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Abstract: Confined masonry (CM) construction is being increasingly adopted for its cost-effectiveness
and simplicity, particularly in seismic zones. Despite its known benefits, limited research exists
on how the stiffness of confining elements influences the in-plane behavior of CM. This study
conducted a comprehensive parametric analysis using experimentally validated numerical models of
single-wythe, squat CM wall panels under quasi-static reverse cyclic loading. Various cross-sections
and reinforcement ratios were examined to assess the impact of the confining element stiffness on
the deformation response, the cracking mechanism, and the hysteretic behavior. The key findings
included the observation of symmetrical hysteresis in experimental CM panels under cyclic loading,
with a peak lateral strength of 114.3 kN and 108.5 kN in push-and-pull load cycles against 1.7% and
1.3% drift indexes, respectively. A finite element (FE) model was developed based on a simplified
micro-modeling approach, demonstrating a maximum discrepancy of 2.6% in the peak lateral load
strength and 5.4% in the initial stiffness compared to the experimental results. The parametric study
revealed significant improvements in the initial stiffness and seismic strength with increased depth
and reinforcement in the confining elements. For instance, a 35% increase in the lateral strength
was observed when the depth of the confining columns was augmented from 150 mm to 300 mm.
Similarly, increasing the steel reinforcement percentage from 0.17% to 0.78% resulted in a 16.5%
enhancement in the seismic strength. These findings highlight the critical role of the stiffness of
confining elements in enhancing the seismic performance of CM walls. This study provides valuable
design insights for optimizing CM construction in seismic-prone areas, particularly regarding the
effects of confining element dimensions and reinforcement ratios on the structural resilience.

Keywords: confined masonry; finite element analysis (FEA); reverse cyclic loading; reinforcement
ratio; confining element size; ANSYS

1. Introduction

Masonry, which has historically been a primary construction method due to its afford-
ability and simplicity [1–3], has been used for millennia in significant structures such as
the Tower of Babylon and the Great Wall of China [4]. Currently, over half of the global
population resides in brick masonry homes [5]. However, in seismic zones, this system
presents risks. Unreinforced masonry, while effective under gravity loads, lacks sufficient
shear and tensile strength, posing challenges in seismic resilience [6,7]. Despite these
drawbacks, the widespread use of masonry persists in earthquake-prone areas, necessitat-
ing a reassessment of its seismic vulnerability. Historical seismic events have repeatedly
demonstrated the inadequate performance of such structures, often leading to considerable
damage and the loss of life, as has been experienced in China, Japan, Iran, Indonesia, India,
Italy, and Pakistan [8,9].
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The AJK earthquake in October 2005, a catastrophic event in Pakistan, marked a turn-
ing point in the approach to masonry structures in seismic regions. This disaster resulted
in over 73,000 fatalities, injured 70,000, left 2.8 million people homeless, and destroyed
more than 450,000 buildings [10]. The primary factors contributing to this extensive dev-
astation were identified as sub-standard construction materials, inadequate interlocking
between in-plane and out-of-plane walls, and prevalent non-engineered building prac-
tices [11]. The sheer scale of this tragedy exposed the urgent need for reform in construction
methodologies, particularly in regions susceptible to seismic activity.

In response, there has been a significant shift towards confined masonry construction,
a technique that offers a higher lateral stiffness and a better resistance to seismic forces.
Originating after the earthquakes in Messina, Italy (1908), and Talca, Chile (1929), confined
masonry is characterized by the use of tie-beams and tie-columns that are added after the
construction of the masonry wall, enhancing both the in-plane and out-of-plane strength.
This method has been studied extensively due to its distinct advantages over traditional
construction techniques, particularly in seismic regions.

Jain et al. [12] conducted comprehensive analyses demonstrating the superior seismic
performance of confined masonry structures compared to conventional masonry and
reinforced concrete frames. Marques et al. [13] highlighted the structural benefits of
confined masonry, noting its ability to significantly reduce the risk of collapse during
seismic events due to the integration of reinforced concrete tie-beams and tie-columns. This
integration enhances the ductility and energy dissipation capacity of masonry walls.

Borah et al. [14] and Brzev [15] provided empirical evidence and theoretical analyses
confirming the improved lateral strength and stiffness of confined masonry structures. Their
studies emphasized the method’s efficacy in distributing seismic forces more uniformly,
thereby reducing the damage concentration in any single structural component. Erberik
et al. [16] further elaborated on the mechanical behavior of confined masonry under
dynamic loading, revealing that this construction technique offers a balanced combination
of strength and flexibility.

Gouveia et al. [17] conducted detailed finite element modeling to compare confined
masonry with traditional infill masonry frames, concluding that the former exhibits supe-
rior seismic resilience. Schacher [18] provided case studies from various earthquake-prone
regions, showcasing the practical implementation and performance of confined masonry in
real-world scenarios. Singhal et al. [19] analyzed post-earthquake damage data, underscor-
ing the reduced vulnerability of confined masonry buildings.

The People’s Republic of China National Standard [20] and Tomaževič et al. [21] offered
regulatory perspectives and guidelines, reinforcing the adoption of confined masonry in
building codes due to its proven effectiveness. Tu et al. [22] explored the construction
process and the role of craftsmanship in ensuring the structural integrity of confined
masonry. Finally, Koji Yoshimura et al. [23] investigated the environmental and economic
benefits of confined masonry, noting its cost-effectiveness and sustainability.

