Chem. Phys. 2023, 25, 32123–32131. [CrossRef]

86. Zhang, Y.; Xu, X.J. Modeling oxygen ionic conductivities of ABO3 Perovskites through machine learning. Chem. Phys. 2022,
558, 111511. [CrossRef]

87. Zhao, J.; Wang, X.Y. Screening perovskites from ABO3 combinations generated by constraint satisfaction techniques using
machine learning. ACS Omega 2022, 7, 10483–10491. [CrossRef]

88. Lourenço, M.P.; Tchagang, A.; Shankar, K.; Thangadurai, V.; Salahub, D.R. Active learning for optimum experimental design--
insight into perovskite oxides. Can. J. Chem. 2023, 101, 734–744. [CrossRef]

89. Bhattacharya, S.; Roy, A. Linking stability with molecular geometries of perovskites and lanthanide richness using machine
learning methods. Comp. Mater. Sci. 2024, 231, 112581. [CrossRef]

90. Li, W.; Wang, Z.G.; Xiao, X.; Zhang, Z.Q.; Janotti, A.; Rajasekaran, S.; Medasani, B. Predicting band gaps and band-edge positions
of oxide perovskites using density functional theory and machine learning. Phys. Rev. B 2022, 106, 155156. [CrossRef]

91. Perween, S.; Ranjan, A. Improved visible-light photocatalytic activity in ZnTiO3 nanopowder prepared by sol-electrospinning.
Sol. Energ. Mat. Sol. C 2017, 163, 148–156. [CrossRef]

92. Orak, C.; Atalay, S.; Ersöz, G. Photocatalytic and photo-Fenton-like degradation of methylparaben on monolith-supported
perovskite-type catalysts. Sep. Sci. Technol. 2017, 52, 1310–1320. [CrossRef]

93. Sun, H.; Yang, H.; Cui, S.; Nie, K.; Wu, J. Simultaneous Mg-modification inside and outside of LaCoO3 lattice and their
photocatalytic properties. Chin. J. Inorg. Chem. 2016, 32, 1704–1712.

94. Abdulkadir, I.; Jonnalagadda, S.B.; Martincigh, B.S. Synthesis and effect of annealing temperature on the structural, magnetic and
photocatalytic properties of (La0.5Bi0.2Ba0.2Mn0.1)FeO(3−δ). Mater. Chem. Phys. 2016, 178, 196–203. [CrossRef]

95. Josephine, B.A.; Manikandan, A.; Teresita, V.M.; Antony, S.A. Fundamental study of LaMgxCr1−xO3−δ perovskites nano-
photocatalysts: Sol-gel synthesis, characterization and humidity sensing. Korean, J. Chem. Eng. 2016, 33, 1590–1598. [CrossRef]

96. Tijare, S.N.; Bakardjieva, S.; Subrt, J.; Joshi, M.V.; Rayalu, S.S.; Hishita, S.; Labhsetwar, N. Synthesis and visible light photocatalytic
activity of nanocrystalline PrFeO3 perovskite for hydrogen generation in ethanol-water system. J. Chem. Sci. 2014, 126, 517–525.
[CrossRef]

97. Tavakkoli, H.; Yazdanbakhsh, M. Fabrication of two perovskite-type oxide nanoparticles as the new adsorbents in efficient
removal of a pesticide from aqueous solutions: Kinetic, thermodynamic, and adsorption studies. Micropor. Mesopor. Mater. 2013,
176, 86–94. [CrossRef]

98. Li, H.; Cui, Y.; Wu, X.; Hong, W.; Hua, L. Effect of La contents on the structure and photocatalytic activity of La-SrTiO3 catalysts.
Chin. J. Inorg. Chem. 2012, 28, 2597–2604.

99. Li, Y.; Yao, S.; Wen, W.; Xue, L.; Yan, Y. Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite
LaNiO3. J. Alloy Compd. 2010, 491, 560–564. [CrossRef]

100. Li, S.; Jing, L.; Fu, W.; Yang, L.; Xin, B.; Fu, H. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its
relationships with photocatalytic activity under visible irradiation. Mater. Res. Bull. 2007, 42, 203–212. [CrossRef]

101. Puangpetch, T.; Sreethawong, T.; Chavadej, S. Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal
photocatalysts: Effects of metal type and loading. Int. J. Hydrogen Energy 2010, 35, 6531–6540. [CrossRef]