The adoption of confined masonry is not limited to Pakistan, but is recognized globally
as an economical and resilient solution for earthquake-prone areas, suitable for buildings
of up to six stories. Several guidelines have emerged in recent years to set the funda-
mental details of confined masonry. A few countries have established codes for confined
masonry design, for instance, China [20], Europe [24], Costa Rica [25], Colombia [26],
Argentina [27], Chile [28], Peru [29], and Mexico [30]. Also, the building code of Pakistan
is in a development phase for confined masonry [31]. However, despite the development
and implementation of numerous international standards and codes for confined masonry
design, significant disparities in these guidelines persist. These include variations in the
provisions for in-plane and out-of-plane seismic strength and the design and detailing of
confining elements [32–37].

Confined masonry (CM) structures are vital in seismic design, utilizing tie-columns
and tie-beams to augment the deformation capacity and structural integrity under lateral
and gravity loads [38]. The behavior of RC frames incorporated with CM walls is signifi-
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cantly influenced by the interplay between the RC frames and the CM panels. This dynamic
not only impacts the structural stability of the masonry walls, but also alters the failure
mode of the RC frames, deviating from their original design expectations [39]. International
codes provide foundational guidelines for confining elements, including specifications
for longitudinal steel bars and tie sizes. However, these standards sometimes lead to
seismic vulnerabilities, as evidenced by the weaknesses in CM structures revealed in past
earthquakes. These include insufficient confining elements and masonry strength, a poor
design, construction irregularities, and challenges associated with slender walls [40,41].
Studies that have analyzed earthquake damage in CM structures have commonly identified
two primary failure modes: flexural and shear. These failure modes are influenced by a
range of factors, such as the reinforcement percentage, the wall aspect ratio, the material
strength, the confining element size, etc. [42–47]. When CM walls face in-plane lateral
loads, they typically exhibit a diagonal tension shear failure pattern. This involves inclined
cracks forming in the masonry walls, which then extend into the RC confining elements,
eventually leading to failure [48].

Extensive research, both numerical and experimental, has been dedicated to devel-
oping shear and flexural strength criteria for CM structures, with a focus on the effects of
confinement. Chourasia et al. [49] analyzed various masonry typologies, with confined
masonry showing a superior lateral strength, ductility, and energy dissipation. Marinili
et al. [50] investigated CM walls with varying tie-columns and found that tie-columns
significantly enhance the ductility, initial stiffness, and seismic capacity. Kato et al. [51]
analyzed the shear and axial reinforcement in CM tie-columns, noting an improved lateral
load capacity with adequate axial reinforcement. They also suggested identifying an opti-
mal axial-shear reinforcement ratio for further strength enhancement. Similar results were
observed by Okail et al. [52] while exploring the structural response of life-sized CM walls
with different axial and shear reinforcement ratios.

In a comparative study, Ashraf et al. [53] demonstrated that confined masonry, even
when perforated by openings, offers almost double the seismic capacity of unreinforced
masonry walls. Jorge et al. [54] assessed the in-plane flexural performance of CM piers,
observing improved behavior with reduced reinforcement in the confining elements. Mato-
sevic et al. [55] examined the connection details between masonry and tie-columns, noting
enhancements in the hysteretic energy dissipation, seismic resistance, and wall stiffness
due to confinement. Ahmed et al. [56] tested a full-scale confined masonry room under
quasi-static loads and found that confinement nearly doubled the seismic strength com-
pared to unreinforced structures. Understanding the actual structural behavior of existing
masonry buildings is critical for conducting an accurate seismic assessment and developing
conservation strategies. Full-scale testing plays a pivotal role in this context, as it provides
invaluable insights that cannot be fully captured by numerical simulations alone. For
instance, Gentile et al. [57] demonstrated the effectiveness of full-scale testing combined
with finite element (FE) modeling in their study of an ancient tower. Their research utilized
ambient vibration surveys to inform the FE model, leading to a more reliable seismic
assessment of the structure. This approach highlights the necessity of integrating empirical
data from full-scale tests to enhance the accuracy of structural evaluations and ensure the
preservation of historical masonry buildings.

Quiroz et al. [58] conducted experiments on the cyclic behavior of CM panels with vary-
ing levels of reinforcement in confining components. Their findings indicated that, despite
different reinforcement ratios, the seismic characteristics remained consistent except for
walls with minimal reinforcement, which showed a reduced lateral strength. Ibrar et al. [59]
varied the dimensions and steel amounts in confining elements, concluding that larger
confining elements enhance the structural performance under cyclic loading, while the
reinforcement ratio had a negligible impact on the cracking patterns and seismic capacity.
Recent advancements in CM construction have highlighted its potential for enhanced
seismic resilience, particularly in earthquake-prone regions. However, a significant gap
persists in understanding the behavior of CM under seismic conditions, primarily due to
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the variability in the design of and detailing practices for the critical confining elements.
This variability, which is observed across different global guidelines and standards, chal-
lenges the prediction and optimization of CM structures’ seismic performance. Moreover,
there is a notable deficiency in comprehensive research addressing the combined effects of
reinforcement ratios and the dimensions of the confining elements on a CM wall’s seismic
behavior. This study aimed to bridge these gaps by conducting an in-depth analysis of
the in-plane seismic characteristics of CM structures, employing both experimental and
advanced finite element methods. The novelty of this research lies in its systematic ap-
proach to quantifying the impact of varied confining element configurations on the seismic
characteristics of CM walls. This approach is expected to contribute significantly to the
development of more nuanced and effective design guidelines, thereby enhancing the
safety and resilience of CM structures in seismically active areas.

2. Methodology
2.1. Experimental Setup and Instrumentation
2.1.1. Description of Specimen

A confined masonry wall sample, previously studied by Ajmal et al. [38] under quasi-
static reverse cyclic shear loading, was further examined in this research. The single-wythe
pier specimen had dimensions of 1870 mm in length, 1850 mm in height, and 113 mm in
width, maintaining an aspect ratio of approximately 1.0 to prioritize shear failure over
flexural failure. A 50% scaled-down wall panel was constructed to fit within the oper-
ational limits of the testing facility, including the equipment capacities for load applica-
tion and monitoring. The wall was built on an RC pad measuring 2470 × 300 × 300 mm
(L × W × H), simulating a robust footing. To develop the steel reinforcement for the tie-
columns, a steel cage was fixed in place before casting the footing beam, and the dowels
were firmly embedded into the footing pad, following the guidelines of ACI 318-19 [60].
A 300 mm extension on each side of the footing beam was used to anchor the pier to the
test floor, preventing sliding and uplifting. Additionally, instrumentation was installed to
monitor any base movements.

The masonry used standard clay bricks with a size of 225 × 113 × 75 mm (L × W × H),
joined with 10 mm thick mortar joints. The bricks were pre-soaked to enhance mortar
bonding. During the brickwork, half-brick toothing was incorporated on every alternate
course of bricks to guarantee a tight fit of the masonry units with the confining elements. Tie-
columns and tie-beam, each measuring 225 × 113 mm (width × depth), were constructed
around the wall, with a depth matching the width of the wall. These confining elements
were reinforced with four 10 mm deformed longitudinal steel rebars and 6 mm transverse
reinforcement. The details of the steel reinforcement design and the geometry of the
specimen are provided in Figure 1.

Before casting the confining elements, six strain gauges were affixed to the longitudinal
and transversal steel bars of the columns and beams in the wall specimen to monitor the
behavior of the reinforcement under a load. Strain gauges (10 mm long) were attached with
a cyanoacrylate adhesive to the critical sections of the bars.

The thickness of the confining components was consistent with the masonry walls,
standing at 113 mm. For the standard concrete, a mix ratio of 1:2:4 was adopted, consisting
of 1 part ordinary Portland cement, 2 parts Lawrencepur sand, and 4 parts Sargodha crush.
The slump for the beams was kept at approximately 85 mm, while for the columns, it was
maintained at a higher value, roughly 110 mm, to facilitate the smooth pouring of concrete,
especially into toothing, in the case of tie-columns. Special attention was paid to ensure
the complete filling of the tooth gaps with concrete, and a vibrator was used to compact
the concrete.
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2.1.2. Material Characteristics

The relevant standards were used to conduct experimental testing and determine
the elastic modulus and strength characteristics of all the materials used in the confined
masonry panels. This included mortar, brick, masonry, steel rebars, and concrete. The
mortar mix design was 1:3 (cement–sand) with a water–cement ratio of 0.6. We used
Lawrencepur sand, which has a fineness modulus (FM) value of 2.6, for both the mortar
and the concrete, as determined through testing according to ASTM C136 [61].

To evaluate the compressive strength of the mortar, 50 mm cubes were tested, yielding
a strength of 21.97 MPa with a coefficient of variation (COV) of 6.5%, in line with ASTM
C109 [62]. The bricks’ compressive strength, determined as per ASTM C67 [63], was
19.74 MPa with a COV of 7.4%. For masonry, we tested a four-brick prism to find a
compressive strength of 9.81 MPa and an estimated modulus of elasticity of 4700 MPa. This
modulus was calculated from the secant line between points representing 5% and 33% of
the compressive strength, as per the Masonry Standards Joint Committee 2011 [64].

The 28-day water-cured concrete cylinders showed a compressive strength of 31.37 MPa
and an elastic modulus of 24,794 MPa, following ASTM C39/C39M [65] and ASTM
C469/C469M-10 [66], respectively. The yield strength and elastic modulus of the 6 mm
and 10 mm diameter steel rebars, estimated via direct tension tests, were 483 MPa (COV
2.1%) with a 188671 MPa modulus and 537 MPa (COV 1.3%) with a 191103 MPa modulus,
respectively, which was compliant with ASTM A615 [67].

Finally, the diagonal compressive and shear strengths of the masonry, estimated by
testing brick wallets and triplets measuring 600 mm × 600 mm and 225 mm × 245 mm, were
0.58 MPa (COV 13.8%) and 0.56 MPa (COV 11.2%), respectively, as per ASTM E519-02 [68]
and BS EN 1052-3 [69].
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2.1.3. Instrumentation and Test Setup

The research experiment was carried out at the Test Floor Laboratory of UET Lahore,
with the testing configuration depicted in Figure 2. The extended portion of the footing
beam on both sides of the specimen was rigidly anchored to the strong test floor.
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The beam–column joint was subjected to a pseudo-static reverse cyclic load along the
in-plane direction. The lateral load was applied through hydraulic jacks placed on either
side of the wall panel. Two 40-ton-capacity reaction frames were installed on both sides of
the specimen with a steel I-section braced at the height of 1.5 m, on which hydraulic jacks
were fixed to apply a lateral load to the specimen. Jack-I along with the load cell was meant
to apply a push load to the specimen from left to right, whereas Jack-II along with the load
cell was designated to apply a push load from right to left on the specimens. Load cells
were utilized with hydraulic jacks to measure the lateral loads. The loading was applied at
a small frequency of around 0.02 Hz.

The measurement of in-plane, out-of-plane, and diagonal movement was conducted
using a total of five LVDTs. To simulate the service roof load on the wall, an evenly spread
gravity load of 0.35 MPa was constantly exerted by a hydraulic Jack-III on the specimen
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using a steel girder. To enable unimpeded lateral movement during loading, four rollers
with a diameter of 50 mm were positioned on top of the steel girder. A strong packing
was provided between the test specimen and the reaction frame to avoid specimen base
slippage during loading. A schematic diagram of the experimental test setup is shown
in Figure 3.
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Figure 3. Schematics of test setup [38].