102. Puangpetch, T.; Sreethawong, T.; Yoshikawa, S.; Chavadej, S. Hydrogen production from photocatalytic water splitting over
mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. J. Mol. Catal. A-Chem. 2009, 312, 97–106. [CrossRef]

103. Touahra, F.; Rabahi, A.; Chebout, R.; Boudjemaa, A.; Lerari, D.; Sehailia, M.; Halliche, D.; Bachari, K. Enhanced catalytic behaviour
of surface dispersed nickel on LaCuO3 perovskite in the production of syngas: An expedient approach to carbon resistance
during CO2 reforming of methane. Int. J. Hydrogen Energy 2016, 41, 2477–2486. [CrossRef]

104. Sutthiumporn, K.; Maneerung, T.; Kathiraser, Y.; Kawi, S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite
(M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression. Int. J. Hydrogen Energy 2012, 37,
11195–11207. [CrossRef]

105. Luo, Y.; Wang, X.; Qian, Q.; Chen, Q. Studies on B sites in Fe-doped LaNiO3 perovskite for SCR of NOx with H2. Int. J. Hydrogen
Energy 2014, 39, 15836–15843. [CrossRef]

106. Parida, K.M.; Reddy, K.H.; Martha, S.; Das, D.P.; Biswal, N. Fabrication of nanocrystalline LaFeO3: An efficient sol–gel auto-
combustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hydrogen Energy 2010, 35, 12161–12168.
[CrossRef]

107. Dhanasekaran, P.; Gupta, N.M. Factors affecting the production of H2 by water splitting over a novel visible-light-driven
photocatalyst GaFeO3. Int. J. Hydrogen Energy 2012, 37, 4897–4907. [CrossRef]

108. Husin, H.; Chen, H.M.; Su, W.N.; Pan, C.J.; Chuang, W.T.; Sheu, H.-S.; Hwang, B.-J. Green fabrication of La-doped NaTaO3 via
H2O2 assisted sol–gel route for photocatalytic hydrogen production. Appl. Catal. B Environ. Energy 2011, 102, 343–351. [CrossRef]

109. Bui, D.-N.; Mu, J.; Wang, L.; Kang, S.-Z.; Li, X. Preparation of Cu-loaded SrTiO3 nanoparticles and their photocatalytic activity for
hydrogen evolution from methanol aqueous solution. Appl. Surf. Sci. 2013, 274, 328–333. [CrossRef]

https://doi.org/10.17222/mit.2020.174
https://doi.org/10.1063/5.0015538
https://doi.org/10.1039/D3CP04017H
https://doi.org/10.1016/j.chemphys.2022.111511
https://doi.org/10.1021/acsomega.2c00002
https://doi.org/10.1139/cjc-2022-0198
https://doi.org/10.1016/j.commatsci.2023.112581
https://doi.org/10.1103/PhysRevB.106.155156
https://doi.org/10.1016/j.solmat.2017.01.020
https://doi.org/10.1080/01496395.2017.1284866
https://doi.org/10.1016/j.matchemphys.2016.05.007
https://doi.org/10.1007/s11814-015-0282-9
https://doi.org/10.1007/s12039-014-0596-x
https://doi.org/10.1016/j.micromeso.2013.03.043
https://doi.org/10.1016/j.jallcom.2009.10.269
https://doi.org/10.1016/j.materresbull.2006.06.010
https://doi.org/10.1016/j.ijhydene.2010.04.015
https://doi.org/10.1016/j.molcata.2009.07.012
https://doi.org/10.1016/j.ijhydene.2015.12.062
https://doi.org/10.1016/j.ijhydene.2012.04.059
https://doi.org/10.1016/j.ijhydene.2014.07.135
https://doi.org/10.1016/j.ijhydene.2010.08.029
https://doi.org/10.1016/j.ijhydene.2011.12.068
https://doi.org/10.1016/j.apcatb.2010.12.024
https://doi.org/10.1016/j.apsusc.2013.03.054


Materials 2024, 17, 3026 18 of 18

110. Zhang, H.; Chen, G.; He, X.; Xu, J. Electronic structure and photocatalytic properties of Ag–La codoped CaTiO3. J. Alloy Compd.
2012, 516, 91–95. [CrossRef]