Initially, a cyclic load was applied up to 2 mm of lateral displacement in the push-
and-pull cycles; afterwards, the lateral loading continued until the failure of the specimens,
conforming to ACI 374.1-05 [70], with a 5 mm increment in the lateral displacement after
each cycle, as demonstrated in Figure 4. The test concluded when the specimen ceased to
bear any additional loads and strain softening started, with a noticeable widening of the
bed joint cracks in the case of the CM wall.
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2.2. Numerical Modeling

A computer-based analysis was made by creating a 3D finite element model to simulate
the CM wall tested experimentally. Also, the impact of the steel reinforcement ratio and
the size of the confining elements on the seismic characteristics were studied numerically
under pseudo-static reverse cyclic loading. For this purpose, the commercially available
finite element software ANSYS 15.0 was used based on the past research on masonry
walls [71–78].
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2.2.1. Modeling Technique

Previous research has identified several numerical techniques for analyzing the struc-
tural performance of brick walls, which differ in their ability to predict failure mecha-
nisms accurately. These techniques can be broadly classified into micro-modeling, macro-
modeling, and simplified micro-modeling, as illustrated in Figure 5.
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The detailed micro-modeling method is preferred when analyzing the maximum
modes of failure (Figure 5a). Here, the bricks and mortar are modeled as continuum
elements, while the brick–mortar contact surface is characterized by distinct elements
showing discontinuities. Creating a separate model for each constituent element of the
masonry structure (mortar, brick, and interface) with their unique properties demands
additional data processing time in this kind of approach. On the other hand, the macro-
modeling technique considers the entire brick wall as an identical element, and the wall
panel is assigned distinctive properties in lieu of mortar and brick, while the mesh size
remains identical to that of the brick (Figure 5b).

Although this approach requires less computational time, it is relatively approximate.
Hence, this modeling technique is used when the degree of accuracy is not critical, such as
in larger structures. Nonetheless, the simplified micro-modeling method preserves the basic
wall configuration and dimensions, comprising the bricks and other essential features, such
as detailed micro-modeling; however, it models the contact area of the interface elements
and mortar joints as separate entities (Figure 5c). This modeling technique assigns the
shear and compressive stress characteristics to the mortar using spring elements, while
contact elements are used for the brick–mortar bond. It demands less computational time
as compared to the detailed micro-modeling technique.

2.2.2. Modeling

Various researchers have conducted FEAs to observe the complex behavior of brick
walls and have shared their recommendations about the simplified methods [79–85]. The
software ANSYS [86] utilizes 8-node, 3-degrees-of-freedom hexahedral elements to create
replicas of the reinforced concrete and brick units in 3D, allowing for translational displace-
ment in the x, y, and z directions at all nodes. The chosen element type, SOLID65, has the
ability to crush under compression and crack under tension and can accommodate the
inclusion of reinforcement rebar.

For numerical modeling, the distribution of steel rebar was assumed to be even and
uniform through the concrete component. It is essential to define failure criteria to obtain
the failure of a material. For steel rebar, the LINK180 element was used, which is a uniaxial
tension-compression element with three degrees of freedom at each node: translational
displacement in the nodal x, y, and z dimensions. To represent the behavior of the mortar
joint, two nonlinear spring elements, COMBIN39, were employed in parallel, with a single
contact element, CONTA178, connected in series to the spring elements, as shown in
Figure 6. The axial and shear behavior of the mortar was simulated using the spring
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elements, while the bond between the mortar and brick was modeled using the contact
element. The properties of both the contact elements and spring elements were established
based on their respective material characteristics, with the inclusion of friction in the contact
element. The force-deflection curve for these elements was defined using the stress-strain
curve, with the force expressed as the product of stress and the tributary area over the node,
as shown in Figure 7. The deflection of the joint was calculated as the product of the strain
and the length of the spring. The length of the nonlinear spring element was defined as
90% of the joint thickness, while the dimension of the contact element was set at 10% of the
joint thickness.
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The brick elements were halved vertically to enable connections with courses above
and below, as shown in Figure 7. To represent the connection between the bricks and
mortar, including the mortar joint and bond, two parallel spring elements and one series
contact element were used to connect the nodes of two bricks. The properties were assigned
to two nonlinear spring elements to demonstrate the axial and shear behavior of the mortar,
whereas the contact elements were allocated to represent the bond between the brick and
mortar, with associated properties related to mortar and friction. The confining elements of
the wall were simulated using the SOLID65 element, and the reinforcement was integrated
into the concrete using the LINK180 element. To restrain the out-of-plane displacement
of the test wall, the analysis included the z-directional restraint of all the wall nodes.
Additionally, the bottom-most nodes of the test specimen were constricted in all directions
to ensure fixed support at the bottom.
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The overall properties used in the numerical modeling of confined masonry comprise
those provided in Section 2.1.2. Some additional characteristics used in the simulation of
CM walls are presented in Table 1.

Table 1. Additional data values for numerical modeling.

Properties Assigned Values

Poisson’s ratio for bricks: νb 0.20

Poisson’s ratio for mortar: νm 0.15

Poisson’s ratio for concrete: νc 0.16

Normal stiffness of CONTA178 element: Kn 13,967,223 kN/m

Tangential stiffness of CONTA178 element: Ks 6,072,705 kN/m

3. Results and Discussion
3.1. Experimental Results
3.1.1. In-Plane Load vs. Deformations

The relationship between the in-plane load and displacement for the tested CM wall
sample is depicted in Figure 8. The response of the wall panel demonstrated almost
proportional cycles during both the compression and tension phases. With each subsequent
hysteresis, the seismic resilience of the wall sample showed an upward trend, peaking at
114.3 kN, before receding to 109.1 kN in the final push load. These correspond to drift
indexes of 1.73% and 2.02%, respectively. After reaching the highest strength capacity, the
wall panel displayed a notable decline in seismic resilience, leading to the conclusion of
the test. This pronounced drop was especially evident at higher drift levels, which was
attributed to the confining forces. The lateral force spread across the cross-section of the
masonry, Aw, resulted in shear stress (Vmax/Aw) of 0.67 MPa in the masonry segment. The
initial rigidity (Kco) of the wall stood at 35 kN/mm, and it had an overall energy dissipation
measure of 5861 kN-mm.
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Figure 8. CM wall: (a) hysteretic behavior and (b) envelope curve.

The envelope curve (Figure 8b) derived from the peak points of the hysteresis loops
for the wall under lateral cyclic loading served as a pivotal visual tool for interpreting
the seismic performance of the wall. The rough symmetry of the curve around the y-
axis denotes that the wall demonstrated analogous resistance behavior against push-and-
pull lateral loads. At the outset, particularly between no displacement and minimal
displacement, the wall showcases a pronounced initial stiffness. This is evident in the sharp
escalation in load values with only minor increases in the displacement.

As we traversed further along the curve, a progressive flattening became discernible,
particularly between the drift displacements of 15 mm and 32 mm in the push load. This
change in the gradient of the curve highlights the inherent ductility of the wall, allowing it
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to sustain considerable deformations without experiencing a noticeable decline in strength.
The peak values of the curve located around 112.3 kN and 98.4 kN, in the last push-and-
pull load (i.e., the sixth and seventh cycles), encapsulate the peak resistance of the wall
against lateral loads. The regions of the curve where a plateauing effect was noted, around
the drift displacements of 32 mm and 25 mm, can potentially be ascribed to the yielding
phenomenon of the masonry wall. Beyond these regions, the wall exhibited a tendency
to experience heightened displacements with only marginal load alterations, suggesting
potential structural vulnerabilities such as cracking or crushing. The slight decline in the
load resistance observed at a displacement of 37.4 mm further corroborates this post-peak
behavior. In essence, this envelope curve not only elucidated the masonry seismic response
of the wall, but it also offered invaluable insights into its post-peak behavioral nuances.
The cyclic responses of the experimentally tested specimen are presented in Table 2.

Table 2. Cyclic responses of experimentally tested specimen [38].

Vcr
(kN)

Vmax (kN) Vmax/Aw
(MPa)

δm (%) Ed
(kN-mm)Push Pull Avg Push Pull Avg

75.7 114.3 98.2 106.2 0.67 2.0 1.4 1.7 5861

The degradation of the stiffness (Kc/Kc0) at each drift level was plotted against the
drift δ, normalized with respect to the drift level in the first loading cycle, δ0 (Figure 9a).
Additionally, the strength variation factor (Csv = V/Vmax) was determined by normalizing
the lateral loads against different drift levels with Vmax and charted against δ/δm (Figure 9b).
The resulting plot indicated an increase in the strength of the wall because of the presence
of confining components in the panel.
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3.1.2. Steel Strain in Longitudinal Bar

Strain gauges, strategically placed at the base of each tie-column in the wall, recorded
pronounced strains due to the yielding of the longitudinal steel. Figure 10 showcases the
minimal lateral drift index values corresponding to the yielding of the reinforcement bars,
aligning with the hysteretic behavior of CM. In the fourth push cycle, the longitudinal steel
rebar of the left column indicated yielding at a 0.70% drift index, while during the 3rd pull
cycle, the steel in the right column reached yielding at a 0.54% drift.
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3.1.3. Failure Mechanism

Figure 11 illustrates the cracking pattern and failure mode of the specimen wall.
The initial crack appeared at the head joint of the masonry near the top at a 0.22% drift
and a seismic load of 75.74 kN (Figure 11a). Increased loading led to downward crack
propagation through the bed and head joints, with stair-stepped cracks emerging in the
mortar at a 0.54% drift and 89.85 kN load. Diagonal crisscross cracks developed from
the column–beam joint through the brick interface, reaching the opposite tie-column at a
1.08% drift and 103.21 kN load. The failure mode was characterized by shear failure in the
confining columns and diagonal cracking in the masonry bed joint of the panel.

Confining components delayed the diagonal shear crack propagation from the wall to
the tie-column, demonstrating a notable difference from infilled masonry structures. As
the drift increased, flexural cracks in the tie-column appeared, leading to failure due to
panel rocking once the tie-column reached its ultimate tension capacity at the base. The
cracks predominantly followed the bed and head joints, with fewer cracks in the masonry
units themselves.

In-plane failure in CM walls, which is critical due to its occurrence along the primary
lateral load transfer path, often combines various damage modes. Shear-induced in-plane
damage is common, presenting as bed joint sliding, diagonal compression, or tension, with
shear cracks starting in the wall and extending to the tie-columns [87].

The wall panel reached its peak load-bearing capacity during the push-and-pull
tests, with maximum values of 114.3 kN and 108.5 kN at 1.73% and 1.35% drift indexes,
respectively. The failure occurred with an enhanced capacity and ductility, and was
comparable to the findings by El-Diasity et al. [88]. The peak horizontal movement recorded
was about 37.4 mm. The test concluded at the collapse prevention (CP) level as per
ASCE/SEI 41-06 [89], with the diagonal shear cracks measuring up to 24 mm and flexural
cracks in the tie-column of up to 9 mm wide. The damage was primarily localized to the
upper third of the wall.
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3.2. Numerical Simulation

In civil engineering, numerical modeling is essential for studying structural behavior
in materials and designs. It is pertinent to validate these models with empirical tests
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to ensure accuracy. However, limitations exist, such as accurately representing complex
materials such as masonry, concrete, and steel, and their interactions. Modeling crack
growth and damage under repeated loads is difficult and may not fully reflect real-world
behaviors such as energy loss and stiffness reductions. Computational limits can restrict
the model detail, and oversimplifications may impact the accuracy. Replicating real-world
load and boundary conditions is also challenging. Validating models with experimental
data is vital, but can face data constraints, leading to differences between the simulated
and actual outcomes.