111. Tijare, S.N.; Joshi, M.V.; Padole, P.S.; Mangrulkar, P.A.; Rayalu, S.S.; Labhsetwar, N.K. Photocatalytic hydrogen generation through
water splitting on nano-crystalline LaFeO3 perovskite. Int. J. Hydrogen Energy 2012, 37, 10451–10456. [CrossRef]

112. Teresita, V.M.; Manikandan, A.; Josephine, B.A.; Sujatha, S.; Antony, S.A. Electromagnetic properties and humidity-sensing
studies of magnetically recoverable LaMgxFe1−xO3−δ perovskites nano-photocatalysts by Sol-Gel route. J. Supercond. Nov. Magn.
2016, 29, 1691–1701. [CrossRef]

113. Sydorchuk, V.; Lutsyuk, I.; Shved, V.; Hreb, V.; Kondyr, A.; Zakutevskyy, O.; Vasylechko, L. PrCo1−xFexO3 perovskite powders
for possible photocatalytic applications. Res. Chem. Intermediat 2020, 46, 1909–1930. [CrossRef]

114. Ibarra-Rodriguez, L.I.; Huerta-Flores, A.M.; Mora-Hernandez, J.M.; Torres-Martínez, L.M. Photocatalytic evolution of H2 over
visible-light active LaMO3(M: Co, Mn, Fe) perovskite materials: Roles of oxygenated species in catalytic performance. J. Phys.
Chem. Solids 2020, 136, 109189. [CrossRef]

115. Mota, N.; Álvarez-Galván, M.C.; Al-Zahrani, S.M.; Navarro, R.M.; Fierro, J.L.G. Diesel fuel reforming over catalysts derived from
LaCo1−xRuxO3 perovskites with high Ru loading. Int. J. Hydrogen Energy 2012, 37, 7056–7066. [CrossRef]

116. Agüero, F.N.; Morales, M.R.; Larrégola, S.; Izurieta, E.M.; Lopez, E.; Cadús, L.E. La1−xCaxAl1−yNiyO3 perovskites used as
precursors of nickel based catalysts for ethanol steam reforming. Int. J. Hydrogen Energy 2015, 40, 15510–15520. [CrossRef]

117. Hu, R.; Li, C.; Wang, X.; Sun, Y.; Jia, H.; Su, H.; Zhang, Y. Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol
degradation under visible light. Catal. Commun. 2012, 29, 35–39. [CrossRef]

118. Boumaza, S.; Boudjellal, L.; Brahimi, R.; Belhadi, A.; Trari, M. Synthesis by citrates sol-gel method and characterization of the
perovskite LaFeO3: Application to oxygen photo-production. J. Sol-Gel Sci. Technol. 2020, 94, 486–492. [CrossRef]

119. Wang, J.; Li, X.D.; Yu, Z.Q.; Zhang, S. Enhancing infrared emissivity of GdCoO3 with Ca doping: Potential for advanced thermal
control materials. Ceram. Int. 2024, 50, 9630–9639. [CrossRef]

120. Guo, J.X.; Jing, Y.; Shen, T.; Luo, H.D.; Liang, J.; Yuan, S.D. Effect of doped strontium on catalytic properties of La1−xSrxMnO3 for
rhodamine B degradation. J. Rare Earth 2021, 39, 1362–1369. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jallcom.2011.11.142
https://doi.org/10.1016/j.ijhydene.2012.01.120
https://doi.org/10.1007/s10948-016-3465-7
https://doi.org/10.1007/s11164-019-04071-0
https://doi.org/10.1016/j.jpcs.2019.109189
https://doi.org/10.1016/j.ijhydene.2011.12.156
https://doi.org/10.1016/j.ijhydene.2015.08.051
https://doi.org/10.1016/j.catcom.2012.09.012
https://doi.org/10.1007/s10971-020-05275-2
https://doi.org/10.1016/j.ceramint.2023.12.281
https://doi.org/10.1016/j.jre.2020.12.017

	Introduction 
	Material and Methods 
	Perovskite Model Framework 
	Data Collection 
	Feature Engineering 
	Model Construction 
	Webserver Development 
	Virtual Screening 
	Mechanism Mining 

	Computational Details 

	Results and Discussion 
	Feature Selection and Analysis 
	Model Construction 
	Optimizing Hyperparameters 
	Establishing Model 
	Model Evaluation 

	Model Application 
	Online Web Service 
	Virtual Screening 

	Mechanism Mining 
	Relationships between Key Features and SSA 
	Pattern Recognition 


	Conclusions 
	References