3.2.1. Validation of Numerical Wall Model

This paper presents a comparison between the experimental results and a numerical
model of a confined masonry wall panel, which showed a good correlation in seismic
capacity (Vnum) with a marginal difference of 2.6%. The hysteretic response of the numerical
model initially mirrored the experimental results; however, as the lateral drift increased,
the model showed enhanced energy dissipation, as depicted in Figure 12. The envelope
curves from the simulation confirmed the experimental observation that a higher lateral
drift leads to increased lateral strength. Additionally, the initial stiffness derived from the
model closely matched the experimental results, with a slight deviation of only 5.4%. In
representing structural damage, the stress contours were plotted in ANSYS, as the graphical
user interface of the software has limitations in visualizing bed joint cracks in the masonry
pier. Despite this constraint, the finite element model exhibited a commendable degree of
accuracy in reflecting the damage observed during the experiment.
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Figure 13a displays the stress distribution of the wall panel at its breaking point,
revealing distinct diagonal stress patterns indicative of shear failure. This shear failure
pattern was characterized by the formation of diagonal cracks, which are typical in masonry
walls subjected to lateral loads. This observation was consistent with the failure mode seen
in the actual wall test, validating the accuracy of the finite element (FE) model in capturing
the primary failure mechanism.

The FE model of the CM wall showed peak compressive stress at the beam–column
intersection on the confining column, a critical location where the wall ultimately failed.
This concentration of stress suggests that the junction of the beams and columns in the
confining frame is a vulnerable point and is prone to experiencing significant stress during
seismic events.

During the loading and unloading cycles, the principal stresses varied significantly,
illustrating the dynamic response of the wall to cyclic loads. Although the FE model could
not accurately represent bed joint fractures—an inherent limitation of the model—it closely
approximated the experimental damage. This approximation was evidenced by the stress
distribution patterns generated in ANSYS, which aligned well with the observed damage
in the physical tests.
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Under cyclic loading, the steel rebars in the tie-columns yielded before the failure of
the wall, as depicted in Figure 13b. The yielding of the rebars was an important aspect of
the wall’s performance, as it indicates that the tie-columns are effectively dissipating energy
and undergoing plastic deformation prior to the overall failure of the structure. The stress
in the longitudinal steel rebars of the tie-columns reached and was limited to the yield point,
due to the elasto-plastic constitutive model of steel used in the modeling. This behavior
highlights the role of the steel rebars in providing ductility to the wall system, allowing
it to undergo significant deformation without sudden failure. The FE model’s ability
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to simulate the yielding of steel rebars and the subsequent stress distribution provided
valuable insights into the performance of CM walls under seismic loading. The stress
patterns and failure modes aligned closely with experimental observations, demonstrating
the model’s reliability in predicting the structural response of CM walls.

3.2.2. Parametric Study

A masonry wall panel, featuring 225 mm deep confining elements and No. 10 longitu-
dinal reinforcement, was subjected to reverse cyclic loading to assess its seismic behavior.
This was then compared with a numerical model. The outcomes from both the experimental
and numerical approaches showed a good match within acceptable limits, as illustrated
in Figure 12. This study was expanded to explore the effects of varying the reinforcement
ratios and confining element sizes on the seismic performance of the wall. To achieve this,
the depth of the confining elements was varied, creating combinations of each depth with
three distinct reinforcement ratios to examine their collective impact. The dimensions of
the confining elements and the diameter of the longitudinal bars for nine different confined
masonry walls, including the control specimen, are detailed in Table 3. The term “CM”
refers to confined masonry, with the initial number indicating the size of the confining
elements in millimeters and the subsequent number denoting the size of the longitudinal
reinforcement within these elements.

Table 3. Specifications of CM walls modeled for parametric study.

Specimen Name Nomenclature
of CM Walls

In-Plane
Dimension of

Confining
Elements (mm)

Size of
Longitudinal
Rebar (mm)

Steel
Reinforcement

Ratio (%)

1 CM-150-6 150 6 0.17

2 CM-150-10 150 10 0.46

3 CM-150-13 150 13 0.78

4 CM-225-6 225 6 0.11

5 CM-225-10 225 10 0.31

6 CM-225-13 225 13 0.52

7 CM-300-6 300 6 0.08

8 CM-300-10 300 10 0.23

9 CM-300-13 300 13 0.39

Figure 14 displays the stress contour plots of all the wall panels at the point of failure,
where it is evident that shear failure was common across all panels. In most cases, the walls
exhibited peak principal compressive stresses in the confining columns, either at the base
or near the load application point, occurring after the concrete had reached its maximum
compressive strength. The principal stresses in the models fluctuated during the push–pull
loading and unloading cycles. Due to limitations of the FE model, crisscross cracks could
not be modeled; however, smeared cracks were produced in the models.

The envelope curves given in Figures 15 and 16 evidently illustrates that both the steel
reinforcing percentage and the size of the confining components have a considerable effect
on the lateral load response. The maximum lateral load strength and the initial stiffness
of the walls increased with an increase in the depth of the confining components and the
diameter of longitudinal steel rebars. The nomenclature adopted for the envelope curves
illustrated in Figure 15a–c symbolizes “CM” as confined masonry, “x” as the variable
for the depth of the confining elements, and the number as the the size of longitudinal
reinforcement in the confining elements.

The effect of the confinement size was evaluated in all the masonry walls by keeping
the reinforcement the same. The percentage differences between the maximum lateral load
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carrying capacities of CM-225-6 and CM-300-6 with respect to CM-150-6 were observed
to be 13.9% (push), 18.5% (pull) and 32.7% (push), 32.8% (pull), respectively (Figure 15a).
As the dimensions of the confining elements increased, an increase was observed in the
lateral capacity. Similarly, the lateral strength of CM-225-10 and CM-300-10 was found to
be 15.1% (push), 17.9% (pull) and 34.3% (push), 33.7% (pull), respectively, and was more
than that of CM-150-10 (Figure 15b). The same strength was 14.7% (push), 16.5% (pull) and
35.2% (push), 34.7% (pull) greater in CM-225-13 and CM-300-13, respectively, as compared
to that of CM-150-13 (Figure 15c). Although the highest percentage increase in the lateral
load strength was found in the case of CM-300-10 with respect to CM-150-10, the maximum
lateral strength obtained was in the case of CM-300-13. From the envelope curves, it was
found that the stress pattern was the same in all cases (Figure 15a–c), yet the maximum
lateral load strength was observed to increase with an increase in the confinement size.
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Figure 14. Damage shape contour diagrams of (a) CM-150-6, (b) CM-150-10, (c) CM-150-13, (d) CM-
225-6, (e) CM-225-10, (f) CM-225-13, (g) CM-300-6, (h) CM-300-10, and (i) CM-300-13. MX means
maximum stresses and MN means Minimum stresses.
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Figure 15. Envelope curves for same reinforcement size: (a) CM-x-6, (b) CM-x-10, and (c) CM-x-13.
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Figure 16. Envelope curves for same confining element size: (a) CM-150-x, (b) CM-225-x, and
(c) CM-300-x.

According to Hook’s law, the lateral stiffness is directly proportional to the moment
of inertia of confining columns [90]. By increasing the size, the stiffness of the confining
columns increased and, resultantly, the wall exhibited a higher lateral seismic load. The
increase in the column stiffness caused the reduced transfer of strain in the masonry panel
when subjected to a lateral load. Most of the energy was dissipated by the tie-columns and
the rest was transmitted to the masonry panel, once the capacity of the column exhausts.

Jin et al. [91] studied the effect of the cross-section size on the flexural failure behavior
of RC cantilever beams subjected to cyclic loading. Based on tests conducted on 15 RC
beams, it was found that the maximum lateral load was increased to 84.5%, 134.7%, 160.2%,
and 169.2% when the depth of the beam was increased from 200 mm to 400 mm, 600 mm,
800 mm, or 1000 mm, respectively. Jin et al. [92] conducted similar research and studied
the effect of the cross-section size on the lateral load strength of RC columns subjected to
cyclic loading. Based on experimentation on 12 square RC columns, the authors inferred
that, by increasing the size of the columns from 300 mm to 500 mm and 700 mm, the peak
lateral load increased by an average of 77% and 128%, respectively. Tajzadah et al. [93]
carried out an analytical study on a G + 14 story RC buildings to find out the effect of
column size on the overall stiffness and seismic response of a building subjected to ground
shake. It was concluded that, by increasing the size of the reinforced concrete column from
500 mm to 700 mm, the base shear was increased by 6.4%. The lateral stiffness and ultimate
strength of a wall panel are dependent on the relative stiffness of the column and infill
material, but practically independent of the beam stiffness [94]. The certain reason behind
this phenomenon is the establishment of a sound bearing of columns on the infill material
through the toothing effect. Therefore, a combination of tie-columns with an increased
size and an optimal size of bond beam may be more suitable for making the structure both
stiffer and more cost-effective.
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The nomenclature adopted for the envelope curves given in Figure 16a–c denotes
“CM” as confined masonry, the first number as the depth of the confining elements, and “x”
as the variable for the size of the reinforcement. The percentage difference of the maximum
lateral load strengths of CM-150-10 and CM-150-13 with CM-150-6 were 7.6% (push), 8.9%
(pull) and 16.5% (push), 16.2% (pull), respectively (Figure 16a). In view of the stress contour
plots of damaged wall panels, the maximum stresses at the peak lateral load were low
in CM-150-6 due to a small size at the time of reinforcement, whereas in CM-150-10 and
CM-150-13, the stresses were observed to increase with an increase in the reinforcement
size. The failure in all panels occurred due to the crushing of concrete.

As shown in Figure 16b, the difference between CM-225-10 and CM-225-13 with
CM-225-6 is 9.4% (push), 8.4% (pull) and 17.3% (push), 14.3% (pull) respectively. Like the
previous wall panels, the maximum stresses were observed in CM-250-13 due to the larger
reinforcement size, and by decreasing it, the peak stresses were found to decrease, even
with the same size of confinement.

The maximum lateral strengths in CM-300-10 and CM-300-13 were found to increase
by 9.8% (push), 10.0% (pull) and 19.0% (push), 18.2% (pull), respectively, with respect to
CM-300-6 (Figure 16c). The maximum increase in the peak lateral strength was noted in CM-
300-13 due to a large size of reinforcement and confining elements, which evidently reflected
the reinforcing role of the confining elements in a wall subjected to the seismic load.

Steel reinforcement was a major contributor to the ductility and deflection of the
CM wall. An increase in the diameter of the steel bar increased the initial stiffness and
lateral strength; however, the most important parameter was the reinforcement ratio, which
had a direct influence on the ductility and resistance against tensile forces. Based on the
load moment interaction curves, the moment capacity of the reinforced concrete column
significantly increased with an increase in the reinforcement ratio [95], and the same was
observed in this study. Wang et al. [96] made an experimental investigation on the effect
of the reinforcement ratio on the capacity of RC columns to resist lateral impact loading.
The difference in the reinforcement ratio resulted in a significant difference in the ultimate
load capacity. The maximum improvement observed was a 24.7% increase in the lateral
capacity by increasing the reinforcement (two No. 18 bars) to three No. 18 bars in a
250 × 300 mm RC column. Pham et al. [97] experimentally and numerically investigated
the sensitivity of the lateral impact response of RC columns reinforced with GFRP bars and
stirrups to the reinforcement ratio. Based on the experimental results, the impact force was
observed to linearly increase with an increase in the reinforcement ratio in RC columns.
The lateral impact load capacity improved by 33.8%, 53.6%, and 46.4% when increasing the
reinforcement ratio from 0.64% to 1.23%, 2.02%, and 2.89%, respectively, under an impact
at 30◦ inclination. The slight decline in the impact force value at a 2.89% reinforcement
ratio was attributed to an error in measuring the impact force.

Chrysanidis [98] examined the stability of scaled-down reinforced concrete seismic
walls (1:3 scale) under varying tensile and compressive loads. Using specimens with
low (1.79%) and high (3.19%) longitudinal reinforcement ratios, the results showed that
increased reinforcement ratios improve the seismic resistance of walls for all levels of
elongation. Chrysanidis [99] also investigated the effect of maximum-code-prescribed
reinforcement ratios (4.02%) in reinforced concrete seismic walls, revealing that, even at
this high reinforcement level, walls are susceptible to lateral buckling under certain tensile
strains. This highlights a crucial gap in understanding the role of reinforcement ratios in
seismic wall stability. In a further study, Chrysanidis [100] focused on the effect of the
reinforcement ratio on the seismic response of RC walls modeled using prism elements. In
the study, 22 tests were conducted using 11 column specimens with varying reinforcement
ratios (from 1.79% to 10.72%), constructed at a scale of 1:3 to simulate the boundary edges
of the structural walls. The experimental results illustrated an improvement in the ultimate
failure load capacity of the columns by 112% with an increase in the reinforcement ratio.

It is pertinent to mention that, although the reinforcement ratio in wall panel CM-300-x
was less than those of panels CM-150-x and CM-200-x, when compared with the same size
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of reinforcement, the initial stiffness and maximum seismic load were higher in the case
of CM-300. This means that the reinforcement ratio can affect the ductility and deflection
of a wall, but the seismic properties, including the initial stiffness and the ultimate load
capacity, are governed majorly by the size of confining elements.

The structural behavior is similar among all types of panels, but it has been clearly
illustrated that the size of reinforcement and the confining elements are proportional to the
seismic properties (initial stiffness, maximum lateral load strength, energy dissipation, etc.).

4. Conclusions

This research entailed an experimental and numerical program focused on assessing
the seismic performance of a single-wythe CM wall with an aspect ratio of approximately
1.0, subject to pseudo-static reverse cyclic loading controlled by displacement. Key aspects
such as the lateral load capacity, the maximum drift, the initial stiffness, failure mode,
stiffness degradation, and the damage pattern were thoroughly examined. Complementing
this, an FE analysis was conducted for result validation and comparison. This study also
explored the lateral stiffness of confined masonry walls, particularly investigating the
influence of the confining element size and the steel percentage. This was achieved through
a numerical parametric study, where the depth of the confining elements was varied
alongside three different reinforcement sizes, allowing for an analysis of their combined
effects. The significant findings from this research include the following:

1. The hysteretic response of the masonry panel exhibited approximately symmetric
loops in push-and-pull load cycles with an increasing trend of lateral strength except
in the last push load, in which the load carrying capacity reached maximum value
of 114.3 kN and then decreased to 109.1 kN, corresponding to 1.73% and 2.02% drift
index, respectively.

2. The shear failure mode observed in the test specimen demonstrated that the toothed
contact surface between the masonry panel and the tie-column remained intact,
providing evidence of the superior performance of the CM wall compared to the
infilled structures.

3. The width of the diagonal shear cracks was noted as 24 mm, while the width of the
largest flexural crack in the tie-column was measured to be 9 mm.

4. The FE model of the experimentally tested wall panel was developed based on a
simplified micro-modeling technique, with the same parameter values offered an
approximate concordance with the experimental results by a maximum error of 2.6%
for ultimate lateral load strength and 5.4% for initial stiffness.

5. The parametric study indicated a positive correlation between the seismic strength
of confined masonry walls and the size of both the confining components and the
longitudinal reinforcement. An increase in the size of the confining elements enhances
the moment of inertia, leading to a higher lateral load capacity. Additionally, a greater
column stiffness results in reduced deformation transfer to the masonry panel under
lateral loads. The tie-columns primarily dissipate energy, with the remaining load
transmitted to the masonry panel once the columns reach their capacity.

6. Enhancing the size of the steel reinforcement bars improved the seismic strength of
the structure. However, the reinforcement ratio emerged as a critical factor, directly
influencing the ductility and tensile resistance. The load–moment interaction curves
demonstrated that the moment capacity of the reinforced concrete columns increases
substantially with higher reinforcement ratios, a finding corroborated by this study.

It can conveniently be summarized from the numerical and experimental studies that
the confined masonry wall exhibited considerably improved seismic characteristics without
the separation of the toothed interface between the confining columns and the masonry
panel, endorsing a significant difference between the infilled and confined masonry struc-
tures. Also, the increment in the size of the confining elements and the reinforcement ratio
resulted in a greater lateral load capacity and stiffness of the wall. The proposed study
can be adopted for perforated confined masonry walls to compensate for the loss of wall
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stiffness due to the openings. The future scope of this study includes the extension of
the present parametric study to find a combination of the optimal size of the confining
elements and the reinforcement ratio to make the structure both stiffer and cost-effective.
The numerical and experimental findings presented in this study can serve as a basis for
further testing on confined masonry walls with varying aspect ratios, masonry strengths,
and panel numbers.
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